POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Seconda sessione 2010

Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare **Prova pratica del 23-12-2010**

Si debba effettuare un dimensionamento di massima di un generatore di vapore a circolazione assistita (fig.1) per una centrale termoelettrica a vapore il cui ciclo è riportato in fig. 2. Si consideri come combustibile di riferimento dell'olio combustibile a basso tenore di zolfo BTZ

con la seguente composizione percentuale elementare ponderale:

Carbonio C	Idrogeno H ₂	Zolfo S	Acqua H ₂ O	Azoto N ₂	Ceneri (ASH) A	Potere calorifico inferiore H _i
						kJ/kg
85	11,2	1	0,2	2,5	0,1	42000

Sulla base dei seguenti dati che rappresentano gli obiettivi del progetto:

grandezza	Simbolo	valore	Unità di misura
Rendimento di caldaia	η_{GV}	0,95	-
Potenza assorbita dai servizi ausiliari	P _{aus}	16	MW
Potenza netta alla rete	$P_{el,n}$	304	MW
Rendimento netto d'impianto	η_n	0,40	-

e dei seguenti capisaldi del ciclo associati alle condizioni nominali:

	Pressione MPa	Temperatura °C	entalpia kJ/kg	Portata relativa %
Vapore SH ammissione turbina	16,7	538	3395,1	100
Vapore 1° spillamento				10
Vapore scarico turbina AP (ingresso RH)	3,8		3039	
Vapore 2° spillamento (RH freddo)				8
Vapore ingresso turbina MP (RH uscita)	3,4	538	3538,8	82
Vapore scaricato al condensatore	0,005	32,5	2560,1	61

Alimento ingresso economizzatore		290	1281
Acqua uscita economizzatore			1423
Vapore saturo alla pressione di caldaia	17	353	2547,5

valutare sulla base delle informazioni riportate in allegato e delle necessarie ipotesi progettuali adottate dal candidato :

- a) La potenza elettrica lorda dell'impianto (ai morsetti dell'alternatore) Pel;
- b) La potenza termica richiesta al focolare P_{th}
- c) La potenza termica trasferita al fluido termovettore P_{th,GV}
- d) La portata di vapore surriscaldato prodotta dal generatore di vapore G_v e che alimenta la turbina espressa in kg/s e in t/h;
- e) Le potenze termiche trasferite al fluido termovettore nell'evaporatore, nei surriscaldatori, nel risurriscaldatore e nell'economizzatore rappresentando anche la ripartizione percentuale rispetto alla potenza termica al focolare.
- f) Le superfici di scambio termico per l'evaporatore, i surriscaldatori di bassa ed alta temperatura, il risurriscaldatore;
- g) Il fabbisogno di aria stechiometrica per la combustione del BTZ;
- h) La portata dei fumi e sua composizione;
- i) Un potenziale dimensionamento della camera di combustione insieme al numero di bruciatori;
- j) Numero e lunghezza delle tubazioni necessarie per l'evaporatore, il surriscaldatore, il risurriscaldatore, e l'economizzatore nell'ipotesi di considerare i diametri interni rispettivamente pari a: 50, 40, 60 e 40 mm.
- k) Lo spessore delle tubazioni;
- l) Impostare un ragionamento e definire il numero e la lunghezza delle tubazioni per le pareti della camera di combustione (pareti membranate) nell'ipotesi che il rapporto di ricircolazione realizzato sia pari a 5.
- m) Per l'economizzatore impostare un ragionamento e definire da un punto di vista geometrico costruttivo il fascio tubiero dell'economizzatore (numero e lunghezza dei condotti in parallelo, passi);
- n) Valutare la caduta di pressione nel fascio dell'economizzatore lato acqua;
- o) Impostare un ragionamento per valutare le cadute di pressione lato fumi.

Nei surriscaldatori di alta temperatura ipotizzare in modo ragionevole la frazione di potenza trasferita per irraggiamento e per convezione. Nel surriscaldatore di bassa temperatura considerare solo lo scambio termico convettivo ed ipotizzare la frazione di potenza ad esso associata.

Per eventuali dati mancanti riferirsi, citando al fonte, ad idonei manuali o testi di riferimento. Anche per la scelta di eventuali correlazioni citare la fonte e il campo di applicabilità. Le scelte progettuali vanno giustificate in modo sintetico.

Δt medio al surriscaldatore a.t. a convezione	450	°C
Δt medio al risurriscaldatore	350	°C
Δt medio al surriscaldatore b.t.	280	°C
Δt medio all'economizzatore	180	°C
Temperatura media di parete T _p dei tubi in camera di combustione	620	K
Flusso termico medio globale per l'evaporatore e il surriscaldatore di alta temperatura (carico termico specifico)	233	kW/m^2
Coefficiente globale di scambio termico medio per il surriscaldatore di bassa temperatura	0,070	kW/m^2°C
Coefficiente globale di scambio termico medio per il risurriscaldatore	0,100	kW/m^2°C
Coefficiente globale di scambio termico medio per l'economizzatore	0,035	kW/m^2*C
Eccesso d'aria nella combustione del BTZ	5	%

Intervallo di velocità dei fluidi in alcune regioni del generatore di vapore in m/s

Regione e/o servizio	Velocità minima	Velocità massima
Vapore surriscaldato nei tubi surriscaldatori	10	25
Acqua negli economizzatori	0,8	1,5
Acqua-vapore nei vaporizzatori	0,4	3,6
Prodotti di combustione nei diversi passi del	15	30
generatore di vapore		

Alcune proprietà per l'acqua

					Therm.	
Temperature	Pressure	Density	Enthalpy	Ср	Cond.	Viscosity
				(kJ/kg-	(mW/m-	
(°C)	(MPa)	(kg/m³)	(kJ/kg)	K)	K)	(µPa-s)
315,52	17,5	696,58	1423	5,8248	536,07	83,194
289,55	17,5	750,25	1281	5,1868	584,62	93,236
538	16,7	50,267	3398,5	2,8307	87,294	31,056
326,56	3,8	14,994	3039	2,5704	52,228	21,113
538	3,4	9,2824	3538,8	2,2653	74,086	30,211

		Liqui	Vap	Liqui	Vapo	Liqui	Vapo			Liqui	Vapo
		d	or	d	r	d	r	Liquid	Vapor	d	r
Temper	Press	Den	Den	Enth	Enth			Therm.	Therm.	Visco	Visco
ature	ure	sity	sity	alpy	alpy	Ср	Ср	Cond.	Cond.	sity	sity
	(MPa	(kg/	(kg/	(kJ/k	(kJ/k	(kJ/k	(kJ/k	(mW/m-	(mW/m	(µPa-	(µPa-
(°C))	m^3)	m^3)	g)	g)	g-K)	g-K)	K)	-K)	s)	s)
		565,	119,		2547,	10,82	18,27			64,72	24,18
352,29	17	21	46	1690	5	1	5	442,42	143,84	4	1

I materiali di riferimento per i tubi dell'economizzatore, dell'evaporatore , del surriscaldatore e del risurriscaldatore siano scelti in relazione alle temperature massime di esercizio in accordo alla tabella:

Materiale	C18 (C<0,21)	14CrMo 3	12CrMo910'
	`		
Temperatura	Sollecitazione	Sollecitazione	Sollecitazione
°C	unitaria allo	unitaria allo	unitaria allo
	snervamento	snervamento	snervamento
	N/mm^2	N/mm^2	N/mm^2
		(0,2%)	
20	255	294	265
250	186	-	
300	157	235	225
350	137	216	216
400	127	206	206
450	108	197	196
500	-	176	186
550	-	-	176
Sollecitazione	500	500	550
a rottura a			
temperatura			
ambiente			
N/mm^2			

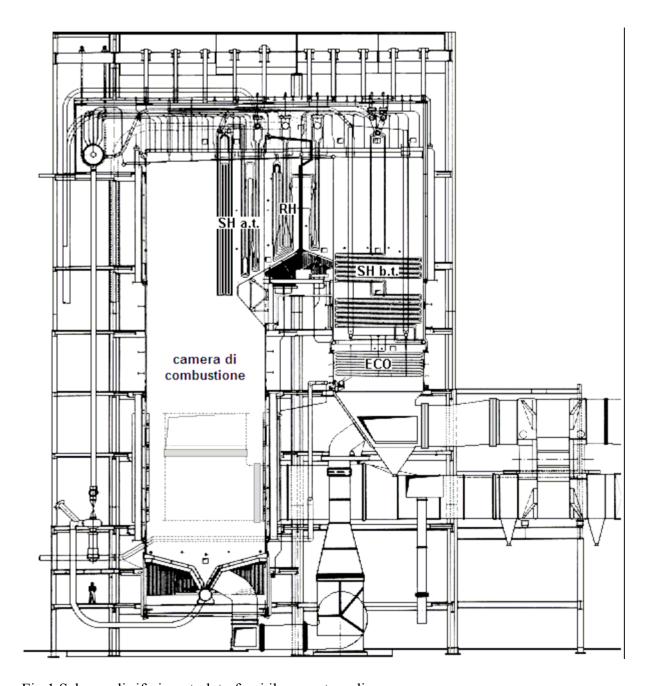


Fig.1 Schema di riferimento lato fumi il generatore di vapore.

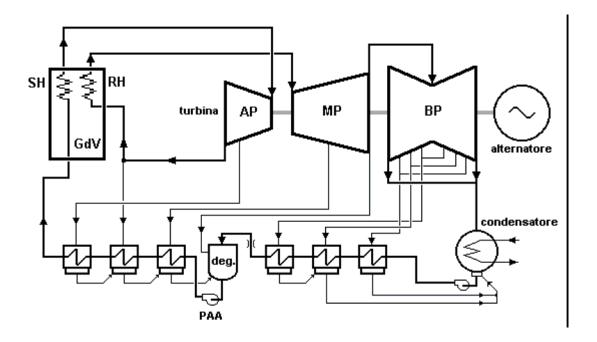


Fig. 2 Schema di riferimento lato acqua per l'impianto in esame.