
ESAMI DI STATO - Sessione estiva 2002

Ramo: INGEGNERIA CHIMICA

Tema n° 2

Una corrente di 15000 Nm³/h contenente uno 0.7 % in volume di un composto organico nocivo, assimilabile a metano ai fini dei calcoli, deve essere incenerita per via termica nel sistema schematizzato in fugura.

Si richiede, sulla base dei dati forniti in allegato:

- 1) la definizione dei bilanci di materia e calore del sistema, finalizzati in particolare al calcolo di:
 - -) portata di combustibile ausiliario necessaria;
 - -) temperatura di preriscaldamento dell'aria da incenerire.
- 2) Il dimensionamento di massima della camera primaria dell'inceneritore, ivi compreso il calcolo degli spessori di refrattario e di coibente necessari a limitare le perdite di calore e garantire la si-curezza del personale (temperatura di parete esterna = 50°C).
- 3) Il dimensionamento della superficie di scambio del preriscaldatore dell'aria.
- Ai fini dei calcoli di cui al punto 1 si assumano:
- A1) le tubazioni perfettamente coibentate con perdite di calore trascurabili;
- A2) le dissipazioni di calore attraverso le pareti della camera di combustione trascurabili;
- A3) il calore specifico di ogni corrente gassosa costante e pari a 0.25 kcal/kg/K;
- A4) il potere calorifico inferiore del metano 9000 kcal/Nm³;
- A5) valida ovunque la legge dei gas perfetti;
- A6) la pressione ovunque pari a 1 bar;

- A7) la composizione dell'aria approssimabile da un rapporto azoto/ossigeno di 4;
- A8) l'efficienza di trasferimento del calore del pre-riscaldatore pari al 90%.

Ai fini dei calcoli di cui al punto 2 si assumano:

- A9) la velocità dei gas all'interno della camera di combustione pari a 4 m/s;
- A10) il tempo di permanenza nella medesima pari a 2 s;
- A11) l'aria esterna a 20°C, con vento trascurabile;
- A12) le proprietà chimico-fisiche dei diversi flussi gassosi assimilabili a quelli dell'aria (vedi tabella seguente), rimanendo comunque valida la A5.

Temperatura	Calore specifico (c _p)	10 ⁵ ·viscosità (μ)	10°·conducibilità termica (k)
(°C)	(kcal/kg/K)	(kg/m/s)	(kcal/m/K/s)
20	0.247	1.812	6.34
100	0.250	2.11	7.57
200	0.253	2.52	9.24
300	0.257	2.90	· 10.81
400	0.26	3.25	12.2
500	0.263	3.63	13.7
600	0.267	4.00	15.1
700	0.270	4.25	16.4
800	0.274	4.60	17.7
900	0.277	4.95	19.2
1000	0.28	5.2	20.4

- A13) l'emissività della lamiera metallica di ricopertura esterna (ε) pari a 0.65, essendo la costante di Boltzmann (σ) uguale a 4.92·10⁻⁸ kcal/m²/h/K⁴.
- A14) il fattore di forma per il calcolo del contributo dell'irraggiamento all'interno della camera di combustione, comprensivo degli effetti delle emissività di gas e parete di refrattario, pari a 0.2;
- A15) il coefficiente di trasferimento per convezione naturale (h_{CN}) calcolabile con l'espressione:

$$\frac{h_{CN}L}{k} = 0.13 \left(\frac{L^3 \rho^2 g\beta}{\mu^2} \frac{c_p \mu}{k} \right)^{\frac{1}{3}}$$

dove: -) L = altezza dell'inceneritore;

- -) $g = 9.81 \text{ m/s}^2$;
- -) $\beta = \Delta T/\langle T \rangle$ = rapporto tra forza spingente e valore medio della temperatura (K).
- A16) il coefficiente di trasferimento per convezione all'interno dell'inceneritore (h_C) dato da:

$$\frac{h_C D}{k} = 0.023 \cdot \text{Re}^{0.8} \cdot \text{Pr}^{0.33}$$

dove: D = diametro interno dell'inceneritore;

Re, Pr = numeri di reynolds e Prandtl.

- A17) la temperatura costante all'interno dell'inceneritore;
- A18) disponibili i seguenti materiali refrattari e coibentanti, elencati in ordine di costo decrescente:

Refrattari*	Temperatura massima di utilizzo (°C)	Conducibilità termica (kcal/m/h/°C)
Mullitici	1600	4.0
Silico alluminosi	1400	4.7

^{*} disponibili in mattoni opportunamente sagomati e con spessore di 12 o 24 cm.

Coibenti*	Temperatura massima di utilizzo (°C)	Conducibilità termica (kcal/m/h/°C)
Fibra alluminosa	1000	0.10
Lana di roccia	750	0.07
Lana di vetro	450	0.045

^{*} disponibili in pannelli da 1/2 pollice di spessore.

Ai fini dei calcoli di cui al punto 3 si assuma:

A19) il coefficiente di scambio overall pari a 15 kcal/m²/h/K.

A20) lo schema di flusso è in controcorrente con un fattore Y di scostamento dall'idealità pari a 0.85.

POLITECNICO DI TORINO

ESAME DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLLA PROFESSIONE DI INGEGNERE

SEZIONE A

I SESSIONE 2002

PARTE B DEL TEMA COMUNE A TUTTI I SETTORI (CIVILE ED AMBIENTALE, INDUSTRIALE, DELL'INFORMAZIONE)

Il candidato dovrà dare risposta, in modo schematico, relativamente al tema prescelto compatibilmente al tema stesso, su almeno due delle seguenti domande:

- 1. principi generali di stima del valore;
- 2. normative di riferimento;
- 3. le figure e le responsabilità di chi progetta, esegue e controlla;
- 4. sostenibilità degli interventi;
- 5. sicurezza;
- 6. qualità;
- 7. conoscenza dei risvolti tariffari.

Land come