SULLA DETERMINAZIONE GRAFICA

DELLA

RADICE CUBICA DI UNA RETTA

NOTA

DELL'INGEGNERE SCIPIONE CAPPA

Assistente alla R. Scuola d'Applicazione per gli Ingegneri in Torino.

Fra i varii problemi che si presentano nello studio del calcolo grafico, avvi quello dell'estrazione della *radice cubica di una retta*, per la risoluzione del quale servono già parecchie linee ausiliarie.

La curva logaritmica, la spirale logaritmica e le curve potenziali valgono infatti a fornire con sufficiente approssimazione la risoluzione del problema della determinazione grafica di qualsiasi radice di una retta. Un'altra curva che serve essenzialmente col suo impiego a trovare graficamente la radice cubica di una data retta, è quella che gode della proprietà di avere ogni suo punto distante da un punto fisso di una quantità, che è la reciproca della proiezione di questa distanza sopra un asse passante pel punto fisso medesimo. Questa curva però presenta l'inconveniente di non potere servire in modo diretto alla ricerca della radice cubica di una retta che sia minore dell' unità grafica; egli è necessario in questo caso di cercare dapprima la quantità reciproca della quantità data, la quale essendo minore dell' unità, ammetterà la reciproca maggiore dell'unità, estrarre coll'impiego della curva la radice cubica della reciproca della quantità data e quindi costruire la reciproca della radice cubica così ottenuta.

In virtù dell'eguaglianza:

$$\dot{\vec{V}}_{M} = \frac{1}{\dot{\vec{V}}_{M}^{\frac{1}{M}}}$$

la quantità che nel modo indicato si troverà, sarà la radice cubica della quantità data.

Or bene la radice cubica di una data retta si può ancora con discreta approssimazione ottenere graficamente coll'impiego delle curve di errore, e due sono i procedimenti che qui indicheremo potersi seguire per tal mezzo nella risoluzione di questo problema.

1° Siano XX ed YY (Fig. 1) due assi perpendicolari tra di loro incontrantisi nel punto O. A partire dal punto O si prendano sull'asse XX, una lunghezza OA eguale all'unità grafica, e sull'asse YY una lunghezza OB eguale ad una data retta a, la cui lunghezza può essere qualunque. Si congiunga il punto A col punto B mediante la retta AB, quindi dal punto B si elevi la perpendicolare BC a questa retta AB e si prolunghi fino ad incontrare in C l'asse XX; finalmente dal punto G si innalzi la perpendicolare alla retta BC e si prolunghi fino ad intersecare l'asse YY nel punto D.

Come è noto, il segmento OD dell'asse YY, rappresenta il cubo della retta a.

Infatti dai due triangoli OAB ed OBC, simili tra di loro per avere i lati rispettivamente perpendicolari, si ha:

OA : OB = OB : OC

donde

$$OC = \frac{\overline{OB}}{\overline{OA}}$$

e per essere OA=1

$$OC = OB$$

Analogamente dai due triangoli BOC e COD simili fra di loro per avere ancora i lati rispettivamente perpendicolari, si ha:

OB:OC=OC:OD

$$OD = \frac{OC^8}{OB}$$

e sostituendo ad OC il valore dato dalla proporzione precedente, si ricava:

$$OD = \frac{\overline{OB}^4}{\overline{OB}} = \overline{OB}^4 = a^4$$

dal punto A, estremità del segmento OA dell'asse XX eguale all'unità grafica, una retta AB, la elevando la perpendicolare alla retta AB, questa perpendicolare andasse a ferire l'asse XX in un perpendicolare alla retta BC, questa perpendicolare incontrasse l'asse YY nel punto D, è il suo punto di incontro con questo stesso circolo. evidente che il segmento OB dell'asse YY, sarebbe la radice cubica della retta data.

retto, è tuttavia possibile raggiungerlo coll'impiego di una curva di errore, la quale si può YY, sarebbe la radice cubica del segmento OD, assai facilmente tracciare nel modo seguente.

Sia M la retta da cui si vuole estrarre la radice cubica (Fig. 2). Si segnino due assi XX I₀ I₁ I₂... I₈ si troveranno fuori dell'asse YY e coed YY perpendicolari tra di loro ed incontrantisi stituiranno una curva continua I₀ I₁ I₂... I₈. in un punto 0. Sopra questi assi si prendano a partire dal punto 0 i due segmenti OA ed OE eguali entrambi all'unità grafica, e sull'asse YY si prendano ancora, sempre a partire dal punto O, i due segmenti OD ed OF, eguali entrambi punti A e B si fa passare un circolo, il quale alla retta data M.

sempre compresa fra la quantità data e l'unità, così gli è evidente che il segmento che rappresenterà la radice cubica di M dovrà essere compreso fra OE ed OF, e quindi se un suo estremo cadrà in O, l'altro dovrà trovarsi fra i due punti E ed F.

Ouesta osservazione, come si vedrà, serve a semplificare la costruzione necessaria per la ri- tale, che la perpendicolare innalzata da esso alla soluzione del problema.

punti A ed E e l'altro pei due punti A ed F. Il primo avrà per centro il punto O di incontro dei due assi XX ed YY ed il secondo, il punto O₈ dato dall'incontro dell'asse XX colla perpendicolare alla retta AF elevata nel suo punto di mezzo. Si divida la distanza OO8 dei due centri O ed O₈ in un certo numero di parti eguali ed abbastanza piccole; p. es. in otto parti eguali, e siano O₁ O₂ O₃...O₇ i punti di divisione.

Fatto centro successivamente in questi punti O₁O₂.... O₇ si descrivano i circoli che hanno rispettivamente per raggi le lunghezze O₁A, O₂A, O₃A,.... O₇A, e che passano perciò tutti sul punto A; quindi si conducano le rette DC₀ DC₁ DC₂.... DC₈, che congiungono il punto D coi punti C₀C₁ C₂... C₈ di incontro dei circoli di centri O O₁ O₂ O₃... O₈ coll'asse XX. Dal punto A, estremità del segmento OA, eguale all' unità grafica, si conduca la corda AI₀ del circolo di centro O, pa-Ciò posto, se data una retta di cui si vuole rallela alla retta DC₀ e sia I₀ il suo punto di inavere la radice cubica, si potesse, portando questa contro col circolo stesso. Analogamente dal punto retta in OD (Fig. 1) sopra l'asse YY, condurre A si conduca la corda AI₁ del circolo di centro O₁ parallela alla retta DC₁, e sia I₁ il suo punto di incontro collo stesso circolo. Dal punto A si conquale incontrasse l'asse YY nel punto B, da cui duca parimente la corda AI₂ del circolo di centro O₂, parallela alla retta DC₂ e sia I₂ il punto suo di incontro col circolo medesimo ecc, e finalpunto C tale, che innalzando ancora da esso la mente dal punto A si conduca la corda AI₈ del circolo di centro O₈, parallela alla retta DC₈, e sia I₈

Gli è facile riconoscere che se uno dei punti I₀ I₁ I₂... I₈ cosi ottenuti cadesse sull'asse YY, il Se questo non si può ottenere in modo di- segmento di questo asse compreso tra quel punto ed il punto O di incontro dei due assi XX ed ossia della retta data M.

In generale però ciò non accadrà, ed i punti

Sia B il punto di incontro di questa curva coll'asse YY, il segmento OB di questo asse sarà la radice cubica cercata.

Ed in vero, per le costruzioni fatte se pei abbia il suo centro sull'asse XX, questo circolo Siccome la radice cubica di una quantità è taglierà l'asse XX in un altro punto C tale, che la retta CD che lo unisce col punto D, riescirà parallela alla retta AB che congiunge il punto B col punto A. Pertanto se si tira la retta BC, per essere l'angolo ABC inscritto in un semicerchio, questa retta BC riescirà perpendicolare alla AB, e perciò anche alla parallela CD.

Il punto B è quindi un punto dell'asse YY retta AB che la congiunge coll'estremità A del Si descrivano ora i due circoli aventi i loro segmento OA eguale all'unità grafica, incontra centri sull'asse XX e passanti 1' uno pei due l'asse XX nel punto C, da cui elevando la normale alla retta BC, questa normale va a passare pel punto D, estremità del segmento OD dell'asse YY eguale alla retta data.

Il segmento OB rappresenta quindi realmente la radice cubica di OD, ossia della retta data M.

Questo metodo serve tanto pel caso di M maggiore dell'unità grafica, rappresentato nella Figura 2, quanto per quello di M minore dell'unità grafica e rappresentato nella Figura 3.

Gli è poi evidente che l'approssimazione somministrata da questo metodo, sarà tanto maggiore quanto più grande sarà il numero dei punti che si cercheranno della curva di errore, e specialmente in vicinanza del punto B, che serve a determinare il segmento OB rappresentante la radice cubica cercata.

Per la curva I₀ I₁ I₂... I₈, tracciata nel modo indicato, si può anche assai facilmente trovarne l'equazione, riferendola ai due assi coordinati OX ed OY.

Consideriamo a tale scopo un suo punto qualunque, p. es. il punto I₆ (Fig. 2); abbassando da questo punto la perpendicolare I₆p sull'asse OX, si avranno nei due segmenti Op ed I₆p le coordinate x ed y del punto medesimo.

Dal triangolo rettangolo AI₆p si avrà pertanto:

$$\overline{\Lambda p}^i + \overline{I_i p}^i = \overline{\Lambda I_i}^i$$

ossia, per essere AO=1; Op = x ed $I_6p = y$

$$(1+x)^3+y^4=\overline{\mathrm{AI}_6}^3 \tag{1}$$

Si congiunga ora il punto I₆ col punto C₆ mediante la retta I₆C₆ ed osservando che la retta I₆p è la perpendicolare abbassata dal vertice dell' angolo retto AI₆C₆ (siccome inscritto in un semicerchio) del triangolo rettangolo AI₆C₆ sull'ipotenusa AC₆ si avrà :

ossia:

$$AI = (1 + x) (1 + OC_6)$$
 (2)

Siccome i due triangoli rettangoli I₆pC₆ ed OC₆D sono simili per avere i lati rispettivamente perpendicolari, cosi si potrà scrivere la proporzione:

$$OD : OC_6 = pC_6 : I_6 p$$

ossia per essere

OD = M,
$$pC_6 = OC - x$$
 ed $I_6p = y$
M: $OC_6 = (OC_6 - x) : y$

donde si ricava:

$$My = OC_v - x.OC_v$$

ovvero ancora:

$$\overline{OC}_{i}^{1} - x$$
, $OC_{i} - My = 0$

Risolvendo questa equazione di 2° grado rispetto all'incognita OC₆, si ottiene :

$$OC_i = \frac{m}{2} \pm \frac{m^2}{4} + My$$

Sostituiamo questo valore di OC6 nell' equazione (2) ed avremo:

13

$$\overline{\mathrm{AI}_{4}} = (1+x)\left(1+\frac{x}{2}\pm\sqrt{\frac{x^{2}}{4}+\mathrm{M}y}\right)$$

Portando finalmente il valore di AI6 così ottenuto nell'equazione (1) si ricava:

$$(1+w)^2 + y^2 = (1+w)\left(1+\frac{w}{2}\pm\sqrt{\frac{w^2}{4}+My}\right)$$

Questa è l'equazione cercata della curva I₀ I₁ I₂...I₈, che ridotta ed ordinata rispetto ad y

$$y^3 + y (x^2 + x)$$
 — $(M x^2 + 2 M x + M) = 0$

Se in questa equazione si fa x = 0, si ottiene:

donde si trae:

$$y = \frac{3}{M}$$

il che dimostra, che l'ordinata OB del punto di incontro B della curva I₀ I₁ I₂.... I₈ coll'asse OY, è la radice cubica della retta data M.

Gli è poi facile vedere che questa curva I_0 I_1 I_2 ... I_8 , prolungata dalla parte delle x negative, passerà pel punto A, essendochè sia dalle costruzioni fatte per tracciarla, sia dalla stessa sua equazione si ricava che ad y = 0 corrisponde x = -1.

2º La radice cubica di una data retta si può anche ottenere, ricorrendo però sempre all'impiego di una curva di errore, seguendo un altro procedimento.

Sia XOY un angolo qualunque (Fig. 4); si prendano sopra i suoi due lati OX ed OY a partire dal vertice O due lunghezze OA ed OB eguali entrambe all'unità grafica, e due segmenti OC ed OD, eguali ambedue ad una data retta a, la cui lunghezza può essere ancora qualunque. Si uniscano i punti A e D tra di loro ed i punti B e C pure fra di loro, mediante le due rette antiparallele AD e BC. Dal punto G si conduca una parallela alla retta AD fino ad incontrare il lato OY dell'angolo XOY nel punto E, e da questo punto E si tiri la retta EF parallela alla BC, fino ad incontrare in F il lato OX dello stesso angolo.

Il segmento OF sarà il cubo della retta a. Infatti dai due triangoli OBC ed OCE, simili tra di loro per avere gli angoli rispettivamente eguali, si ha:

$$OB : OC = OC : OE$$

ossia per essere

$$OB = 1$$
 ed $OC = a$
 $1: a = a: OE$

donde si ricava:

$$OE = a^2$$

Analogamente dai due triangoli OCE ed OEF, simili tra di loro per avere ancora gli angoli rispettivamente uguali, si ha:

e sostituendo ad OE il valore ricavato precedentemente:

$$a : a^2 = a^2$$
: OF

da cui si ricava:

$$OF = \frac{a^4}{a} = a^4$$

come si voleva dimostrare.

voglia avere la radice cubica. Si porti questa FB, e dal punto A si tirino le parallele a queste retta in OF sul lato OX dell'angolo XOY (Figura 4), e si prendano sui lati OX ed OY dello stesso angolo due lunghezze OA ed OB, eguali C₃ C₇ F, rispettivamente nei punti I₂ I₃ I₄ entrambe all'unità grafica. Se si potessero con- I₇ I₈. — (Sulla figura non si sono tirate tutte quedurre dai punti B ed F due rette BC ed FE ste rette per non complicarla di troppo). parallele tra di loro, le quali incontrassero rispettivamente i lati OX ed OY dell'angolo XOY ranno evidentemente una curva continua, la in due punti C ed E tali, che la retta CE che li unisce risultasse parallela alla retta AD che congiunge il punto A col punto D, estremità del il vertice O dell'angolo XOY ed il punto D così segmento OD preso sul lato OY eguale al segmento OC, gli è evidente che il segmento OD, eguale ad OC, sarebbe la radice cubica della colo di centro O, il quale taglierà il lato OX in retta data.

Se questo non si può avere direttamente, è tuttavia possibile ottenerlo coll'impiego di una curva di errore. Sia M la retta di cui si vuole retta AD. avere la radice cubica, e supponiamo che questa retta sia maggiore dell'unità grafica. Si segni un angolo qualunque XOY (Fig. 4), e sopra i suoi lati OX ed OY si prendano i segmenti OA ed OB, eguali entrambi all'unità grafica, di più sul lato OX si prenda il segmento OF, eguale alla retta data M.

Come già si disse precedentemente, siccome la radice cubica di una quantità è sempre compresa fra l'unità e la quantità stessa, così il segmento che rappresenterà la radice cubica della retta M, dovrà essere compreso tra OA ed OF, e questa osservazione ci semplificherà anche qui di non poco le costruzioni.

Ciò posto, si divida il segmento AF in un certo numero di parti eguali ed abbastanza piccole, p. es., in otto parti eguali nei punti C₁C₂, C₃ C₇, e fatto centro in O si descrivano degli archi di circolo, aventi rispettivamente per raggi le lunghezze OC₁ OC₂ OC₇ OF. Si tiri ora la retta BC₁, e dal punto F si conduca la parallela a questa retta BC₁, ad incontrare il lato OY nel punto E₁. Si tracci la retta C₁E₁ e dal punto A si tiri la AI₁ parallela alla d E₁; sia I₁ il punto di incontro di questa retta coll'arco di circolo di centro O e raggio OC₁.

Se il segmento OC₁ fosse la radice cubica cercata, evidentemente il punto I₁ di incontro della retta AI₁ coll'arco di circolo di centro O e raggio OC₁, cadrebbe nel punto D₁ di intersezione dello stesso arco di circolo col lato OY. In generale ciò non accadrà, ed il punto I₁ sarà fuori del lato OY.

La costruzione fatta pel punto C₁ si ripeta per tutti gli altri punti C₂C₃ C₇ F, cioè si conducano le rette BC₂ BC₃ ... BC₇ BF, e dal punto F si tirino le rette FE₂ FE₃ ... FE₇ FB, rispettivamente parallele alle BC₂ BC₃ BC₇ BF. Si Ciò premesso, sia data una retta di cui si conducano inoltre le rette C₂E₂ C₃E₃.... C₇E₇ rette, che si prolungheranno fino ad incontrare gli archi di circolo che passano pei punti C₂

> I punti I₁I₂I₃.... I₇ I₈ cosi ottenuti costituiquale incontrerà il lato OY nel punto D.

> Il segmento OD del lato OY, compreso tra ottenuto, sarà la radice cubica della retta data M.

> Infatti pel punto D passerà un arco di cirun punto C tale, che la retta CE che lo unisce col punte E di incontro del lato OY colla retta FE, parallela alla BC, riuscirà parallela alla

> Anche con questa costruzione gli è evidente che l'approssimazione con cui si ottiene la radice cubica della retta M, sarà tanto maggiore quanto più grande sarà il numero dei punti che si cercheranno della curva di errore, e specialmente in vicinanza del punto D.

> Per la curva I₁ I₂ I₃....I₈, trovata nel modo indicato e che serve a fornire la radice cubica di una retta M. maggiore dell'unità grafica, si può anche assai facilmente trovarne l'equazione, riferendola ai due assi OX ed OY, lati dell'angolo XOY, che noi chiameremo f.

Consideriamo perciò un punto qualunque I₁ e quindi: di questa curva, e da esso conduciamo la retta $I_{1}p$ parallela all'asse OY; le coordinate x ed ydi questo punto I₁ saranno rispettivamente Op

Si unisca ora il punto I₁ coll'origine O delle coordinate; dal triangolo OI₁p, si avrà:

$$\overline{OI}_{i} = \overline{Op}^{i} + I_{i} p^{i} + 2Op. I_{i} poceso.$$
 (1)

Essendo ora i due triangoli OBC₁ ed OE₁F simili tra di loro per avere gli angoli rispettivamente uguali, si potrà scrivere la proporzione:

$$OC_1 : OB = OF : OE_1$$

ossia per essere OC = OI₁, siccome raggi dello stesso circolo di centro O, OB = 1 ed OF = M $OI_1: 1 = M: OE_1$ donde si trae:

$$OE_i = \frac{M}{OL}$$
 (2)

Dai due triangoli AI₁p e C₁E₁O, simili pure tra di loro per avere i lati rispettivamente paralleli, si ricava:

$$OE_1: I_1p = OC_1: Ap$$

ossia per essere

$$I_1p = y OC_1 = OI_1 ed Ap = OA - Op = 1 - x$$

 $OE_1 : y = OI_1 : (1 - x)$

Sostituendo ad OE₁ il valore (2) ricavato precedentemente, si ha:

$$\frac{M}{OL}$$
: $y = OL$: $(1 - x)$

donde:

$$M(1-x) = OI_1 y$$

e quindi

$$\overline{OL}' = \frac{M(4-x)}{y}$$

Portando questo valore nell'equazione (1) ed avvertendo che Op = x ed $I_1p = y$ si ottiene:

$$w^i + y^j + 2wy\cos\phi = \frac{M(1-x)}{y} -$$

ossia:

$$y^3 + 2x\cos y^2 + x^2y + Mx - M = 0$$

Ouesta è l'equazione cercata della curva di errore I₁I₂ ... I₈.

Se in questa equazione si fa x = 0 si ricava :

$$y^3 = M$$

$$y = \sqrt[3]{M}$$

il che dimostra che l'ordinata OD del punto D di incontro della curva I₁I₂... I₈ coll' asse OY. è la radice cubica della retta data M.

Gli è poi facile vedere che la curva I₁I₂... I₈ prolungata, passerà pel punto A, essendochè per y=0 la sua equazione dà x=1.

Se l'angolo XOY si prendesse retto, per essere $j = 90^{\circ}$, e quindi cosj = 0, l'equazione della curva diverrebbe:

$$y^3 + x^2y + Mx - M = 0$$

Allorquando la retta M è minore dell' unità grafica, gli è facile constatare, che volendone estrarre la radice cubica, non si può più applicare il procedimento seguito testé nell'ipotesi di M maggiore dell'unità. Occorre in questo caso modificare il metodo indicato nel modo seguente:

Si segni ancora un angolo qualunque XOY (Fig. 6), e sopra il lato OX si prendano a partire dal punto O il segmento OA, eguale all'unità grafica, ed il segmento OE, eguale alla retta data M. Fatto centro nel punto O con raggi rispettivamente eguali ad OA ed OE, si descrivano due archi di circolo, che taglieranno il lato OY nei punti B ed F. Si divida ora il segmento AE del lato OX in un certo numero, p. es. otto, di parti eguali ed abbastanza piccole nei punti C₁ C₂ C₃ ... C₇, e si descrivano gli archi di circolo, aventi tutti per centro il vertice O dell' angolo XOY, e pei rispettivi raggi le lunghezze OC1 $OC_2...OC_7.$

Si unisca il punto F col punto C₁, e dal punto A si conduca la retta AD₁, parallela alla FC₁, e sia D₁ il punto di intersezione di questa parallela col lato OY. Si congiungano ancora i due punti D₁ e C₁ tra di loro colla retta D₁C₁ e dall'estremità E del segmento OE, si tiri la parallela EI₁ alla retta D₁C₁; questa parallela incontrerà nel punto I₁ l'arco di circolo di centro O e raggio OC1.

Se il punto I₁ così ottenuto cadesse nel punto di incontro H₁ dell'arco di circolo di centro O e raggio OC₁ col lato OY dell'angolo XOY, gli è evidente che il segmento OC₁ sarebbe il quadrato della radice cubica cercata, e che questa radice cubica sarebbe data dal segmento OD₁. In generale però ciò non accadrà, ed il punto I₁ si troverà fuori del lato OY.

La costruzione perciò fatta pel punto C₁ si ripeta per tutti gli altri punti C₂ C₃ ... C₇ A, cioè si tirino le rette FC₂ FC₃ ... FC₇ FA, e dall'estremità A del segmento OA vi si conducano le parallele AD₂ AD₃ ... AD₇ AF. (Anche in questo caso si sono trascurate nella figura parecchie di queste rette per non complicarla di troppo). Si congiungano ancora i punti D₂ D₃ D₇ F di incontro di queste parallele col lato OY, rispettivamente coi punti C₂ C₃ C₇ A, e dal punto E si tirino le rette EI₂ EI₃... EI₇ EI₈ rispettivamente parallele alle D₂C₂, D₃C₃ D₇C₇, FA. Siano I₂I₃ ... I₇I₈ i punti di incontro di queste rette cogli archi di circolo che hanno rispettivamente per raggi le lunghezze OC₂ OC₃... OC₇... OA, e per centro lo stesso punto 0. I punti I₁I₂I₃... I₈ così ottenuti costituiranno una curva continua. Sia H il punto di intersezione di questa curva col lato OY dell'angolo XOY: gli è facile riconoscere che il segmento OH sarà il quadrato della radice cubica di OE: e quindi se dal punto B si conduce la retta BC, parallela alla EH, che unisce il punto H determinato nel modo indicato, coll'estremità E del segmento OE eguale alla retta data M, il segmento OC del lato OX sarà la radice cubica cercata.

Infatti descrivendo il circolo di centro O e raggio OC, esso taglierà il lato OY in un punto D tale, che la retta AD riescirà parallela alla retta HC; le due rette AD e BC saranno quindi le due antiparallele, e per conseguenza OC sarà la radice cubica di OE, ossia della retta data M.

Anche in questo caso, avvertendo che la radice cubica di una quantità è sempre compresa tra la quantità stessa e l'unità, si semplifica la costruzione tracciando i soli archi di circolo, di centro O i cui raggi sono compresi tra OE ed OA, ed inoltre l'approssimazione con cui si ottiene la radice cubica cercata è ancora tanto maggiore quanto più grande è il numero dei punti trovati della curva di errore e specialmente in vicinanza del punto H.

Per la curva I_1 I_2 I_8 , tracciata nel modo indicato, si può anche trovarne l'equazione riferendola ai due assi OX ed OY, lati dell'angolo XOY, che chiameremo ancora j. A tal fine, considerando un suo punto qualunque I_1 si unisca questo punto coll'origine O delle coordinate mediante la retta I_1 O, e da esso si conduca la parallela I_1p all'asse OY. Dicendo x ed y le coordinate Op ed I_1p del punto I_1 , dal triangolo I_1 Op si ha la relazione :

$$\overline{OI_i}^i = w^i + y^i + 2xy\cos z \tag{1}$$

Essendo ora i due triangoli OFC₁ ed OD₁A simili tra di loro, per avere gli angoli rispettivamente uguali, si può scrivere la proporzione:

$$OC_1$$
: $OA = OF : OD_1$

ossia per essere

$$OC_1=OI_1$$
 $OA = 1$ ed $OF = M$ $OI_1: 1 = M: OD_1$

donde si deduce

$$\tilde{OD}_{i} = \frac{M}{OL} \tag{2}.$$

Dalla considerazione degli altri due triangoli EI_1p e C_1D_1O , simili ancora fra di loro per avere gli angoli rispettivamente eguali, si ricava:

$$OD_1 : I_1 p = OC_1 : Fp$$

ossia per essere

$$I_1p=y$$
 $OC_1 = OI_1$, $Fp = M - x$

e sostituendo ancora ad OD₁ il valore dato dalla (2):

$$\frac{\mathbf{M}}{\mathbf{OI}_i}$$
: $y = \mathbf{OI}_i$: $(\mathbf{M} - x)$

da cui si ha:

$$\overline{OI_i}^0 = \frac{M(M-\infty)}{y}$$

Portando questo valore di \overline{OI} nell' espressione (1) si ottiene per la curva I_1 I_2 ... I_8 l'equazione :

$$\frac{M(M-x)}{y} = x^{s} + y^{s} + 2xy\cos t$$

ossia:

$$y^3 + 2x\cos y^2 + x^2y + Mx - M^2 = 0$$

Se in questa equazione si fa x = 0 si ottiene

$$y = (\sqrt[4]{M})^{*}$$

il che dimostra che l'ordinata OH del punto d'incontro H della curva coll'asse OY, è il quadrato della radice cubica della retta data M, e che quindi OC è la radice cubica di M.

Se nella stessa equazione si fa y = 0 si ottiene x=M, il che significa che la curva prolungata passa pel punto E, estremità del segmento OE eguale alla retta data M.

Finalmente se l'angolo XOY si prende retto, Inequazione della curva diviene

$$y_3 + x^2y + Mx - M^2 = 0.$$

Torino, Maggio 1882.

Ing. SCIPIONE CAPPA.