POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE

PRIMA SESSIONE 2007 – SETTORE INDUSTRIALE LAUREA SPECIALISTICA

PROVA PRATICA del 27 giugno 2007

CLASSE 29/S: INGEGNERIA MECCATRONICA

Problema

Si consideri l'aereomobile schematizzato in Figura 1, dove:

- b(t): angolo del timone di profondità
- z(t): posizione verticale (quota) del baricentro G dell'aereomobile- v(t): velocità dell'aereomobile; si assuma che v sia a modulo costante: $|v(t)| = \cos t$. = V
- r(t): angolo fra la velocità e l'asse dell'aereomobile; si assuma che r sia "piccolo" a che sia quindi esprimibile come: $r(t) \cong a(t) \mathcal{L}(t)/V$, dove \mathcal{L} è la velocità verticale del baricentro G dell'aereomobile
- p(t): portanza delle ali; si assuma per p una caratteristica lineare: $p(t) = P + K_a r(t)$, dove $P \in K_a$ sono costanti.
- f(t): forza timone di profondità; si assuma per f una caratteristica lineare: $f(t) = F + K_b b(t)$, dove F e K_b sono costanti.
- m: massa dell'aereomobile
- g: accelerazione di gravità
- l: distanza tra baricentro e timone di profondità
- h: braccio della portanza

Il problema è progettare un sistema per il controllo della quota dell'aereomobile.

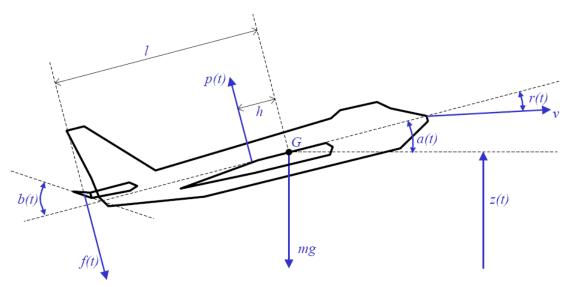


Figura 1: schema di un aereomobile.

Punti da sviluppare

- (1) Supponendo che l'aereomobile sia un corpo rigido, ricavarne le equazioni dinamiche usando l'approccio in equazioni di Newton.
- (2) Si scelga $x(t) = [z(t), a(t), x(t), x(t)]^T$ come vettore di stato. Siano u(t) = b(t) e y(t) = z(t) rispettivamente ingresso e uscita. Ricavare le equazioni di stato del sistema.
- (3) Linearizzare le equazioni di stato ottenute al punto (2) supponendo che l'angolo a sia "piccolo" e che quindi $\cos(a) \cong 1$.
- (4) Si consideri il punto di equilibrio: $\overline{x} = \left[0, \frac{mgl}{K_a(l-h)} \frac{P}{K_a}, 0, 0, \right]^T, \quad \overline{u} = \frac{mgh}{K_b(l-h)} \frac{F}{K_b}$

Definendo $\delta x(t) = x(t) - \overline{x}$, $\delta u(t) = u(t) - \overline{u}$, si scrivano le equazioni di stato linearizzate intorno a tale punto di equilibrio.

(5) Calcolare la funzione di trasferimento G(s) del sistema lineare ottenuto al punto (4) considerando i seguenti valori dei parametri:

$$m = 7e4 \ Kg$$
 $J = 28e6 \ Kg \times m^2$ $V = 250 \ m/\sec l = 36 \ m$ $h = 6 \ m$ $K_a = 4e6 \ N/rad$ $K_b = 7e5 \ N/rad$

(6) Si consideri il sistema di controllo in Figura 2, dove G(s) è la funzione di trasferimento calcolata al punto (5), C(s) è il controllore da progettare, $u_r(t)$ è il riferimento, $e(t) = u_r(t) - y(t)$ è l'errore di inseguimento e $d_v(t)$ è un disturbo.

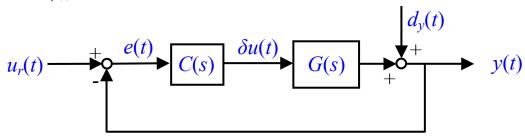


Figura 2: sistema di controllo.

Impostare il progetto di un controllore C(s) tale da soddisfare le seguenti specifiche: Specifiche a regime.

- Insensibilità (astaticità) ad un disturbo d_v a gradino.
- Sia $u_r(t) = t^2$. Si richiede che l'errore di inseguimento a regime sia in valore assoluto inferiore o uguale a 40 m: $\lim |e(t)| \le 40$ m.

Specifiche dinamiche. Sia $y_s(t)$ la risposta al gradino del sistema controllato. Si definisca la sovraelongazione come $\hat{s} = \max_{t \in [0,\infty]} [y_s(t)] - 1$, e il tempo di salita t_s come il tempo impiegato da $y_s(t)$

per passare dal valore 0 al valore 0.9. Discutere possibili approcci per soddisfare le seguenti specifiche:

- Sovraelongazione: $\hat{s} \le 0.2$ m.
- Tempo di salita: $t_S \le 30$ sec.
- (7) Indicare come possono essere verificate le specifiche richieste nel punto (6).