POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE I SESSIONE - ANNO 1997

Ramo Nucleare

TEMA N. 2

Un reattore nucleare CANDU eroga in condizioni nominali una potenza termica di 2140 MWth ed una potenza elettrica di 600 MWe. Il refrigerante primario, acqua pesante, entra nei canali del reattore alla pressione assoluta di 110 bar e alla temperatura di 267 °C ed esce alla temperatura di 312 °C.

Il circuito primario è dotato di quattro generatori di vapore con tubi ad U, che producono vapore alla pressione assoluta di 45 bar con 0.30% di umidità. La temperatura dell'acqua di alimento è di 180 °C. Il vapore alimenta un ciclo con risurriscaldamento; questo viene effettuato a monte della turbina di bassa pressione, utilizzando una frazione della portata di vapore proveniente dai generatori di vapore.

Il reattore deve essere collegato ad una rete di teleriscaldamento che distribuisce una potenza termica complessiva di 200 MW; l'acqua alimenta la rete alla temperatura di 120 °C e alla pressione di 12 bar e ritorna al reattore alla temperatura di 60 °C.

La potenza termica viene ceduta dal reattore alla rete attraverso scambiatori di calore a superficie alimentati da vapore spillato dalla turbina di bassa pressione alla pressione di 3.5 bar. Negli scambiatori di calore il vapore spillato subisce la completa condensazione; il condensato subisce quindi un adeguato sottoraffreddamento.

Con riferimento ai dati precedenti, il candidato sviluppi i punti seguenti:

- 1. calcolo della portata in massa di refrigerante primario nel reattore;
- calcolo della portata in massa totale di vapore prodotta nei quattro generatori di vapore;
- 3. scelta della temperatura di uscita del condensato dagli scambiatori di calore dopo la fase di sottoraffreddamento;
- calcolo della portata in massa di vapore spillata dalla turbina di bassa pressione per alimentare gli scambiatori di calore dell'impianto di teleriscaldamento; per il vapore spillato si assumano condizioni di saturazione;
- 5. progetto di massima degli scambiatori di calore.

Facoltativamente il candidato illustri infine, senza svolgimento di calcoli numerici, la procedura per lo studio del ciclo termodinamico dell'impianto in presenza dello spillamento di vapore per il teleriscaldamento.

Nello svolgimento del punto (1) il candidato utilizzi in via approssimata, per l'acqua pesante, le proprietà fisiche dell'acqua leggera relative alla pressione d'ingresso assegnata, trascurando l'effetto delle cadute di pressione nei canali del reattore.

Nello svolgimento del punto (5) il candidato faccia riferimento alle seguenti indicazioni:

- a) si svolgano le fasi di condensazione del vapore spillato e di sottoraffreddamento del condensato in differenti scambiatori di calore;
- b) si adottino, se opportuno, più scambiatori di calore collegati in parallelo sia per la condensazione che per il sottoraffreddamento;
- c) si scelgano scambiatori di calore a tubi e mantello con tubi diritti o tubi ad "U";
- d) si progetti lo scambiatore adibito alla condensazione con tubi orizzontali, facendo defluire il vapore lato mantello;

Nello svolgimento del punto (5) il candidato indichi inoltre gli elementi su cui può essere basata l'ottimizzazione del progetto.

Per il calcolo del coefficiente di scambio termico del vapore condensante si consiglia di utilizzare la correlazione proposta da Nusselt [1], pg. 3.4.6-3, valida per condensazione all'esterno di tubi orizzontali:

$$\frac{\alpha_t D}{\lambda} = 0.725 \left[\frac{D^3 \rho_1 \left(\rho_1 - \rho_g \right) g \Delta h}{\lambda \eta \left(T_{sat} - T_w \right)} \right]^{1/4}$$
 (1)

con:

α_t coefficiente di scambio termico del tubo singolo

λ conducibilità termica del liquido

η viscosità dinamica del liquido

ρ₁ massa volumica del liquido

ρ_g massa volumica del vapore

Δh calore di vaporizzazione

D diametro del tubo

g accelerazione di gravità

T_{sat} temperatura di saturazione

Tw temperatura di parete.

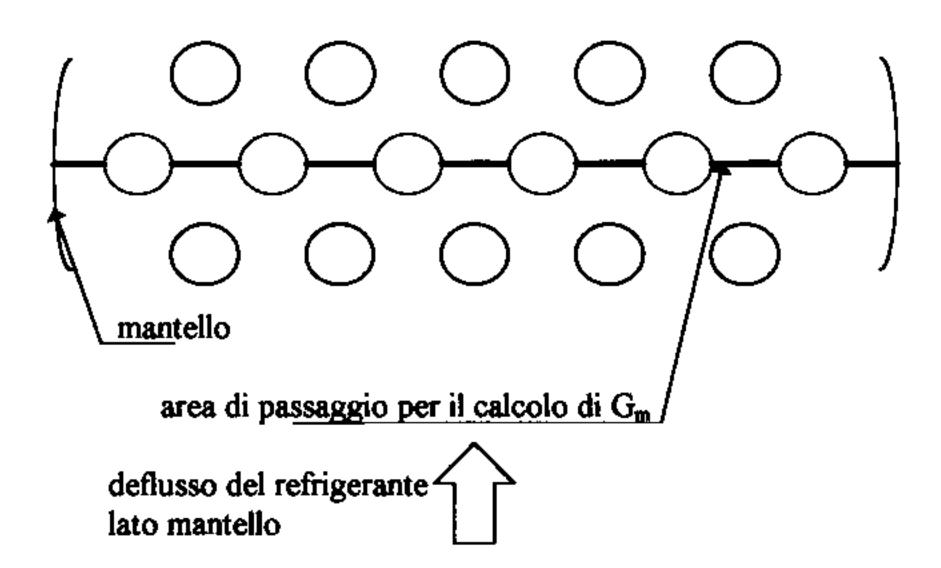
Il coefficiente di scambio termico medio relativo ad un fascio di tubi, $\overline{\alpha}$, si calcola con la relazione seguente [1]:

$$\overline{\alpha} = \frac{\alpha_t}{N^{1/6}} \tag{2}$$

dove Nè dato da:
$$N = 0.78 \frac{D_f}{P}$$
 (3)

D_f e P sono rispettivamente il diametro del fascio tubiero e il passo del reticolo dei tubi misurato nella direzione verticale.

La (1) è valida quando sono trascurabili gli effetti della velocità del vapore sullo scambio termico; nello svolgimento del progetto di massima si assuma che tali effetti siano trascurabili.


Nel calcolo del coefficiente di scambio termico lato mantello per lo scambiatore adibito al sottoraffreddamento, qualora si adotti uno scambiatore di calore con setti, si consiglia di adottare la seguente relazione [1], pg. 3.3.2-1, adatta a valutazioni di massima:

$$\frac{\alpha_t D}{\lambda} = 0.2 \left(\frac{G_m D}{\eta}\right)^{0.6} \left(\frac{c_p \eta}{\lambda}\right)^{0.33} \tag{4}$$

c_n calore specifico a pressione costante

G_m portata specifica valutata sulla mezzeria del fascio tubiero

Nella precedente relazione le proprietà fisiche sono valutate alla temperatura media del liquido. La formulazione è valida per $2000 < \frac{G_m D}{\eta} < 40000$ e tubi con reticolo a quinconce. L'area di passaggio per il calcolo della portata specifica è rappresentata nella figura seguente (la profondità nella direzione perpendicolare al piano della figura è data dalla distanza tra due setti successivi):

Seguono tabelle con dati utili nello svolgimento dei calcoli.

Tabella 1 - Valori tipici del coefficiente di scambio termico globale			
condensatori vapore-acqua	2200-5700 W/(m ² °C)		
scambiatori acqua-acqua	850-1700 W/(m ² °C)		

Tabella 2 - Con	ducibilità termica di	alcuni tipi d	li acciai [2]	
		temperatura		
		70 °F 200 °F 350		350 °F
		21	93	177
acciai al carbonio	Btu/(hf ft F)	31.5	30	28.6
	W/(m °C)	54.52	51.92	49.50
acciai austenitici	Btu/(hf ft F)	8.35	8.90	9,56
	W/(m °C)	14.45	15.40	16.54
acciai al cromo (≤3%)	Btu/(hf ft F)	18.95	18.80	18.65
, ,	W/(m °C)	32.80	32.54	32.28
acciai al cromo (> 3%)	Btu/(hf ft F)	13.10	13.8	14.55
	W/(m °C)	22.67	23,88	25.18

Tabella 3 - Resistenze termiche di fouling [3]			
lato acqua	0.00020 m ² °C / W		
lato vapore	0.00009 m ² °C / W		

	ntalpia specifica e calore sp stante dell'acqua a 110 ba	-
temperatura	entalpia	calore specifico
260 °C	1133.6 kJ/kg	4.875 kJ/(kg °C)
280 °C	1233.8 kJ/kg	5.162 kJ/(kg °C)
300 °C	1341.3 kJ/kg	5.630 kJ/(kg °C)
318.11 °C	1449.7 kJ/kg	6.475 kJ/(kg °C)[5]

Tabella 5 - Proprietà del vapore saturo e del liquido saturo a 45 bar [4]				
temperatura di saturazione	257.47 °C			
entalpia specifica del liquido	1121.9 kJ/kg			
entalpia specifica del vapore	2797.6 kJ/kg			
calore di evaporazione	1675.7 kJ/kg			

Tabella 6 - Entalpia spec	Tabella 6 - Entalpia specifica dell'acqua a 45 bar [4]		
temperatura	entalpia		
180 °C	765 kJ/kg		
190 °C	809.1 kJ/kg		
200 °C	853.6 kJ/kg		
220 °C	944.1 kJ/kg		
240 °C	1037.3 kJ/kg		

Tabella 7 - Proprietà del vapore satu	ro e del liquido saturo a 3.5 bar [4]
temperatura di saturazione	138.89 °C
entalpia specifica del liquido	584.5 kJ/kg
entalpia specifica del vapore	2732.4 kJ/kg
calore di evaporazione	2147.9 kJ/kg
massa volumica del liquido	927.1 kg/m^3
massa volumica del vapore	1.907 kg/m^3
calore specifico del liquido	4.283 kJ/(kg °C) [5]
calore specifico del vapore	2.234 kJ/(kg °C) [5]
viscosità dinamica del liquido	197 10 ⁻⁶ kg/(m s) [5]
viscosità dinamica del vapore	13.50·10 ⁻⁶ kg/(m s) [5]
conducibilità termica del liquido	0.688 W/(m°C) [5]
conducibilità termica del vapore	0.0284 W/(m°C) [5]

temperatura	entalpia specifica	calore specifico	massa volumica	conducibilità termica	viscosità dinamica (*)
<u>°C</u>	kJ/kg	kJ/(kg°C)	kg/m³	W/(m °C)	kg/(m s)
60	251.4	4.182	983.3	0.6545	466.9 10-6
70	293.3	4.186	977.9	0.6632	404.6 10-6
80	335.2	4.194	971.9	0.6702	355.2.10-6
90	377.2	4.204	965.4	0.6754	315.2 10-6
100	419.3	4.216	958.5	0.6793	282.4 10-6
110	461.5	4.231	951.1	0.6818	255.2.10-6
120	503.9	4.248	943.2	0.6833	232.3 10-6
130	546.5	4.267	934.9	0.6838	212.9 10-6

^(*) approssimata con il valore a 5 bar

temperatura	entalpia specifica	calore specifico	massa volumica	conducibilità termica	viscosità dinamica
°C	kJ/kg	kJ/(kg°C)	kg/m ³	W/(m °C)	kg/(m s)
60	252.2	4.181	983.7	0.6549	467.0 10-6
70	294.0	4.185	978.3	0.6637	404.7 10-6
80	335.9	4.192	972.3	0.6706	355.3 10-6
90	377.8	4.202	965.8	0.6759	315.410-6
100	419.9	4.215	958.9	0.6797	282.6 10-6
110	462.1	4.230	951.5	0.6823	255.4.10-6
120	504.5	4.246	943.7	0.6838	232.5 10-6

рег сотре	nenti in pression	e [2]		
			Temperatura	
		100 F	200 F	300 F
		38 °C	93 °C	149 ℃
acciai al carbonio e legati al cromo	ksi	15	15	15
	N/mm²	103	103	103
acciai inox tipo 304	ksi	18.8	17.8	16.6
	N/mm^2	130	123	114
acciai inox tipo 316	ksi	18.8	18.8	18,4
-	N/mm^2	130	130	127

^[1] Heat Exchanger Design Handbook, 3 Thermal and hydraulic design of heat exchangers, Hemisphere Publ. Co., 1989.

^[2] ASME Boiler and Pressure Vessel Code, Subsection NA, 1974.

^[3] D.R. Pitts, L.E. Sissoms, Tasmissione del Calore, Collana Schaum, 1982.

^[4] P. Gregorio, Fisica Tecnica - Esercizi svolti - Tabelle, II ed., Levrotto & Bella.

^[5] Properties of Water and Steam in SI-Units, Springer-Verlag, 1969.