POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE II SESSIONE - ANNO 2005

Ramo Nucleare

TEMA N. 2

E' richiesto il dimensionamento di massima dei principali componenti dei circuiti primario e secondario di un reattore nucleare moderato e refrigerato ad acqua in pressione, di tipo PWR, con riferimento ai dati riportati in tab. 1.

Talella 1 - Dati di riferimento del reattore PWR		
Potenza elettrica	950	MWe
Pressione media di funzionamento del refrigerante primario	155	bar
Temperatura di ingresso del refrigerante nel nocciolo	292	°C
Temperatura media del refrigerante all'uscita del nocciolo	329	°C
Potenza lineare media generata nelle barre di combustibile	178	W/cm
Potenza lineare massima generata nelle barre di combustibile	413	W/cm
Tipologia dei fasci di barre di combustibile	17x17	
Diametro esterno delle barre di combustibile	9.50	mm
Condizioni del vapore all'uscita dal generatore di vapore	vapore s	saturo
Pressione del vapore all'uscita del generatore di vapore	66.5	bar
Temperatura dell'acqua di alimento dei generatori di vapore	227	°C
Condensatore a superficie, raffreddato con acqua di fiume		
Temperatura di ingresso dell'acqua di raffreddamento del condensatore	15	°C
Pressione del vapore nel condensatore	0.05	bar
Aumento di temperatura dell'acqua di fiume nel condensatore	10	°C

E' in particolare richiesto lo sviluppo dei punti seguenti:

- 1) determinazione della potenza termica del reattore
- 2) calcolo della portata di acqua del circuito primario
- 3) calcolo della portata di acqua del lato secondario dei generatori di vapore
- 4) calcolo della portata di acqua di raffreddamento del condensatore
- 5) assunzione della lunghezza delle barre di combustibile
- 6) assunzione del passo delle barre di combustibile e calcolo del numero di fasci di barre
- 7) calcolo della portata specifica media del refrigerante primario nel nocciolo

- 8) scelta del numero dei circuiti e della tipologia dei generatori di vapore
- 9) scelta del materiale, assunzione del diametro interno e calcolo dello spessore delle tubazioni del circuito primario
- 10) scelta del materiale, assunzione del diametro intemo dei tubi dei generatori di vapore e calcolo dello spessore
- 11) assunzione della velocità dell'acqua nei tubi dei generatori di vapore e calcolo del numero di tubi
- 12) calcolo della lunghezza dei tubi dei generatori di vapore
- 13) scelta della disposizione dei tubi del fascio tubiero del condensatore
- 14) scelta del materiale dei tubi del condensatore
- 15) assunzione del diametro interno dei tubi del condensatore e calcolo dello spessore
- 16) assunzione della velocità dell'acqua nei tubi del condensatore e calcolo del numero di tubi
- 17) calcolo della lunghezza dei tubi del condensatore.

Nello sviluppo dei punti sopra elencati, il Candidato può fare riferimento ai materiali e ai parametri geometrici e operativi tipici dei reattori PWR; nello svolgimento del punto (1) può in particolare assumere un valore del rendimento globale dell'impianto tipico dei reattori del tipo in esame.

Nel dimensionamento dei generatori di vapore e del condensatore può utilizzare i valori dei coefficienti di scambio termico globale riportati in tab. 2.

Tabella 2 - Coefficienti di scambio termico globale				
Generatori di vapore	4100÷5200	W/(m ²⁰ C)		
Condensatore	1750÷2900	W/(m ²⁰ C)		

Per quanto riguarda le proprietà fisiche dei fluidi termovettori e dei materiali, il Candidato può fare riferimento alla tab. 3 e successive. In tab. 9 sono riportati tipici valori delle tensioni ammissibili alle temperature di 100 F e 700 F, per acciaio al carbonio, acciaio inossidabile e inconel (il Candidato può scegliere materiali differenti da quelli riportati in tabella).

Si richiede infine al Candidato di discutere le assunzioni e le semplificazioni adottate nell'ambito del dimensionamento di massima, accennando anche agli elementi più rilevanti del progetto particolareggiato.

temperatura °C	densità kg/m³	entalpia kJ/kg	viscosità kg/(m s)	conducibilità termica W/(m °C)	calore specifico a pressione costante kJ/(kg °C)
290	746.5	1283.5	92.40 10-6	0.5807	5.236
300	726.8	1336.9	88.50 10 ⁻⁶	0.5628	5.453
310	705.1	1392.8	84.57 10-6	0.5431	5.739
320	680.5	1452.1	80.49 10-6	0.5216	6.141
330	651.9	1516.3	76.10 10 ⁻⁶	0.4982	6.763

Tabella 4 - Proprietà fisiche dell'acqua e del vapore in saturazione a 155 bar temperatura di saturazione = 344.83 °C calore specifico a entalpia conducibilità termica densità viscosità pressione costante kg/m³ kJ/kg kg/(ms) $kJ/(kg^{\circ}C)$ $W/(m \, {}^{\circ}C)$ 68.16 IO"⁶ liquido 594.3 1629.6 0.4586 8.989 23.05 IO*6 2595.5 13.574 vapore 101.9 0.1206

Tabella 5 - Proprietà fisiche dell'acqua e del vapore in saturazione a 66.5 bar temperatura di saturazione = 282.41 $^{\circ}\mathrm{C}$							
	densità	entalpia	viscosità	conducibilità termica	calore specifico a pressione costante		
	kg/m ³	kJ/kg	kg/(m s)	W/(m °C)	$kJ/(kg^{\circ}C)$		
liquido	746.2	1248.7	92.48 IO'6	0.5776	5.325		
vapore	34.51	2776.3	18.91 IO' ⁶	0.06143	4.949		

Та	Tabella 6 - Proprietà fisiche dell'acqua e del vapore in saturazione a 0.05 bar temperatura di saturazione = 32.88 °C						
	densità	entalpia	viscosità	conducibilità termica	calore specifico a pressione costante		
	kg/m ³	kJ/kg	kg/(m s)	W/(m °C)	kJ/(kg°C)		
liquido	994.7	137.7	751.1 IO'' ⁶	0.6200	4.183		
vapore	0.0355	2560.5	10.09 IO'' ⁶	0.01909	1.895		

densità	entalpia	viscosità	conducibilità termica	calore specifico a pressione costante
kg/m ³	kJ/kg	kg/(m s)	W/(m °C)	kJ/(kg°C)

\$ 3/4

pressione	temperatura	densità	entalpia	viscosità	conducibilità termica	calore specifico a pressione costante
bar	°C	kg/m ³	kJ/kg	kg/(ms)	W/(m°C)	kJ/(kg°C)
1	15	999.1	63.0	1139.1IO-6	0.5894	4.184
5	15	999.3	63.4	1138.8 IO'' ⁶	0.5896	4.182
10	15	999.6	63.9	1138.5 10*	0.5898	4.181
1	25	997.1	104.8	890.8 10*	0.6072	4.183
5	25	997.2	105.2	890.7 10*	0.6074	4.182
10	25	997.5	105.7	890.6 10*	0.6076	4.181

Tabella 9 - Tipici valori della tensione ammissibile di alcuni materiali in funzione della temperatura (acciai al carbonio, acciaio inossidabile, inconel)

materiale	tempe	ratura	tensione ammissibile	
	(F)	(°C)	(psi)	N/mm ²
acciaio al carbonio	100	38	25000	172.4
acciaio al carbonio	700	371	20200	139.3
acciaio al cromo - molibdeno	100	38	25000	172.4
acciaio al cromo - molibdeno	700	371	22800	157.2
acciaio inossidabile tipo 316	100	38	20000	137.9
acciaio inossidabile tipo 316	700	371	16300	112.4
inconel	100	38	20000	160.6
inconel	700	371	20000	137.9

