POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE INDUSTRIALE

I Sessione 2012 - Sezione A Settore industriale

Classe 33/S – Ingegneria Energetica e Nucleare

Prova pratica del 20 luglio 2012

Si debba effettuare il progetto termomeccanico di un condensatore per una centrale termoelettrica caratterizzata dai seguenti dati nominali di riferimento:

Potenza termica da rimuovere nel condensatore: 275 MW

Portata di vapore da condensare 417.000 kg/h

Portata di acqua disponibile per la circolazione nel condensatore 5 m³/s temperatura dell'acqua in ingresso al condensatore 38 °C

temperatura del condensato 53 °C massimo aumento termico lato acqua ammissibile 13 °C

Vincoli di progetto:

distanza massima tra l'interno delle piastre tubiere 10.570 mm

diametro esterno tubi 19.05 mm

spessore tubi: due alternative tecnologiche 0,89 mm e 1.24 mm

numero di passaggi lato acqua: 2

velocità massima del condensato alla mandata della pompa di estrazione del condensato 2,5 m/s

velocità massima del condensato all'aspirazione della pompa di estrazione del condensato

1,5 m/s

conducibilità termica del materiale dei tubi 17 W/(m*°C)

Con riferimento alla fig. 1 (vista in pianta e sezione H-H) si osserva che il flusso del vapore è orizzontale. Il pozzo caldo è nella parte bassa del condensatore e sopra sono presenti due moduli, tra di loro sovrapposti, con due passaggi lato acqua che si svolgono su un piano orizzontale. Le piastre tubiere associate ad ogni modulo sono vincolate ad avere un lunghezza di 4200 mm ed una altezza di 2400 mm.

Sulla base di questi dati e nell'ipotesi di operare con portata in massa lato acqua e temperatura del condensato costanti e pari ai valori assegnati, determinare:

- 1. La potenza termica rimuovibile sulla base del salto massimo di temperatura ammissibile lato acqua e sulla base dei vincoli termodinamici delle temperature;
- 2. i coefficienti di scambio termico lato acqua e vapore nell'ipotesi di assenza di incondensabili lato vapore precisando le ipotesi che sono alla base delle stime;
- 3. la pressione parziale dell'aria nel condensatore nell'ipotesi di osservare una pressione di 0.15 bar;
- 4. i coefficienti globali di scambio termico riferiti alla superficie lato vapore e nell'ipotesi di assenza di incondensabili ;
- 5. la superficie di scambio termico necessaria per rimuovere la potenza nominale con i coefficienti di scambio termico lato vapore ed acqua degradati per effetto del fouling assunto pari a 0.0001 m² °C/W su entrambi i lati;
- 6. stimare il numero delle file di tubi N e le dimensioni delle casse d'acqua scegliendo in modo opportuno i passi del fascio tubiero;

- 7. il numero dei tubi da installare nei due moduli in modo da realizzare la superficie di scambio termico richiesta nelle condizioni degradate dal fouling;
- 8. le cadute di pressione aspettate lato acqua per ogni modulo di scambio termico (primo e secondo passaggio);
- 9. l'efficienza dello scambiatore progettato;
- 10. il livello del liquido rispetto alla pompa di estrazione del condensato da garantire nel pozzo caldo per evitare fenomeni di cavitazione nella pompa;
- 11. Una stima dei pesi dei fasci tubieri, delle griglie e della cassa giustificando le scelte tecnologiche contenute nella figura 3 e relative alle piastre tubiere.

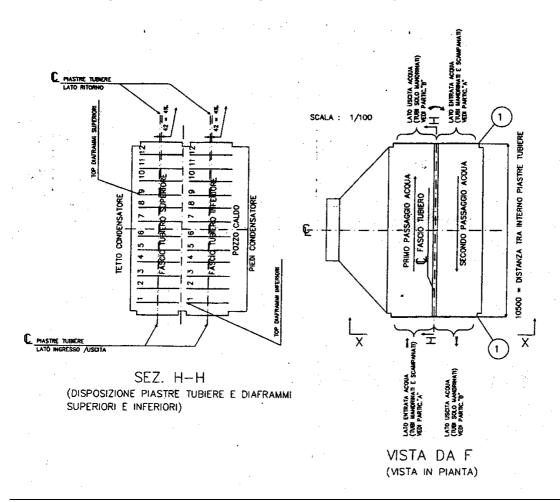


Fig. 1 Vista in pianta e sezione del condensatore

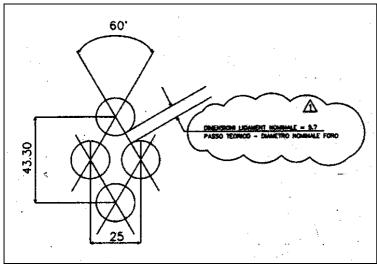


Fig. 2 Disposizione dei tubi nel condensatore

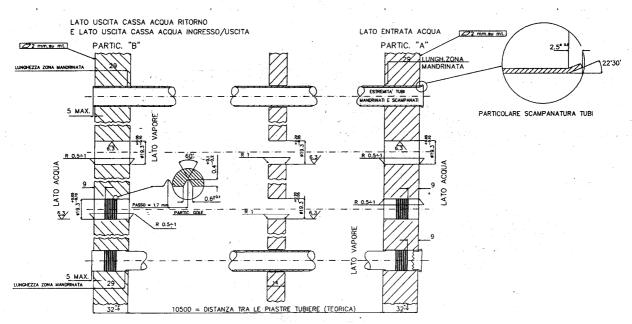


Fig. 3 Dati di riferimento per la costruzione delle piastre tubiere.

Allegati: alcuni dati di riferimento

Proprietà termodinamiche dell'acqua alla saturazione

Temperature	Pressure	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
		Density	Density	Enthalpy	Enthalpy	Entropy	Entropy	Ср	Ср
(°C)	(bar)	(kg/m³)	(kg/m³)	(kJ/kg)	(kJ/kg)	(kJ/kg-	(kJ/kg-	(kJ/kg-	(kJ/kg-
(C)	(bar)	(Kg/III)	(Kg/III)	(KJ/Kg)	(KJ/Kg)	K)	K)	K)	K)
30.000	0.042470	995.61	0.030415	125.73	2555.5	0.43675	8.4520	4.1801	1.9180
32.000	0.047596	994.99	0.033868	134.09	2559.2	0.46424	8.4113	4.1798	1.9206
36.000	0.059479	993.64	0.041790	150.81	2566.3	0.51867	8.3321	4.1795	1.9259
38.000	0.066328	992.92	0.046311	159.17	2569.9	0.54562	8.2935	4.1795	1.9286
40.000	0.073849	992.18	0.051242	167.53	2573.5	0.57240	8.2555	4.1796	1.9314
42.000	0.082096	991.40	0.056614	175.89	2577.1	0.59901	8.2182	4.1799	1.9343
44.000	0.091124	990.59	0.062457	184.25	2580.6	0.62545	8.1815	4.1802	1.9373
46.000	0.10099	989.75	0.068803	192.62	2584.2	0.65173	8.1453	4.1806	1.9403
48.000	0.11177	988.89	0.075688	200.98	2587.8	0.67785	8.1098	4.1810	1.9435
50.000	0.12352	988.00	0.083147	209.34	2591.3	0.70381	8.0748	4.1815	1.9468
52.000	0.13631	987.08	0.091217	217.71	2594.8	0.72961	8.0404	4.1821	1.9501
53.000	0.14312	986.61	0.095494	221.89	2596.6	0.74245	8.0234	4.1825	1.9518
54.000	0.15022	986.14	0.099938	226.07	2598.3	0.75526	8.0066	4.1828	1.9536
55.000	0.15762	985.66	0.10456	230.26	2600.1	0.76802	7.9898	4.1831	1.9554

Proprietà di trasporto

Temperature	Pressure	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
_		Density	Density	Therm.	Therm.	Viscosity	Viscosity
			-	Cond.	Cond		
(°C)	(bar)	(kg/m³)	(kg/m³)	(mW/m-	(mW/m-	(µPa-s)	(µPa-s)
				K)	K)		
30.000	0.042470	995.61	0.030415	615.46	18.887	797.36	10.010
32.000	0.047596	994.99	0.033868	618.65	19.025	764.56	10.069
36.000	0.059479	993.64	0.041790	624.79	19.307	705.19	10.187
38.000	0.066328	992.92	0.046311	627.73	19.452	678.26	10.247
40.000	0.073849	992.18	0.051242	630.58	19.599	652.97	10.308
42.000	0.082096	991.40	0.056614	633.35	19.747	629.18	10.368
44.000	0.091124	990.59	0.062457	636.04	19.898	606.77	10.430
46.000	0.10099	989.75	0.068803	638.63	20.052	585.64	10.492
48.000	0.11177	988.89	0.075688	641.14	20.207	565.69	10.554
50.000	0.12352	988.00	0.083147	643.55	20.365	546.83	10.616
52.000	0.13631	987.08	0.091217	645.88	20.525	528.99	10.679
53.000	0.14312	986.61	0.095494	647.02	20.605	520.42	10.711
54.000	0.15022	986.14	0.099938	648.13	20.687	512.08	10.743
55.000	0.15762	985.66	0.10456	649.22	20.769	503.96	10.774

4/6

Proprietà termodinamiche e di trasporto dell'acqua in fase liquida

Temperature	Pressure	Density	Enthalpy	Entropy	Ср
(°C)	(bar)	(kg/m³)	(kJ/kg)	(kJ/kg-K)	(kJ/kg-K)
38.000	3.0000	993.05	159.43	0.54551	4.1788
40.000	3.0000	992.30	167.79	0.57229	4.1789
45.000	3.0000	990.30	188.69	0.63849	4.1797
48.000	3.0000	989.01	201.23	0.67772	4.1803
50.000	3.0000	988.12	209.59	0.70368	4.1809
52.000	3.0000	987.20	217.95	0.72947	4.1815
53.000	3.0000	986.74	222.13	0.74231	4.1818

Temperature	Pressure	Density	Therm. Cond	Viscosity
(°C)	(bar)	(kg/m³)	(mW/m-K)	(µPa-s)
38.000	3.0000	993.05	627.86	678.28
45.000	3.0000	990.30	637.48	596.09
48.000	3.0000	989.01	641.27	565.74
50.000	3.0000	988.12	643.69	546.88
52.000	3.0000	987.20	646.02	529.04
53.000	3.0000	986.74	647.15	520.47

Scambio termico in regime di condensazione all'esterno di tubi orizzontali:

Correlazione di Nusselt : vapore stagnante

$$Nu = \frac{\alpha_1 D}{\lambda} = 0.725 \left[\frac{\rho_l D^3 (\rho_l - \rho_g) g \Delta h}{\lambda \eta (T_{sat} - T_w)} \right]^{1/4}$$

dove:

 α_1 coefficiente di scambio termico

D diametro esterno condotto

λ conducibilità termica fluido

g accelerazione di gravità

Δh calore di vaporizzazione

η viscosità dinamica del liquido

Tw temperatura della parete

T_{sat} temperatura di saturazione.

Per tener conto dell'effetto del numero delle file verticali N, il coefficiente di scambio termico medio è stimato con la:

$$\alpha = \alpha_1 N^{-1/6}$$

Effetto della velocità del vapore sul coefficiente di scambio termico

$$Nu = K(\chi^4 \text{ Re}^2 + Nu_f^4)^{1/4}$$

dove:

K=1 per tubi a quinconce

K=0.8 tubi in linea

$$Nu_f^4 = 0.276 \left[\frac{D^3 \rho_l (\rho_l - \rho_g) g \Delta h}{\eta \lambda (T_{sat} - T_w)} \right]$$

$$\chi = 0.9 \left(1 + \frac{1}{RH}\right)^{1/3}$$

$$R = \sqrt{\frac{\rho_l \eta_l}{\rho_g \eta_g}}$$

$$H = \frac{c_{pl} \left(T_{sat} - T_{w} \right)}{\Pr_{l} \Delta h}$$

Re Numero di Reynolds modificato basato sulla portata specifica G associata alla sezione trasversale totale del fascio calcolata senza tener conto dell'ingombro dei tubi e calcolato con la relazione:

$$Re = \frac{DG}{\eta_g} \frac{\rho_l}{\rho_g}$$