Esame di Stato – I Sessione 2008 Sezione B (laurea triennale o diploma) Settore Industriale junior – Ingegneria Meccanica Prova pratica

Si chiede di studiare il comportamento dinamico di un autoveicolo durante una fase di moto in pianura e una fase di frenatura in discesa. Sono assegnati:

massa complessiva:	M= 1365 kg	passo:	p= 2,51 m
posizione del baricentro rispetto all'assale anteriore:	$x_G = 1,15 \text{ m}$	diametro delle ruote:	d=0,60 m
altezza del baricentro rispetto al piano della strada:	h= 0,75 m	densità dell'aria:	$\rho = 1,225 \text{ kg/m}^3$
coefficiente di resistenza aerodinamica:	$c_r = 0.47$	sezione frontale del veicolo:	$A=1,6 \text{ m}^2$
parametro di attrito volvente	$u = u_{v0} + u_v V^2$	$u_{v0} = 18,4 \cdot 10^{-3} \text{ m};$	$u_v = 4.8 \cdot 10^{-6} \text{ s}^2/\text{m}$
momento di inerzia di ciascuna ruota:	$I=0,65 \text{ kg m}^2$	coefficiente di aderenza ruota-terreno:	f_a =0,5
pendenza della strada (da utilizzare nella fase di frenatura):	<i>i</i> =8%	coefficiente dio attrito ruotaterreno:	f =0,4
rapporto di trasmissione del cambio in I marcia:	$\tau_I = 1/3,875$	coppia massima del motore:	C _{MAX} = 102 Nm (a 3000 giri/min)
rapporto di trasmissione al ponte:	$\tau_p = 0.249$	potenza massima del motore:	P _{MAX} = 48 kW (a 5500 giri/min)
rendimento del cambio di velocità:	η_c =0,96	rendimento del ponte:	$\eta_p = 0.94$

La caratteristica meccanica del motore (coppia-velocità angolare), nel campo di funzionamento tra la coppia massima e la potenza massima, può essere ben approssimata da una retta. Il cambio di velocità dell'automobile è del tipo a contralbero a 5 rapporti, per trazione convenzionale (posteriore) con V marcia in presa diretta. I rapporti di trasmissione del cambio formano una progressione geometrica.

Calcoli relativi alla trasmissione:

- 1. Determinare i rapporti di trasmissione del cambio (τ_I , τ_{II} , τ_{III} , τ_{IV} , τ_{V});
- 2. Le velocità massime raggiungibili dall'autoveicolo alle varie marce.

Fase di moto in rettilineo in pianura:

- 3. Determinare la velocità di avanzamento del veicolo a regime quando nel cambio è inserita la IV marcia (τ_{IV});
- 4. la coppia motrice necessaria a far avanzare il veicolo nelle condizioni del punto precedente;
- 5. "l'aderenza impegnata" sulle ruote anteriori e posteriori e il margine % rispetto all'aderenza limite.

Fase di moto in frenatura in discesa:

Il veicolo effettua una manovra di frenatura in discesa quando avanza alla velocità iniziale di V = 70 km/h. Trascurando durante tale fase la resistenza aerodinamica dell'aria e l'attrito volvente, determinare:

- 6. il valore della coppia frenante (uguale su tutte le ruote) per arrestare il veicolo in uno spazio s = 55 m e il valore minimo del coefficiente di aderenza ruote-terreno per evitare lo slittamento;
- 7. la decelerazione e lo spazio di frenata effettivo del veicolo (f_a =0,5, f=0,4).