Esami di Stato per l'abilitazione alla professione di Ingegnere II Sessione 2001

INGEGNERIA MECCANICA – Tema n. 1

Si studia la fabbricazione dell'albero a gomiti rappresentato in fig. 1.

Il ciclo di lavoro di deformazione prevede che lo spezzone iniziale sia assoggettato a tre operazioni rispettivamente di sbozzatura, di stampaggio intermedio e di finitura, la prima tramite laminatoio a sbozzare, le altre tramite maglio.

- 1 Si determinino la forma e le dimensioni dello spezzone iniziale, utilizzando la fig. 2 e la fig. 3.
- 2 Si calcoli la forza massima di stampaggio ed il lavoro necessario nell'operazione di finitura; per il calcolo della forza si può utilizzare il grafico in fig. 4.
- 3 Si descrivano in breve, con l'aiuto di schizzi, i cicli siderurgici attraverso cui può essere ottenuto lo spezzone iniziale, mostrandone le differenze.
- 4 Si descrivano sinteticamente le ulteriori operazioni per deformazione e per asportazione di truciolo, nonché quelle di trattamento termico, seguenti il puro ciclo di stampaggio; per le operazioni ad asportazione di truciolo si indichino i tipi di lavorazione e gli utensili necessari.

Dati:

Materiale: Acciaio tipo UNI 38NiCrMo4

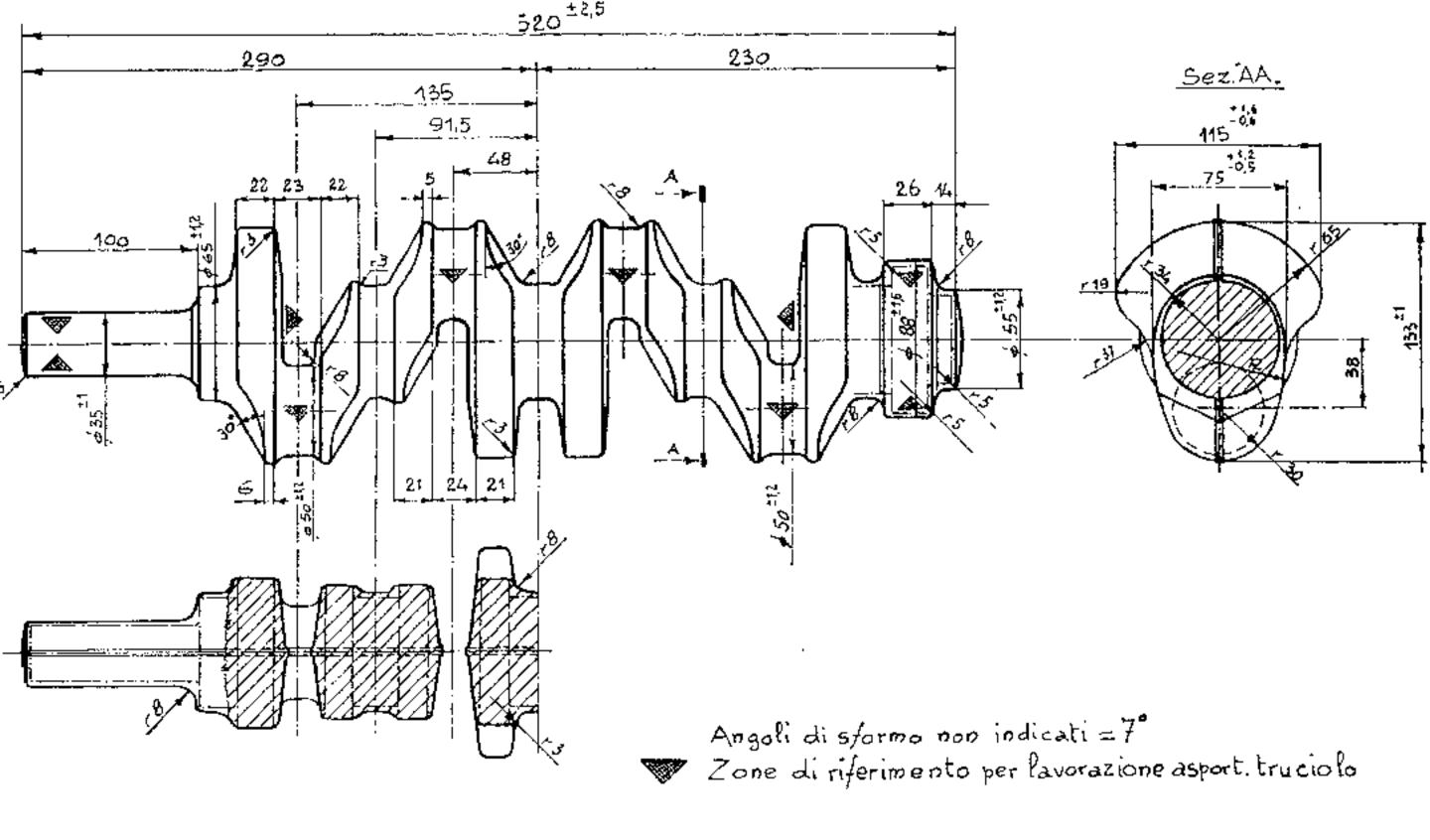

Superficie in pianta del pezzo stampato, come in fig. 1: 37 000 mm² Abbassamento medio ricavato sul pezzo nel colpo di finitura: 2 mm

Tabella per ricavare le dimensioni e la sezione del cordone di bavatura: fig. 2

Disegno della zona più tormentata del pezzo: fig. 3

Grafico per il calcolo della forza massima di stampaggio: fig.4

1/4

SCHIZZO ANDAMENTO FIBRE

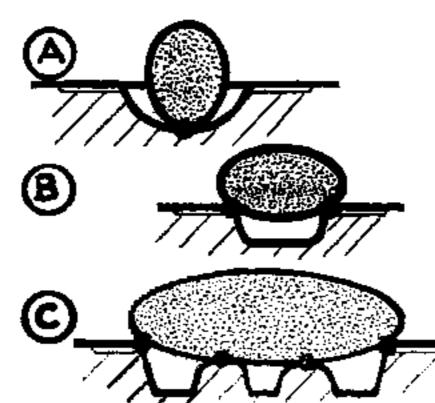
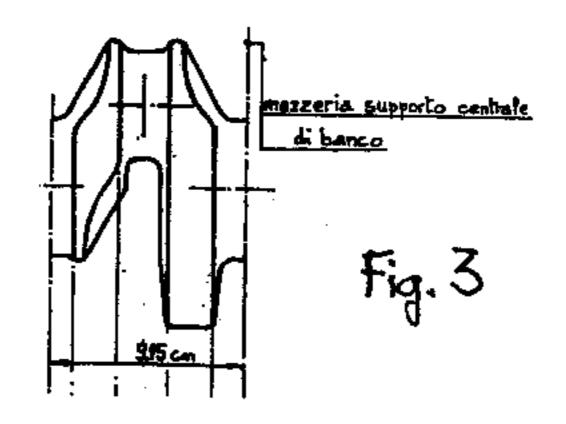



Fig. 1

P)


Semplice achiecciamento.

Compressione, tra i bordi dello stempo.

Schizociamento e compressione, tra i bordi dello stampo.

F.6.2

& Mrn				Caso tipo A		Caso tipo B			Caso - tipo C		
	H mm	mm	mm	L mm	Super- ficie mm²	/ mm	L mm	Super- ficie mm²	; mm	L mm	Super- ficie mm²
0,6	3,3	1	6	18	52	6	20	61	8	22	74
0,8	3,4	1	6	20	69	7	22	77	ě	25	88
1	3,5	1	7	22	80	8	25	91	10	28	104
1,6	4,3	1	8	22	102	9	25	113	11	30	155
2 3	5	1,5	9	25	136	10	28	153	12	32	177
3	6,5	1,5	10	28	201	12	32	233	14	38	278
4	8	2	11	30	268	14	38	344	16	42	385
5	9,5	2	12	32	343	15	40	434	18	46	508
4 5 6 8	11	2,5	13	35	435	16	42	530	20	50	642
	14	3	14	38	601	18	46	745	22	55	903
10	17	3	15	40	768	20	50	988	25	60	1208

Percorso h di finitore sino P.H.I.