
POLITECNICO DI TORINO ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI ING. CIVILE-AMBIENTALE I Sessione 2012 - Sezione A Settore Civile-Ambientale

Classe 28/S – Ingegneria Civile / Civile per la gestione delle acque Prova pratica del 20 luglio 2012

Sulla base dello schema in figura, si effettui il dimensionamento della fognatura bianca ivi schematizzata tenendo conto dell'effetto di invaso generato dalla rete.

Le caratteristiche dei singoli tronchi sono le seguenti:

- ✓ Tronco A: L (3-1) = (15 + 7,50) m; If=0,5%; coeff di deflusso area di influenza ϕ =0,85
- √ Tronco B; L (2-1) = (25.70 + 15) m; If=0.5%; coeff di deflusso area di influenza di =0.84
- ✓ Tronco C: L (1-0) = (5 + 30) m; If=1%; coeff di deflusso area di influenza ф =0,84
- ✓ Tronco D: L (4-0) = 26 m; If = 1%; coeff di deflusso area di influenza ф =0,84
- ✓ Per la definizione della pluviometria si faccia riferimento ad una curva di possibilità pluviometrica di parametri a=30,38 e n=0,306.
- ✓ Per il dimensionamento, ipotizzato un grado di riempimento pari a y/D = 0,5, delle condotte si assumano:
 - parametro ku del coefficiente udometrico pari a 1670 l/s ha.
 - coefficiente di scabrezza Gauler-Strickler per la tubazione pari a 90 m^{1/3} s⁻¹.
 - contributo dei piccoli invasi pari a 50 m³/ha;

Sulla base delle informazioni fornite, il candidato:

- 1) Per ogni tronco determini la massima portata pluviale.
- 2) Effettui il dimensionamento ipotizzando invaso proprio nullo alla prima iterazione e non procedendo in ogni caso oltre la terza iterazione di calcolo.
- 3) Compili una relazione tecnica-illustrativa.
- 4) Indichi una sezione tipo indicando il tipo di tubazione (materiale) e specifiche tecniche di posa e realizzazione.
- 5) Il candidato ipotizzi che il punto di recepimento nel collettore principale sia rigurgitato da valle. Descriva una possibile soluzione tecnica atta a garantire lo scarico senza escludere la possibilità di rivedere il progetto agendo sulle pendenze inizialmente assegnate.

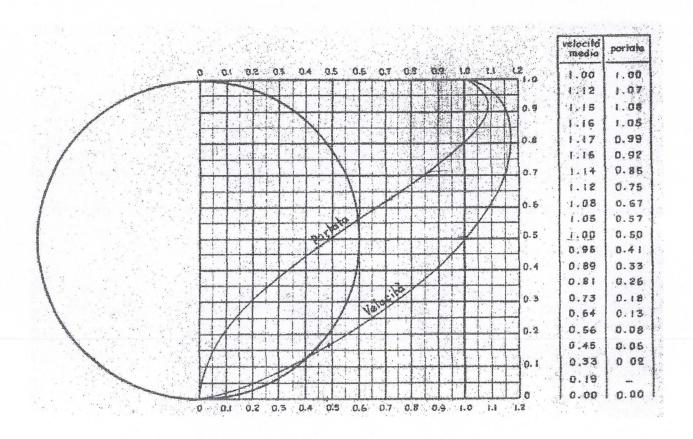
Allegato 1 al tema n. 2

Velocità e portate specifiche a sezione piena

$$V/\sqrt{i} = K_s R^{2/3}$$

$$V/\sqrt{i} = K_s R^{2/3}$$
 $Q/\sqrt{i} = A K_s R^{2/3}$ $K_s = 90 m^{1/3} s^{-1}$

$$K_s = 90 \text{ m}^{1/3} \text{ s}^{-1}$$


Sezione circolare

Diametro D	Sezione bagnata A	Contorno bagnato P	Raggio idraulico R	V/ √i	Q/√i
mm	m²	m	m	m s ⁻¹	m ³ s ⁻¹
300	0,0707	0,9425	0,0750	13,69	0,968
350	0,0962	1,0996	0,0875	15,18	1,460
400	0,1257	1,2566	0,1000	16,59	2,085
450	0,1590	1,4137	0,1125	17,95	2,854
500	0,1963	1,5708	0,1250	19,25	3,779
550	0,2376	1,7279	0,1375	20,51	4,873
600	0,2827	1,885	0,1500	21,74	6,145
650	0,3318	2,0420	0,1625	22,93	7,608
700	0,3848	2,1991	0,1750	24,10	9,270
750	0,4418	2,3562	0,1875	25,23	11,143
800	0,5027	2,5133	0,2000	26,33	13,235
900	0,6362	2,8274	0,2250	28,49	18,120
1000	0,7854	3,1416	0,2500	30,56	23,996
1100	0,9503	3,4558	0,2750	32,57	30,963
1200	1,1310	3,7699	0,3000	34,49	39,000
1300	1,3273	4,0841	0,3250	36,40	48,310
1400	1,5394	4,3982	0,3500	38,23	58,819
1500	1,7671	4,7124	0,3750	40,04	70,754
2000	3,1416	6.2832	0,5000	48,51	152,378

Allegato 2 al tema n. 2

Sezione circolare

Velocità e portate in frazione delle velocità e portate a sezione piena assunte come unità

