POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE I SESSIONE - ANNO 1998

Ramo Ing. dei Materiali

TEMA N. 1

Si deve recuperare l'alluminio presente in scorie, colaticci e torniture per la produzione di pani di lega di alluminio. Le scorie, la cui resa di fusione è pari a solo il 30 %, devono preventivamente essere sottoposte ad un processo di arricchimento consistente in una sequenza di operazioni di frantumazione, vagliatura, macinazione e vagliatura finale per ottenere granelle con resa di fusione pari al 70 %. I colaticci sono direttamente impiegabili ed hanno resa di fusione pari all'80%, mentre la resa delle torniture è pari al 90%.

Utilizzando le predette materie prime, stoccate in box definiti pronto forno, si devono produrre 150 t al giorno di pani in lega di alluminio, mediante fusione in un forno rotativo e successiva elaborazione della lega fusa (degasaggio, modifica, affinazione) in due forni a bacino.

La lavorazione è su tre turni e le materie prime sono costituite per il 25% da colaticci, per il 25% da granelle e per il 50% da tornitura. Il rendimento termico del forno rotativo è pari a 0,6. Le temperature di riferimento dei forni a bacino sono: T interna 750 °C, T esterna della lamiera 300 °C e T ambiente 25 °C. Il combustibile a disposizione per il riscaldamento dei forni è metano di rete. I pani vengono colati in una linea lingottiera con raffreddamento ad aria.

Il candidato esegua un progetto di massima degli impianti necessari al ciclo produttivo, indicando flussi di materiali, consumi energetici, necessità di magazzini e soluzioni per la sicurezza e la salvaguardia ambientale. L'elaborato dovrà essere completato da una breve relazione tecnica, atta ad illustrare le scelte effettuate, e da uno schizzo del plant lay-out.

Tabella 6.01 Conduttività e capacità termica massica dei materiali refrattari

 .		conduttività a temperatura di					capacità termica media tra 0° e t				
materiale	mesta Tolum.	400°	€00°	800°	1000°	1200°	400°	600°	800°	1000°	1200°
REFRATTARI			•								
silice	1730		1,38 1, 60	1,46 1,70	1,59 1,85	1,67 1,94	0,22 930	0,24 990	0,25 1 040	0,26 1 080	0,27 1120
silico allumin.	1910		1,05 1,22	1,05 1,22	1,06 1,23	1,06 1,23	0,22 \$10	0,23 970	0,25 1030	0,26 1 080	0,27 1120
silicioso	1850		0,77 0,89	0,82 0,95	0,89 1,03	0,97 1,13					
sillimanite	2300		1,22 1,42	1,25 1,45	1,27 1,48	1,30 1,51				0,25 1 050	
alluminoso	2400		1,34 1,56	1,32 1,53	1,30 1,51	1,30 1,51					
magnosite	2750			4,14 4,81	3,19 3,71	2,67 3,10	0,25 1 050	0,26 1 090	0,27 1130	0,28 117 0	0,2 121
cromo-magnesit	e 2790		1,38 1,60	1,38 1,60	1,36 1,58	1,28 1,49	0,22 920	0,23 960	0,24 1000	0,23 960	
carburo silicio	2520		-,	10,44 12,14	10,00 11,62	9,6 8 11,25				0,23 960	
calcestr. refratt.	1900	0,84 0,98	0,88 1, 0 2	0,94 1,09	1,06	1,30 1,51		.,	- -		<u> </u>
ISOLANTI REI	FRATTARI										
1 32 (AS	TM) 1200	0,49 0, 57	0,50 0,58	0,50 0,58	0,50 0,58	0,50 0,58					
[30 (AS	TM) 1000	0,40 0, 46	0,41 0,48	0,42 0,49	0,43 0,50	0,44 <i>Ø</i> 0,51					
I 28 (AS	TM) 900	0,35 6,41	0,37 0,43	0,39 0,45	0,41 0,48	0,43 0,50					
I 26/23 (AS	5TM) 800	0,27 0,31	0,31 0,36	0,34 0,39	0,38 8,44						
I 23 (AS	STM) 500	0,14 0,16	0,15 0,17	0,17 8,20	0,18 0,2 1	-					
I 16 (AS	STM) 500	0,13 0,15	0,15 0,17	0,17 0,28							
LATERIZI P	IENI 1700	0,73 0,85	0,83 0,96				0,21 850				

Note - I valori in chiaro sono in unità tecniche (kcal/mh°C e kcal/kg°C) i valori in neretto sono unità SI (W/mK e J/kgK)

La conduttività può variare anche sensibilmente in relazione alle diverse caratteristiche dei vari materiali, anche se della stessa categoria. Per i refrattari silico alluminosi per esempio, una maggiore porosità (massa vol. = 1,85), abbassa la conduttività di circa il 10% mentre con massa volumica di 2,1 aumenta di circa il 10% rispetto ai valori di tabella.

Tabella 6.02 Conduttività e capacità termica massica del materiali da costruzione

steriale	masta volum.	condutti: t. amb.	rith a ter 1 98 °	aperatura 300°	500°	capac. term. t. amb.	media (300°
cciaio	7800		39 45	37 43	33 38	0,12 500		
cciaio inox (18/8)	7800	6,5 7, 6	7 8.1	8 9,3	9 10,5	0,12 500		
lluminio	2700	173 201	176 20 5	198 230	231 269	0,21 890	0,22 940	0,24 1 000
ozaon	8700	50 58	61 71			0,0 9 3 80	0,09 3 90	
cromo	7100					0,10 430	0,11 470	0,12 520
ferro dolce	7800	48 56	47 55	43 50	32 37	0,11 480	0,12 500	0,13 540
ghisa	7300	48 56	45 52	39 45		0,12 500		
nichei	8800	54 63	51 59	47 55		0,11 440	0,11 460	
ottone (70/30)	8500	83 96	89 103	98 114		0,09 380		
piombo	11300	31 , 36	29 34			0,03 13 0	0,03 1 30	
rame (puto)	8900	332 386	324 377	315 366	308 358	0,09 3 86	0,09 3 90	0,1 41
calcestruzzo	2300	1,30 1,51		· -	·•	0,26 1 99 0		
muratura mattoni pien	i 1800	0,68 0, 79				0,20 840		
muratura forati	,1400	0,48 0,5 6				0,20 840		
muratura pietrame	2200	2,00 2,32				0,21 880		
intoneco di celce	1600	0,60 9,70				0,22 920		
intonaco di cemento	2200	1,20 1,39				0,25 1 050		
cemento amianto	1800	0,30 0,3 5				0,23 960		
legno di quercia	820	0,18 0,21				0,57 2390	1 lipt	c
le gn o di pino	550	0,13 0,15				0,65 27 20	⊥ fib	re
vetro	2500	0,70				0,20 840		

Note - I valori in chiaro sono in unità tecniche (kcal/mh°C e kcal/kg°C) I valori in neretto sono in unità SI (W/mK e J/kgK)