POLITECNICO DI TORINO

ESAMI DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE JUNIOR

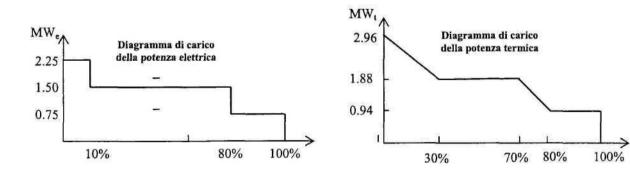
SEZB-ANNO 2006

Settore INDUSTRIALE - Ingegneria Energetica

TEMA N. 6

(Terza Prova)

18 Luglio 2006


Si consideri uno stabilimento industriale in cui è impiegata energia elettrica per usi tecnologici ed acqua calda per riscaldamento ambientale ed utilizzo sanitario. I fabbisogni sono deducibili dai diagrammi di carico delle potenze elettriche e termiche riportati su base annuale.

Per la copertura dei fabbisogni energetici, si è scelto di realizzare un impianto cogenerativo con motori primi che utilizzano gas naturale, con l'aggiunta di un generatore di calore per i carichi termici di punta, o quelli eventualmente non coperti attraverso la cogenerazione. Per il progetto dell'impianto è possibile fare riferimento ad un eventuale contratto di scambio con il fornitore di energia elettrica (prelievo e/o cessione di energia in tempi diversi).

Il recupero termico su ogni motore è realizzato attraverso un circuito ad acqua surriscaldata alla temperatura di 120 °C, con salto termico di 10 °C sul primario dello scambiatore, mentre il circuito secondario, non in pressione, è allacciato alla rete ad acqua calda di stabilimento (80 °C, salto termico 15 °C).

La seguente tabella riporta i principali dati nominali di funzionamento di motori primi commerciali, per alcune taglie diverse.

Potenza elettrica (kW)	311	509	601	801	1003
Potenza termica recuperata (kW)	425	658	743	1000	1251
Consumo di combustibile (Nm³/h)	89	142	162	216	270
Rendimento in cogenerazione (%)	86.1	85.6	86.4	86.9	86.9

In base ai dati e alle indicazioni fornite, si chiede di organizzare in forma sintetica e soprattutto chiara una relazione di calcolo che risponda alle seguenti richieste.

- 1. Definire la taglia dei motori primi;
- 2. Definire la taglia del generatore di calore ausiliario;
- 3. Per lo scambiatore adibito al recupero termico su ogni motore, stabilire l'efficienza ed il numero di unità di trasporto richieste;
- 4. Tracciare lo schema di massima dell'impianto, indicando i componenti principali, la connessione alla rete termica di stabilimento, ed il circuito di dissipazione;
- 5. Stimare, separatamente su base annuale, i consumi di combustibile per i motori primi ed il generatore di calore, la cessione ed il prelievo di energia elettrica dalla rete.