POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE

Seconda Sessione – ANNO 2009 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare **Prova pratica del 14-01-2010**

E' richiesto il dimensionamento di massima, in termini di diametri nominali e di cadute di pressione, in una rete di distribuzione del gas naturale a media pressione con pressione di alimentazione (massima) pari a 13 bar assoluti e con pressioni di esercizio all'utenza non inferiori a 1.5 bar.

Si tratta di una rete ad albero (fig. 1) con 10 rami e sei utenze caratterizzate dalle portate nominali di progetto per le utenze (in Smc/h) indicate in tabella 1.

Utenza	Portata (Smc/h)
U10	4500
U11	2500
U8	3000
U5	4000
U6	3500
U7	1500

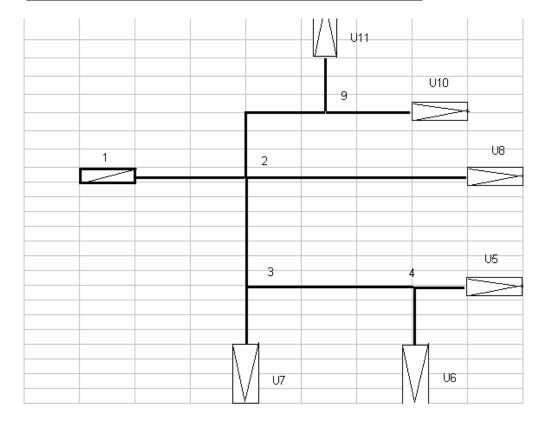


Fig. 1 Rappresentazione schematica della rete: 1 Stazione di alimentazione, U nodi utenze

A monte del nodo 1 , punto di connessione della rete di distribuzione del gas naturale al metanodotto di alimentazione, è previsto un impianto di regolazione con riduzione della pressione da 51 bar alla pressione di esercizio della rete di media pressione (compresa tra 5 e 12 bar relativi) per laminazione isoentalpica. Dopo la laminazione si ha l'impianto di fig. 2 che si connette al nodo 1 della rete.

La temperatura del gas a monte della stazione di decompressione è pari a 10 °C.

Fig. 2 IMPIANTO DI REGOLAZIONE - NON FERMABILE tipo A, p monte pre. > 12 BAR

POS.	DESCRIZIONE			
1	Giunto isolante monoblocco			
2	Valvola di intercettazione			
3	Valvola di intercettazione			
4	Flangia cieca			
5	Presa manometro			
6	Valvola di intercettazione			
7	Filtro con separatore di condensa			
8	Scambiatore di calore ad acqua calda			
9	Indicatore di pressione			
10	Regolatore di pressione – MONITOR			
11	Regolatore di pressione – REGOLATORE			

POS.	DESCRIZIONE			
12	Indicatore di pressione			
13	Valvola di intercettazione			
14	Valvola di intercettazione passaggio pieno			
15	Valvola di scarico ad azione diretta			
16	Valvola di intercettazione			
17	Filtro con separatore di condensa			
18	Scambiatore di calore ad acqua calda			
19	Regolatore di pressione – MONITOR			
20	Regolatore di pressione – REGOLATORE			
21	Valvola di intercettazione in			
22	Caldaia per produzione di acqua calda			

La tabella 2 riporta le lunghezze di riferimento in m dei rami della rete.

n.ro del ramo Nodo di ingresso		Nodo di uscita	Lunghezza ramo in m		
1	1	2	3850		
2	2	3	3210		
3	3	4	4720		
4	4	5	2830		

5	4	6	980
6	3	7	540
7	2	8	7830
8	2	9	4560
9	9	10	1960
10	9	11	2340

Valutare:

- a) la portata di gas in Sm³/h da laminare nel nodo 1 di alimentazione della rete;
- b) le portate nominali di gas in tutti i rami della rete
- c) classificare il tipo di condotte della rete in relazione al D.M. 24/11/1984 del Ministero degli interni (vedi allegati)
- d) i diametri nominali dei rami della rete da selezionare nell'ambito dei diametri DN ammissibili (tab. A1) considerando una velocità del fluido nella tubazione compatibile con la norma UNI CIG 9165 e sapendo che la massima pressione differenziale disponibile tra i nodo (1) è l'utenza più sfavorita è pari a 12 bar, la minima 6 bar;
- e) le cadute di pressione nei diversi rami della rete;
- f) le pressioni nei nodi che rendono compatibili le portate previste nei diversi rami sapendo che la pressione minima deve essere maggiore di 1,5 bar relativa;
- g) verificare l'adeguatezza degli spessori delle tubazioni definendo una adeguata pressione di progetto e caratterizzando il coefficiente di sicurezza rispetto alla sollecitazione unitaria di snervamento;
- h) valutare le masse delle tubazioni dei singoli rami e la massa totale;
- i) la temperatura del gas dopo la laminazione;
- j) la potenza termica da fornire al gas in modo che la rete di media pressione sia alimentata con un gas ad un temperatura non inferiore a 15 °C.
- k) discutere il funzionamento dell'impianto di fig. 2
- 1) indicare dei criteri di progetto per gli scambiatori di calore dell'impianto di fig. 2.

Allegati:

Dati di riferimento per il gas naturale

 $\begin{array}{lll} \mbox{Densit\`a alle condizioni standard (15 °C e p=1,01325 bar)} & \rho_s = 0,70 \ \mbox{kg/m}^3 \\ \mbox{Massa molecolare di riferimento} & M_m = 16,57 \ \mbox{g/mol} \\ \mbox{Volume molecolare alle condizioni standard} & V_m = 23,64 \ \mbox{dm}^3/\mbox{mol} \\ \mbox{Coefficiente dell'espansione isoentropica} & \gamma = 1,31 \\ \mbox{Viscosit\`a media del gas} & m = 10,8 \ \mu \mbox{Pa*s} \\ \end{array}$

Coefficiente di scostamento dalla legge dei gas perfetti rispetto alle condizioni standard:

$$K = 1 - 0.002 p$$

dove p pressione relativa in bar.

Norma UNI-CIG 9165 punto 3.2.3

Omiss.

b) la velocità del gas nelle condotte devono essere tali da limitare trascinamenti di eventuali impurità e fenomeni di rumorosità.

Le velocità massime da considerare sono dell'ordine:

- 4 a 5 m/s per le condotte esercite a pressione minore o uguale a 0,04 bar;
- 10 a 15 m/s per le condotte esercite a pressione maggiore di 0,04 bar e minore o uguale a 0,5 bar;
- 20 a 25 m/s per le condotte esercite a pressione maggiore di 0,5 bar e minore o uguale a 5 bar.

Omiss.

D.M. 24 Novembre 1984, Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8 (G.U. 15 gennaio 1985)

Omiss.

1.3 Classificazione

- a) Condotte di 1^a Specie: condotte per pressione massima di esercizio superiore a 24 bar.
- b) Condotte di 2^a Specie: condotte per pressione massima di esercizio superiore a 12 bar ed inferiore o uguale a 24 bar.
- c) Condotte di 3^a Specie: condotte per pressione massima di esercizio superiore a 5 bar ed inferiore o uguale a 12 bar.
- d) Condotte di 4^a Specie: condotte per pressione massima di esercizio superiore a 1,5 bar ed inferiore o uguale a 5 bar.
- e) Condotte di 5^a Specie: condotte per pressione massima di esercizio superiore a 0,5 bar ed inferiore o uguale a 1,5 bar.
- f) Condotte di 6^a Specie: condotte per pressione massima di esercizio superiore a 0,04 bar ed inferiore o uguale a 0.5 bar.
- g) Condotte di 7^a Specie: condotte per pressione massima di esercizio inferiore od uguale 0,04 bar.

Omiss.

Materiale di riferimento per le tubazioni

Acciaio di qualità calmato con:

carico unitario di snervamento minimo: $\sigma_{y,min}=300 \text{ N/mm}^2$

carico unitario di rottura minimo: $\sigma_{u,min} = 375 \text{ N/mm}^2$

Diametro teorico di riferimento consigliato da SNAM (temperatura del gas dell'ordine di 5 $^{\circ}$ C)

$$D_{teo} = \sqrt{\frac{345,92 * Q * (1 - 0,002 * p)}{v * (1 - p)}}$$

dove:

v velocità in m/s

p pressione relativa in ingresso alla tubazione, in bar

Q portata in condizioni standard in m³/h

Diametri ammissibili $DN \ge 0.95D_{teo}$ fra quelli disponibili (tabella A1)

Tabella A1-DN ammissibili

DIAMETRO NOMINALE	DIAMETRO ESTERNO	SPES	SORE	М	IASSA LINEARE (kg/m)			
mm				TUBO GR	EZZO	RIVESTITO est. Polietilene int. Epossidico		
40	48.3	2.6	2.6	2.93	2.93	3.23	3.23	
50	60.3	2.9	2.9	4.11	4.11	4.48	4.48	
65	76.1	2.9	2.9	5.24	5.24	5.71	5.71	
80	88.9	3.2	3.2	6.76	6.76	7.39	7.39	
100	114.3	3.2	4.0	8.77	10.9	9.58	11.7	
125	139.7	3.6	4.5	12.1	15.0	13.1	16.0	
150	168.3	4.0	4.5	16.2	18.2	17.4	19.4	
200	219.1	5.0	5.9	26.4	31.0	28.0	32.6	
250	273.0		6.3		41.4		43.4	
300	323.9		8.4		65.4		67.8	
350	355.6		8.0		68.6		71.3	
400	406.4		8.5		83.4		86.5	
450	457		8.5		94.0		97.5	
500	508		8.8		108		112	
600	610		9.5		141		146	
700	711		10.3		178		184	
TUBI	SALDATI	TUBI	SENZA SAL	DATURA				

Valutazione della perdita di carico continue nelle tubazioni:

Formula di Renouard semplificata per media ed alta pressione

$$dp = \left(P - \sqrt{P^2 - 25,24 * L * Q^{1,82} * D^{-4,82}}\right)$$

dove:

dp perdita di carico in bar

P pressione assoluta in bar all'inizio del tratto di tubazione

L lunghezza della tubazione in m

Q portata nelle condizioni standard in m³/h

D diametro interno della tubazione in mm

La formula è valida per $Q/D < 150 \text{ m}^3/(\text{mm*h})$

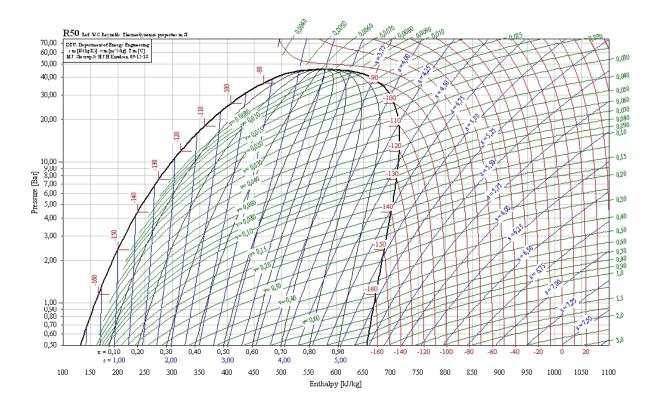


Fig. A2 Diagramma esteso pressione – entalpia per il metano

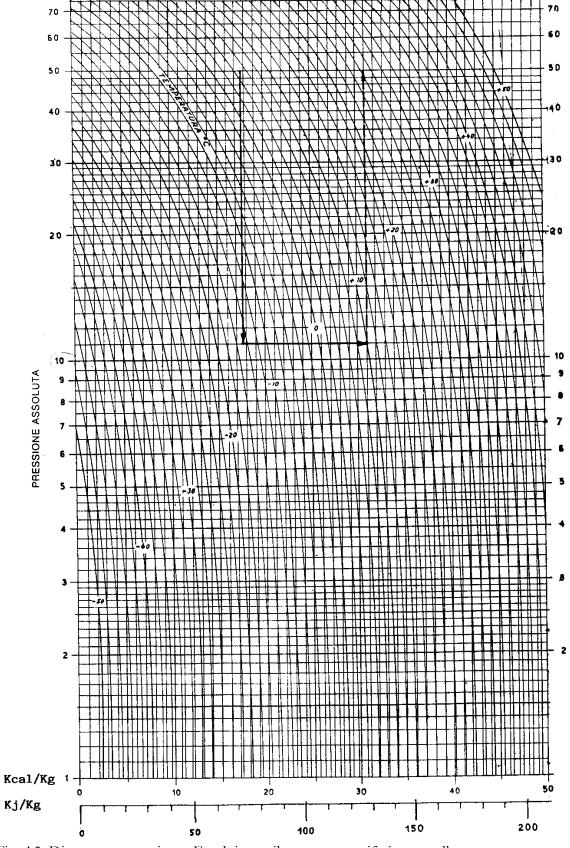


Fig. A3. Diagramma pressione- Entalpia per il metano con riferimento alla zona gas