POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE I SESSIONE - ANNO 2000

Ramo Meccanica TEMAN. 1

Un'officina deve tornire longitudinalmente spezzoni di barra grezza in acciaio 38 NiCrMo 4 bonificato, aventi:

- diametro iniziale

D = 100 mm

- lunghezza parte lavorata:

L = 900 mm

utilizzando inserti triangolari in carburi metallici caratterizzati nel modo seguente:

angolo di attacco principale:

κ= 90°

- angolo di spoglia frontale:

γ= 5°

- raggio di punta:

r = 1.2 mm

costo dell'inserto con 3 taglienti:

£ 75.000

Altri dati del problema sono qui elencati:

- profondità di passata:

p = 6 mm

- legge generalizzata di Taylor:

 $vT^{0,25} a^{0,61} = 138$

tempo di preparazione macchina:

 $t_{ptot} = 4 \text{ ore}$

tempo improduttivo:

 $t_i = 1 \min/pezzo$

tempo cambio utensile:

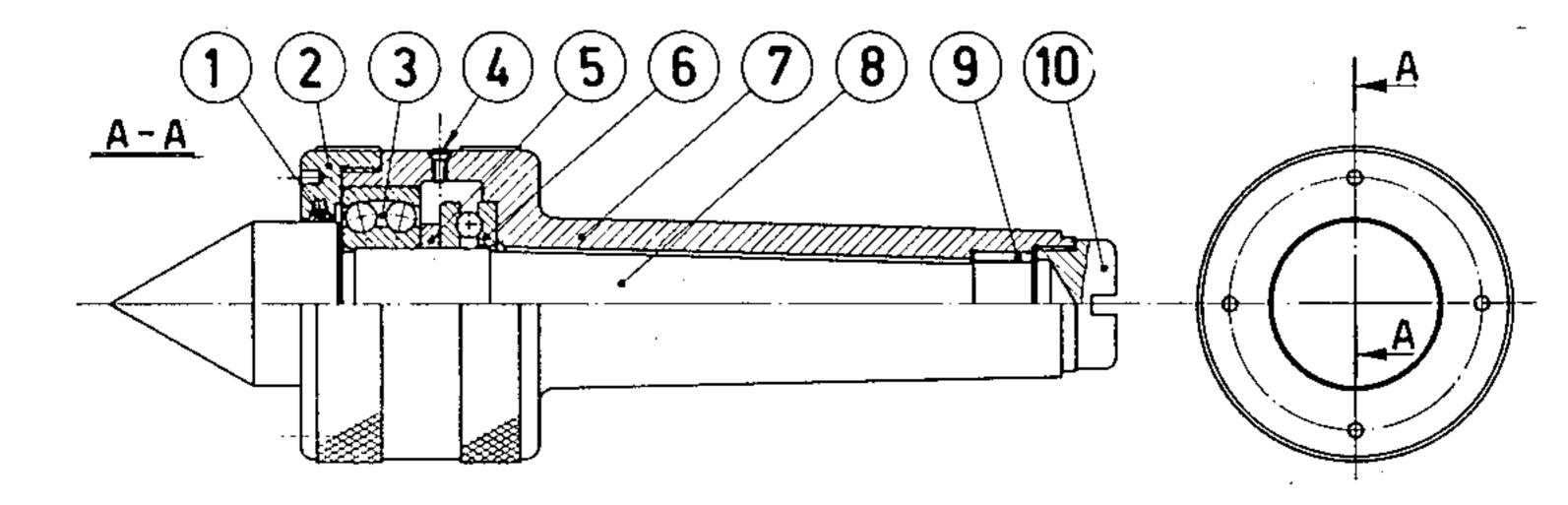
 $t_{cu} = 1 \min$

- nº pezzi da lavorare:

100

- pressione di taglio:

 $k_s = 1690 \text{ h}^{-0.18} [\text{N/mm}^2] \text{ per } \gamma = 6^{\circ}$


Il tornio utilizzato ha le caratteristiche seguenti:

- motore mandrino di tipo asincrono trifase a quattro poli alimentato a frequenza variabile con potenza max pari a 22 kW;
- variazione continua della velocità di rotazione del mandrino con due rapporti: $n_{mand} / n_{mot} = -0.8/0.25$.

Si chiede di:

- Determinare la velocità di taglio da utilizzare al fine di ottenere una produzione teorica pari a 6 pezzi/ora, sapendo che la rugosità teorica max accettabile è Ra = 4 μm.
- 2) Verificare se con tale velocità di taglio la potenza del motore sia sufficiente; in caso positivo calcolare la frequenza di alimentazione.
- 3) Calcolare il costo di lavorazione, sapendo che il costo orario della macchina utensile (comprensivo di manodopera e spese generali) è M = 80.000 £/ora.
- 4) Dimensionare la contropunta rotante (Jella quale é fornito il disegno d'insieme in scala 1:2) ammettendo che la forza radiale e l'assiale agenti su di essa siano uguali e pari a 2 volte (arrotondare al migliaio per eccesso) la forza di taglio calcolata al punto 2).
- 5) Eseguire il disegno costruttivo della punta rotante (8) della contropunta in oggetto (completo di quote, tolleranze geometriche e dimensionali, e rugosità) ed elaborare il ciclo di lavorazione relativo.

- 6) Spiegare i funzionamento del motore in c.a. citato, tracciando qualitativamente le curve di coppia e di potenza. Discuterne vantaggi e svantaggi rispetto al tipo "brushless", del quale deve essere descritto il principio di funzionamento.
- 7) Descrivere il processo utilizzato per fabbricare le barre dalle quali sono tratti gli spezzoni lavorati.
- 8) Definire i campi di utilizzo dei trattamenti di bonifica e di cementazione-tempra.

							10	Тарро	Fe 33 UNI 5334	1 1	<u> </u>
							9	Rullin: RIV 91 123 254	100 € 6 UNI 3097	30	
							╗	Punta rotante	C 15 UNI 3987 carbocementato	1 1	
						ľ	7	Carpo can Cono Morse N. 5	C 40 UNI 3988 banificato	1	
,						1	6	Cuscinetti 30 TA 12 UNI 4494	100 C 6 UNI 3097	1	Ĺ. <u>.</u> .
ŀ	┪	_	}	\dashv			5	Distanziatore	Fe 33 UNI 5334	1	
}-	ᅥ	\dashv		\dashv	_	-	4	Vite 3 x 6 UNI 270	Fe 37 A UNI 5334	1	
-	\dashv		\dashv	\dashv			3	Cuscinetto 30 85 22 UNI 4479	100 C & UNI 3097	1	
ŀ	-+					H	-2	Coperchio	Fe 52 B UNI 5334	1	
ŀ	- †		H			Н	1	Guarnizione	Feltro	1	<u> </u>
Mubrica Muserica	-	=	=	2	>	7.	Posiz.	Denominazione Pezzi	Materiale	N*	N٠
Vestor Cont						_		Dicta Dicta	<u></u>	<u></u>	
Ö											
che	CONTROPUNT							ITA RUOTANTE			
Modifiche								Data	Disegna N*		••
		1						Direg.			
		- 1					<u>8</u>	Contr.	T		