
Esame di Stato per l'abilitazione all'esercizio della professione di Ingegnere Specializzazione Gestionale - II Sessione 2001 Tema n. 2

Una cabina 20 kV / 400 V alimenta, secondo lo schema in figura, tre centri di carico A, B e C. Nella cabina sono collocati tre trasformatori trifasi T₁, T₂ e T₃, aventi i primari collegati al punto di consegna MT ed i secondari al quadro principale di bassa tensione QP. Quest'ultimo è formato da due sezioni, connesse dall'interruttore C₁, che funge da congiuntore.

Dal quadro principale si dipartono le linee L_1 e L_2 , che alimentano rispettivamente i sottoquadri SQ_1 e SQ_2 . Un'ulteriore linea L_3 collega i due sottoquadri e consente l'alimentazione in emergenza dei carichi quando una delle sezioni del quadro principale QP è posta fuori tensione per manutenzione. Il congiuntore C_2 consente l'apertura o la chiusura del collegamento, mentre il congiuntore C_3 è sempre chiuso.

Dai sottoquadri SQ1 e SQ2, infine, partono le linee L₄, L₅ e L₆, che alimentano rispettivamente i tre centri di carico A, B e C.

Sono richiesti alcuni calcoli di verifica sull'impianto già dimensionato. I dati dell'impianto sono i seguenti:

Cabina di trasformazione

Due trasformatori trifasi in resina uguali T₁ e T₂:

– Potenza nominale: 160 kVA

Tensioni nominali primaria e secondaria: 20 kV / 400 V

- Collegamento: Dyn 11

- Tensione di cortocircuito %: 6 %

Perdite a carico (75°):

Perdite nel ferro:

Un trasformatore trifase in olio T₃:

250 kVA

- Tensioni nominali primaria e secondaria:

 $20 \, kV / 400 \, V$

Collegamento:

Dyn 11

- Tensione di cortocircuito %:

4 %

Perdite a carico (75°):

Potenza nominale:

4 70

- Perdite nel ferro:

425 W

2750 W

Il punto di consegna MT ha tensione nominale di 20 kV. Ai fini dei calcoli richiesti si può considerare infinita la potenza di cortocircuito.

Linee

Linea	Tipo	Lunghezza (m)	Sezione (mm²)
L ₁	Cavo isolato in gomma G7 (3 cavi unipolari)	20	240
L ₂	Cavo isolato in gomma G7 (3 cavi unipolari)	20	240
L ₃	Cavo isolato in gomma G7 (3 cavi unipolari)	10	240
L ₄	Cavo isolato in PVC (3 cavi unipolari)	150	95
L ₅	Cavo isolato in PVC (3 cavi unipolari)	90	150
L ₆	Cavo isolato in PVC (3 cavi unipolari)	50	185

Il neutro è distribuito in tutto l'impianto. La sezione del neutro è pari a quella del conduttore di fase.

Carichi

Carico A: carico trifase ohmico-induttivo che assorbe P = 110 kW con fattore di potenza 0.9. Carico B: carico formato da due motori asincroni trifasi uguali aventi potenza nominale 60 kW, tensione nominale 400 V, rendimento nominale 0.9 e fattore di potenza in condizioni nominali 0.84. Si assume che i motori lavorino alla potenza nominale.

Carico C: carico trifase ohmico-induttivo che assorbe P = 180 kW con fattore di potenza 0.85.

Il candidato svolga i seguenti punti:

- 1. Calcolare la massima corrente erogabile dai tre trasformatori collegati in parallelo (congiuntore C₁ chiuso) senza incorrere in condizioni di sovraccarico.
- 2. Determinare il potere d'interruzione minimo necessario per i tre interruttori automatici S₁, S₂ e S₃, nell'ipotesi di esercizio in parallelo dei tre trasformatori (congiuntore C₁ chiuso). Vanno considerati non solo i guasti sulle sbarre ma anche, per quanto improbabili, quelli sulle connessioni tra trasformatori e interruttori.
- 3. Calcolare le correnti di cortocircuito massime e minime necessarie al dimensionamento degli interruttori automatici S₄ e S₅ nelle condizioni ordinarie di esercizio (congiuntori C₁ chiuso e C₂ aperto).
- 4. Calcolare le correnti di cortocircuito massime e minime necessarie al dimensionamento degli interruttori automatici S₆, S₇ e S₈ nelle condizioni ordinarie di esercizio (congiuntori C₁ chiuso e C₂ aperto).
- 5. Calcolare le correnti di cortocircuito massime sui sottoquadri SQ₁ e SQ₂ <u>nell'esercizio con</u> congiuntore C₁ aperto e congiuntore C₂ chiuso.
- 6. I due motori che formano il carico B assorbono allo spunto una corrente pari a 8 volte la loro corrente nominale. Supponendo che i motori vengano avviati contemporaneamente, calcolare la caduta di tensione percentuale (rispetto al valore nominale di 400 V) sul carico A durante lo

- spunto nelle condizioni ordinarie di esercizio (congiuntori C₁ chiuso e C₂ aperto). Supporre pari a 0.5 il fattore di potenza dei motori durante lo spunto e trascurare nel calcolo l'effetto del carico C.
- 7. Verificare se, in condizioni di emergenza (<u>interruttori S₄ e S₈ aperti, congiuntori C₁ aperto e C₂ chiuso)</u>, è possibile alimentare i soli carichi A e B tramite il trasformatore T₃.
- 8. Se l'esito della verifica è negativo, suggerire e calcolare un provvedimento che consenta tale alimentazione senza richiedere l'aumento della potenza di trasformazione installata.
- 9. Calcolare le perdite totali complessive (di trasformazione e di linea) dell'impianto nelle condizioni ordinarie di esercizio (congiuntori C₁ chiuso e C₂ aperto).
- 10. Calcolare le percentuali di carico (rapporto tra corrente di carico e corrente nominale) di ciascuno dei tre trasformatori nelle condizioni ordinarie di esercizio (congiuntori C₁ chiuso e C₂ aperto), ipotizzando l'esistenza di un rifasamento a fattore di potenza 0.9 sul quadro QP. Verificare che non esistano sovraccarichi nei trasformatori.

I dati relativi alle condutture si trovano nella seguente tabella di documentazione tecnica.

RESISTENZE E REATTANZE PER UNITÀ DI LUNGHEZZA DEI CAVI ELETTRICI PER BASSA TENSIONE

Cavi con conduttore in rame, isolamento in gomma o materiale termoplastico Impiego in corrente alternata alla frequenza di 50 Hz

Temperatura caratteristica fino a 80°C

(da tabella UNEL 35023-70)

Sezione	Cavi unipolari		Cavi bipolari e tripolari	
nominale	Resistenza	Reattanza	Resistenza	Reattanza
$[mm^2]$	$[m\Omega/m]$	$[m\Omega/m]$	$[m\Omega/m]$	$[m\Omega/m]$
1.5	14.8	0.168	15.1	0.118
2.5	8.91	0.155	9.08	0.109
4	5.57	0.143	5.68	0.101
6	3.71	0.135	3.78	0.0955
10	2.24	0.119	2.27	0.0861
16	1.41	0.112	1.43	0.0817
25	0.889	0.106	0.907	0.0813
35	0.641	0.101	0.654	0.0783
50	0.473	0.0965	0.483	0.0779
70	0.328	0.0975	0.334	0.0762
95	0.236	0.0939	0.241	0.0751
120	0.188	0.0928	0.191	0.0740
150	0.153	0.0908	0.157	0.0745
185	0.123	0.0902	0.125	0.0742
240	0.0943	0.0895	0.0966	0.0752