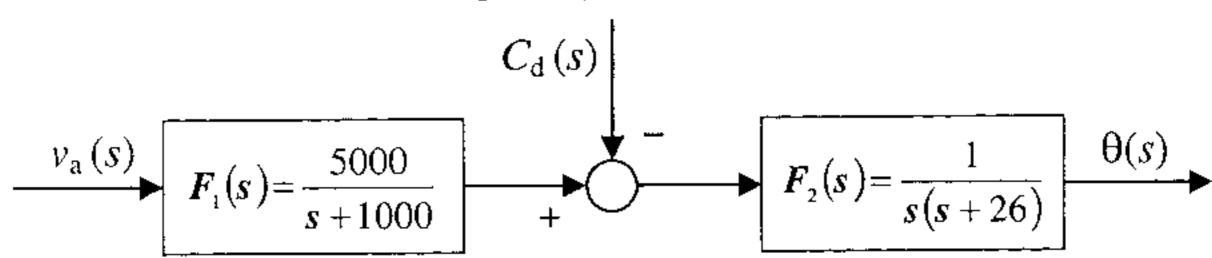
Esame di stato per l'abilitazione all'esercizio della professione di Ingegnere – I sessione, anno 2003


Sezione B - Settore dell'Informazione

Prova pratica del 25 settembre 2003 – Tema n. 💆

Si consideri un motore elettrico in corrente continua, avente come comando la tensione d'armatura v_a e come uscita (ossia variabile da controllare) la posizione angolare θ dell'albero. Siano: L_a ed R_a l'induttanza e la resistenza equivalente del circuito d'armatura; J il momento d'inerzia dell'albero; β il coefficiente di attrito viscoso complessivo del motore; K_m la costante caratteristica del motore, che lega la coppia motrice C_m alla corrente di armatura i_a , nonché la forza elettromotrice indotta e alla velocità angolare ω ; C_d la coppia di disturbo agente sull'albero. I valori numerici dei parametri sono: $L_a = 10^{-3}$ H, $R_a = 1 \Omega$, J = 1 N m s² / rad, $\beta = 1$ kg / m / s, $K_m = C_m$ / $i_a = e$ / $\omega = 5$ N m / A.

- A) Determinare, in forma sia letterale sia numerica, il modello in variabili di stato del sistema, specificando quali sono i vettori d'ingresso, stato ed uscita adottati.
- B) Determinare, semplicemente in forma numerica, le funzioni di trasferimento $F(s) = \theta(s) / v_a(s)$ e $F_d(s) = \theta(s) / C_d(s)$.
- C) È possibile progettare un opportuno dispositivo di controllo in grado di stabilizzare asintoticamente il sistema, supponendo di avere a disposizione la misura di tutte le variabili di stato? Motivare adeguatamente la risposta e, in caso affermativo, precisare la struttura del dispositivo di controllo mediante uno schema a blocchi "di principio", scriverne esplicitamente le equazioni e progettarlo in modo tale da assicurare una soddisfacente risposta del sistema controllato ad un riferimento a gradino unitario, in assenza del disturbo C_d .

Per le domande successive, si consideri per semplicità il seguente schema a blocchi del sistema:

Si assuma, sempre per semplicità, che il trasduttore utilizzato per misurare la posizione angolare θ abbia funzione di trasferimento ridotta ad una semplice costante di proporzionalità $K_t = 1 \text{ V}$ / rad.

- D) Discutere la possibilità di garantire l'asintotica stabilità del sistema ad anello chiuso (con retroazione negativa unitaria) mediante un controllore in cascata puramente proporzionale K_c , ove K_c può assumere qualsiasi valore reale compreso tra $-\infty$ e $+\infty$.
- E) Progettare un sistema di controllo in retroazione della posizione angolare θ dell'albero, per mezzo di un controllore in cascata da realizzarsi con tecnologia analogica, tale da soddisfare le seguenti specifiche:
 - l'errore di inseguimento ad un riferimento costante sia nullo in regime permanente, in assenza del disturbo C_d ;
 - l'errore di inseguimento ad un riferimento a rampa $r(t) \approx \rho t$ sia inferiore o uguale in modulo a 0.01ρ in regime permanente, in assenza del disturbo C_d ;
 - l'effetto sull'uscita θ del disturbo costante $C_d = 0.1$ N m sia non superiore in modulo a 10^{-5} rad in regime permanente;
 - il tempo di salita della risposta ad un riferimento a gradino unitario sia inferiore o uguale a 0.02 s, in assenza del disturbo C_d ;
 - la sovraelongazione massima della risposta ad un riferimento a gradino unitario sia non superiore al 15%, in assenza del disturbo C_d .

Analizzare le proprietà del sistema ad anello chiuso ottenuto, mettendone in evidenza (oltre al soddisfacimento delle specifiche imposte, compatibilmente con i mezzi di calcolo a disposizione) le caratteristiche ritenute più rilevanti.