Esame di Stato per l'Abilitazione alla Professione di Ingegnere

I Sessione 2010

Prova pratica del 22 luglio 2010

Ingegneria Aerospaziale – 25/S

Il candidato dovrà svolgere uno a sua scelta tra i seguenti temi:

Tema n. 1

In una galleria del vento supersonica il gas viene accelerato attraverso un ugello convergente/divergente <u>a sezione circolare</u>, la cui geometria è definita nella Tabella 1 allegata. La pressione totale nella camera di stagnazione è pari a 4 atm e l'entalpia totale per unità di massa è pari a 1,1 MJ/kg.

Ipotizzando che il gas utilizzato sia aria (γ =1,4 e c_p=1000 J/kg/K) e trascurando sia qualsiasi deviazione dal comportamento di gas perfetto, sia la presenza dello strato limite sulle pareti dell'ugello, si calcolino:

- 1) La condizioni soniche in gola (velocità del suono, densità, temperatura e velocità)
- 2) La massima portata in massa.
- 3) Numero di Mach, pressione, temperatura e densità nelle stazioni #1, #10, #20, #30, #40,#50 e nella sezione di uscita (sezione # 57).
- 4) La pressione dell'ambiente esterno in corrispondenza della quale un urto retto si presenterebbe sulla sezione di uscita.
- 5) La pressione nella sezione di uscita necessaria per avere un urto all'interno dell'ugello in corrispondenza della stazione #30.
- 6) La pressione nella sezione di uscita al di sopra della quale non è possibile ottenere un flusso supersonico nel divergente.

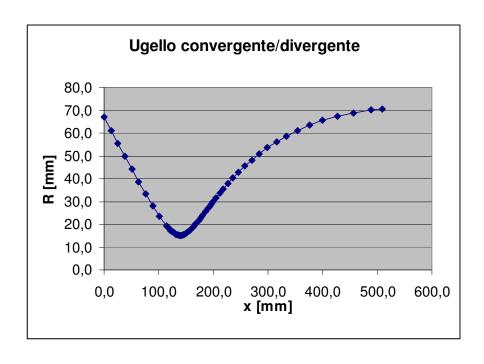
Tema n. 2

Si consideri un velivolo della categoria normal nella condizione di peso massimo W=2800 Kg. In figura 1 è riportato il suo diagramma di manovra; si consideri la condizione di volo rappresentata dal punto A (n=3.6).

Si richiede di analizzare la risposta strutturale della semiala del velivolo a partire dalle seguenti ipotesi.

- La semiala si può semplificare come una trave a semiguscio in lega di Alluminio incastrata ad un estremo (attacco alare) e libera all'altro, avente lunghezza L=7 m e sezione trasversale rappresentata in figura 2.
- I carichi applicati sono la portanza, il peso proprio e quello del combustibile (pari a 200 Kg e approssimabile come distribuito sull'intera apertura alare). Tutti i carichi si possono immaginare applicati al quarto anteriore della sezione alare.

Si chiede di determinare:


- la posizione del centro di taglio della sezione alare;
- lo stato di sollecitazione della semiala ad una distanza x=3.5 m dall'attacco alare;
- il valore del gradiente di torsione sempre per x=3.5 m;
- la freccia, la rotazione di flessione e la rotazione di torsione della semiala al suo estremo libero.

Si mettano in evidenza e si dia giustificazione delle ipotesi semplificative e delle assunzioni adottate per svolgere i calcoli.

Allegato al Tema n. 1

Tabella 1.

Geometria dell'ugello		
stazione #	x [mm]	R [mm]
1	0,0	67,0
2	12,7	61,2
3	25,4	55,5
4	38,1	49,8
5	50,8	44,2
6	63,5	38,7
7	76,2	33,4
8	88,9	28,2
9	101,6	23,5
10	114,3	19,3
11	116,8	18,6
12	119,4	10,0
13	119,4	18,0
13	121,9	17,4
14	124,5	16,8
15	127,0	16,3
16	129,5	15,9
17	132,1	15,6
18	134,6	15,3
19	137,2	15,1
20	139,7	15,0
21	142,1	15,1
22	144,3	15,3
23	146,8	15,5
24	150,1	16,0
25	152,8	16,5
26	156,1	17,1
27	159,7	18,0
28	163,3	18,9
29	167,0	19,9
30	169,3	20,5
31	173,5	21,8
32	176,5	22,7
33	179,8	23,7
34	186,1	25,7
35	190,5	27,0
36	192,5	27,7
37	196,3	28,8
38	199,2	29,8
39	204,6	31,5
40	212,1	33,8
41	217,5	35,4
42	226,1	37,8
43	235,6	40,4
44	246,0	43,0
45	257,5	45,6
46	270,1	48,2
47	283,9	50,9
48	299,0	53,6
49	315,6	56,2
50	333,9	58,7
51	353,9	61,2
52	375,9	63,5
53	400,1	65,6
54	426,7	67,4
55	455,9	68,9
56	488,1	70,0
57	508,8	70,5
37	500,0	10,0

Allegato al Tema n. 2

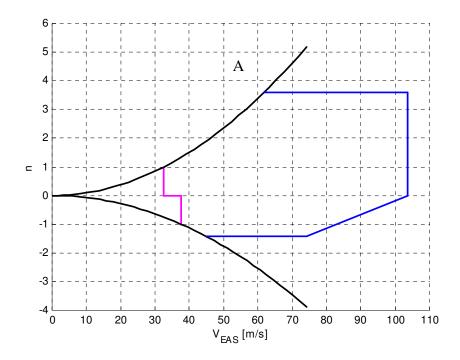


Figura 1

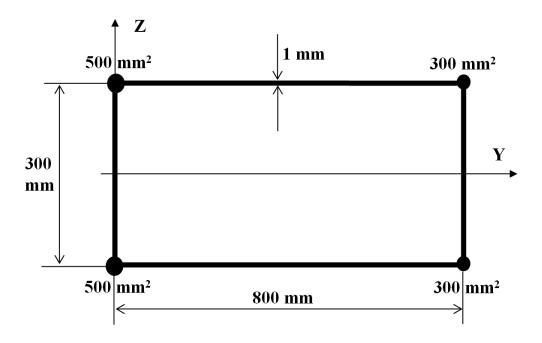


Figura 2