

COSTRUZIONI

CIVILI, STRADALI ED IDRAULICHE

LAVORO AD USO

degl'Ingegneri, degli Architetti, dei Periti in costruzione
e di quanti si trovano applicati alla direzione ed alla sorveglianza di costruzioni
civili, stradali ed idrauliche

UTILE

agli studenti delle scuole d'applicazione per gl'Ingegneri e dei corsi tecnici pei Periti in costruzione

PER

CURIONI GIOVANNI

Ingegnere, Architetto e Dottore aggregato al Collegio della Facoltà di scienze fisiche e matematiche della R. Università di Torino, Professore di costruzioni civili, stradali ed idrauliche nella R. Senota l'applicazione per gli Ingegneri di Torino, Membro ordinario residente della Società Reale d'agricoltura, adustria e commercio, Membro effettivo residente della Società degli Ingegne de degli Indestrali di Torino, e Socio onorario dell'Associazione di Conferenze di Matematiche pure ed applicate di Napoli.

TORINO

Presso AUGUSTO FEDERICO NEGRO, Editore

1870

Nei cinque volumi che già vennero pubblicati sull'arte di fabbricare, trovansi esposte: le norme che conducono alla rappresentazione di una parte più o meno estesa di terreno, il quale deve essere modificato a seconda delle esigenze di costruzioni che sovr'esso si vogliono eseguire; le osservazioni ed i procedimenti che conducono a conoscere i pregi, i difetti ed i valori di quei materiali, che i costruttori impiegano nell'esecuzione dei loro lavori; quelle opere principali che si possono riguardare siccome gli elementi di cui si compongono tutte le costruzioni civili, stradali ed idrauliche, non che le regole che posson, guidare nella ricerca dei loro prezzi; le dottrine relative allo studio della resistenza dei materiali e della stabilità delle costruzioni, onde porsi in grado di assegnare forme e dimensioni convenienti alle diverse parti resistenti che in esse avviene di dover considerare; e finalmente le operazioni di geometria pratica relative al tracciamento di allineamenti e di linee curve, ed alla misura di quelle lunghezze, di quelle superficie e di quei volumi che il costruttore deve saper calcolare per giungere a poter stabilire in quantitativo e prezzo l'entità dei suoi lavori. Questo sesto volume è destinato a dare le norme che devono guidare gli ingegneri nella compilazione dei loro progetti, e gli argomenti in esso svolti trovansi ripartiti in tre distinte parti.

La prima parte si raggira sul complesso di quelle norme che gli architetti devono avere presenti, per ottenere edifizii civili aventi in tutto quelle forme e quelle dimensioni che meglio si addicono alle loro esigenze ed alla loro stabilità; e quindi, dopo alcune nozioni generali sulle costruzioni civili, si parla delle loro fondazioni, dei sotterranei, dei muri e degli archi costituenti la loro ossatura, delle coperture, e di tutte quelle particolarità che chiamano l'attenzione e che vengono affidate alla direzione ed alla sorveglianza del costruttore. La seconda parte contiene un'esposizione dei precetti che devono servire di guida nel dare i progetti di tutte le costruzioni stradali e delle opere d'arte ad esse inerenti; per cui, premesse le nozioni più generali sui tracciamenti, sulla forma, sulle dimensioni e sulle pendenze delle strade, si danno le norme per redigere i progetti dei muri di sostegno, delle gallerie, dei ponticelli, dei ponti e dei viadotti. La terza parte è un riassunto di tutte quelle pratiche cognizioni che perfettamente devono essere conosciute da quanti vogliono applicarsi alla compilazione di progetti di canali e delle opere d'arte ad essi relative, cosicchè in seguito ad alcune generalità sui tracciamenti, sulle forme e sulle dimensioni dei canali, si viene a parlare degli argini, delle dighe, dei derivatori, degli scaricatori, delle conche, degli acquedotti, delle tombe e dei sifoni.

G. CURIONI.

PARTE PRIMA

COSTRUZIONI CIVILI.

CAPITOLO I.

Nozioni generali sulle costruzioni civili.

- 1. Principali requisiti di qualsiasi costruzione civile. Tutti gli edifizii, che si considerano siccome costruzioni civili, devono soddisfare a certe esigenze dipendenti dall'indole loro propria, dalle località in cui devono trovarsi, dallo scopo per cui si vogliono costruire; ed in essi non devono mancare i tre requisiti principali di qualsiasi architettonica composizione, la comodità, la solidità e la bellezza.
- 2. Comodità. Un edifica si dice comodo, allorquando trovasi in località salubre, e quand alle diverse parti che lo compongono, disposte conformemente a quanto prescrivono gli usi e le circostanze locali, vennero assegnate forme, dimensioni ed aperture convenienti. La salubrità adunque e la disposizione sono le qualità che concorrono a rendere comodo un edifizio.

Salubrità. La situazione di un edifizio grandemente influisce sulla sua salubrità. Riescono mal situate le costruzioni stabilite su terreni umidi e melmosi, su suoli formati di torba o di sabbia fina, su sollevamenti di terra smossa, di rottami e di immondizie. Le sommità, in cui l'aria riesce troppo viva, del pari che le bassure, in cui l'aria difficilmente si rinnova, si devono evitare; e per quanto è possibile non si deve fabbricare in vallate dove sono continue le nebbie e frequenti le inondazioni. Dovendosi costrurre edifizii in vicinanza del mare o su altipiani elevati, si collocheranno al riparo

dei venti dominanti; e, occorrendo di stabilirsi in vicinanza di località in cui si trovano acque stagnanti, si sceglierà un sito che le domini per altezza non solo, ma anche per posizione relativa ai venti che di consueto vi regnano.

Nelle città s'incontrano generalmente i fabbricati più salubri sulle piazze, lungo le spaziose contrade, lungo le pubbliche passeggiate, e soprattutto nei siti dominanti per rapporto ai venti regnanti; in questi ultimi si godé d'un'aria pura e libera dalle esalazioni che derivano dalle agglomerate abitazioni.

Anche le qualità ed il regime delle acque si devono attentamente studiare prima dello stabilimento di una costruzione civile. È necessario che l'acqua sia atta a soddisfare a tutte le esigenze che derivano dalla natura della costruzione, deve essere sufficientemente abbondante in tutte le epoche e facile ad ottenersi senza molta fatica.

Una volta conosciuta la situazione più conveniente ad un dato edifizio, è necessario di assegnargli una buona esposizione. Quella di mezzogiorno è ritenuta presso di noi siccome la più favorevole alla salubrità; trovasi essa riparata dai venti freddi, e nell'inverno gode vantaggiosamente dei raggi solari, da cui è facile difendersi nell'estate.

La buona situazione e la buona esposizione non bastano per rendere un edifizio salubre, ed importa che esso sia riparato dai danni che vi può apportare l'umidità, la quale può provenire dalla natura del suolo, dalla qualità dei materiali, da vizii di costruzione, e da mancanza di ventilazione. L'umidità è una delle cose più dannose alla salubrità degli abitati ed esercita una potente e rapida azione distruttiva sugli edifizii che infesta. Deve essere massima cura degli architetti di non elevare i loro edifizii in siti ingombri di acquidosità, o almeno di premunirsi prima contro i cattivi effetti che essa potrebbe apportare, di sciegliere buoni materiali, di fare accuratamente eseguire la costruzione e di assicurare alla medesima la necessaria ventilazione. In generale è bene di elevare il piano terreno al disopra del suolo naturale; di stabilire lungo i muri perimetrali dei marciapiedi formati con sostanze impermeabili ed aventi per traverso una certa pendenza, per allontanare facilmente e prontamente le acque dai muri stessi; di elevare il pavimento dei cortili al di sopra di quello delle strade pubbliche, per poter convenientemente dar sfogo alle acque che ricevono, o di costrurre dei condotti sotterranei e degli opportuni smaltitoi; e finalmente, quando tali disposizioni siano per riuscire insufficienti, di ricorrere ad altri mezzi preservatori dall'umido, di cui in seguito si

parlerà.

Disposizione. La disposizione di un edifizio consiste nel collocare le diverse parti nell'ordine più favorevole agli usi cui vogliono essere destinate, nel procacciare a ciascuna di esse i necessarii disimpegni, nel trar partito delle località, nell'assegnare ad ogni cosa le forme e le dimensioni volute, nel combinare il tutto in modo che l'esistenza di un oggetto non crei delle difficoltà per l'esistenza dell'altro. Il conseguimento di una buona disposizione si deve grandemente curare in qualsiasi architettonica composizione, e quantunque le varietà delle circostanze non permettano di stabilire regole sicure, pure non si credono fuori di proposito i seguenti principii generali.

Si cerchi innanzi tutto di conoscere la destinazione dell'edifizio a progettarsi, l'uso dei diversi suoi scompartimenti e, fino ad un certo punto, le forme e le dimensioni più convenienti a ciascuno di essi. Conosciuti così i dati del problem sogna fermarsi a considerare le esigenze del soggetto, le principali divisioni che comporta, l'importanza e lo sviluppo obbligato di ciascuna di esse; in qual ordine si devono presentare; con quali posizioni relative, affinchè, quantunque distinte, pure risultino collegate le une alle altre nella maniera più giudiziosa, più semplice e più soddisfaciente.

Fatto così un primo riparto, si dovrà pensare alle distribuzioni parziali delle singole parti con esso ottenute. Vi sono uno o più scompartimenti, ai quali devono essere subordinati altri secondarii, in numero più o meno grande? L'assegnare ai primi le forme generali e le proporzioni più convenienti alla loro destinazione, e venire in seguito a connettere convenientemente ad essi i secondi è l'ordine più logico. Ogni cosa deve essere disposta in modo che serva come di aiuto alla disposizione di altre che da essa dipendono: per quanto è possibile non si deve generare monotonia, e quindi si deve cercare di porre varietà nella disposizione e nel senso secondo cui si presentano i medesimi scomparti.

Ogni cosa deve concorrere all'unità della composizione; in tutto si cercheranno le forme più veritiere ed insieme le più caratteristiche; le parti più importanti dell'edifizio, gli organi più essenziali del corpo a crearsi si manifesteranno al di fuori, sia per la loro posizione, sia per eccedenza d'altezza, sia per risalti, e si distaccheranno dal resto della composizione senza troppo accusare i dettagli per non cadere nella confusione. I contrasti tornano generalmente utili, se non sono troppo ricercati ed esagerati; la varietà,

quando è razionale, quando ha delle serie ragioni di essere, è giovevole e contribuisce molto al carattere del lavoro; nulla però deve sembrare lasciato all'azzardo; ogni cosa deve mostrarsi come giudiziosamente stabilita a seconda dei bisogni a soddisfarsi e dell'effetto a prodursi.

Fatto questo, importa di entrare nei dettagli e di stabilire il tutto con regolarità e precisione. I diversi scompartimenti dovranno essere messi in comunicazione con entrate principali ben marcate, e con disimpegni bene studiati: con ogni diligenza si dovrà ricercare dove torna conveniente di aprire le porte e le finestre, in qual numero e con quali dimensioni.

Nè basta il sin qui detto a conseguire una buona disposizione: molte circostanze esteriori possono influire sul merito della composizione, ed il trascurarle potrebbe indurre in gravi errori. Importa aver riguardo alla posizione che avrà l'edifizio rispetto a quella dei punti da cui potrà essere visto e giudicato. Le forme accidentate, convenienti a quelle costruzioni che liberamente si possono sviluppare e a cui trovansi aperte lunghe prospettive, male si adattano a edifizii posti nell'interno di città e in uno spa zio limitato. Una distribuzione, eccellente per un edifizio posto inpianura, può riuscire cattiva quando essa trovasi in alto. L'architetto intelligente deve saper disporre ogni cosa e calcolarne gli effetti in correlazione delle strade, delle piazze, delle passeggiate, dei corsi d'acqua e di qualsiasi altra circostanza influente sul modo di presentarsi della fabbrica. Infine, anche ai diversi membri importerà di dare questa anzi che l'altra esposizione, di assegnare il tal punto di vista; e sarà vizioso quel progetto che non soddisfa a tutte le esigenze.

Anche il sistema di costruzione, considerato sotto il punto di vista più generale, solleva delle importanti quistioni relative alla disposizione. L'edifizio sarà esso coperto a vôlta per intero o solo in parte? Quale dovrà essere la disposizione delle vôlte, quale quella dei soffitti e dei punti di appoggio? I portici saranno con colonne o con pilastri? Le sale a grandi dimensioni dovranno presentare dei pilastri intermedii? Tutte queste quistioni dipendono dalla natura dell'edifizio, ed è qui impossibile di poter rispondere in modo assoluto; e solo si può dire essere più convenienti le vôlte negli edifizii di gran durata e che devono presentare un carattere monumentale, e dover esse presentare disposizioni tali che le divisioni stesse, le quali sono richieste dalle destinazioni dei

diversi membri, siano i punti d'appoggio i meglio disposti per la solidità.

Tali sono i criterii generali che possono guidare nella disposizione da assegnarsi ad un edifizio qualunque. È però cosa essenziale di avvertire che la disposizione, oltre di essere intieramente conforme a quanto reclamano i bisogni materiali, deve anche soddisfare alle esigenze non meno imperiose e non meno legittime del nostro spirito. Segue da ciò che ben difficilmente l'architetto s'attiene all'ordine logico qui sopra esposto, nel disporre le sue composizioni: il concetto artistico è per lui dominante e naturalmente è attratto a procedere per via d'intuizione quasi spontanea. Guidato da un sentimento più o meno netto delle esigenze della composizione, si abbandona alla sua immaginazione che inspirata gli presenta, dopo un certo sforzo, una forma generale, la cui bellezza lo seduce, e che in seguito ritiene definitivamente o modifica o ricusa totalmente secondo che, mettendola in confronto colle esigenze del quesito, la trova in tutto o in parte o per nessun titolo conveniente.

5. Solidità. — Se consideransi gli avanzi dei vetusti monumenti dell'India, dell'Egitto, dell'Asia minore, della Grecia eroica, sempre trovansi colossali dimensioni, materiali resistenti, disposizioni favorevoli alla stabilità, colonne robuste, muri di grande spessezza, proporzioni brevi, basamenti larghi. Il carattere dominante in quelle costruzioni doveva essere quello di una solidità a tutta prova; tutto manifesta, aver voluto i popoli creatori di quelle meraviglie tramandare le loro opere alla più rimota posterità, ed essere nella forza il più gran merito dell'architettura di quei tempi.

I moderni costruttori, più abili e più addottrinati degli antichi, cercano di evitare gli eccessi, ed hanno l'abitudine di mostrarsi più arditi. Ai nostri tempi non si vogliono sacrificare somme ingenti in materiali che rimangono inerti ed in opere che vanno perdute. Ben si sa che monumenti anche capaci di sfidare le ingiurie dei tempi, non si potrebbero riparare da quelle degli uomini; che i nomi veramente illustri sopravvivono ai monumenti più solidi; che a tramandare i grandi avvenimenti valgono le storie assai più di quanto può fare l'architetto coi suoi graniti e coi suoi marmi.

Anche le condizioni sociali tendono ad allontanarci dalla solidità eccessiva. Oltre le costruzioni destinate a risvegliare i sentimenti di religione, si richiedono dalle moderne ed incivilite società tutte quelle che sono dirette ad aumentare il benessere delle popola-

zioni, a sollevare i miseri, a favorire lo svolgimento intellettuale degli individui; quelle valevoli a dar maggior estensione alle relazioni commerciali ed industriali e ad aggiungere nuove ricchezze alle singole nazioni. Lo spirito delle antiche costruzioni era ben diverso dello spirito delle costruzioni moderne; quelle tendevano a manifestare un'opulenta grandezza, queste invece hanno per impronta il sociale benessere e l'universale vantaggio; quelle erano in piccolo numero e quasi tutte della stessa natura, queste invece sono innumerevoli e di natura diversa; per quelle si poteva abbondare in solidità, per queste è indispensabile attenersi al necessario, se pur non sì vuole che lo spreco di denaro in una costruzione non importi l'impossibilità di un'altra.

Nei moderni edifizii si deve porre quel grado di solidità che è necessario per assicurare una durata in armonia colla loro destinazione. L'architetto deve rendersi il più stretto conto delle esigenze tutte, e col medesimo scrupolo deve evitare l'insufficienza e l'esagerazione, conformandosi in tutto alle prescrizioni di una giusta economia, che sempre vuole quanto è necessario, e ricusa quanto è superfluo. In generale si può ritenere che ad una privata abitazione non si deve dare quel grado di resistenza che può convenire ad un edifizio di pubblica utilità. Le costruzioni pubbliche devono primeggiare sulle private in robustezza ed in grandiosità. L'ossatura dell'intiera costruzione deve essere ben combinata, stabilita nella maniera la più semplice, la più razionale; e gli elementi che la compongono, oltre di presentare isolatamente la voluta solidità, devono risultare in posizioni relative tali da essere le più favorevoli.

Per quanto concerne ai materiali da costruzione, deve l'architetto star fermo nell'ammettere solo i buoni e con forme convenienti alla solidità ed alla bellezza, deve avere un giusto criterio nel ripartirli, deve attentamente vigilare affinchè vengano messi in opera con tutta la cura possibile. Lo scegliere questo o quest'altro materiale dipenderà esclusivamente dalle risorse locali: dove si hanno ricche cave di pietre da taglio, e dove il lavoro costa poco, sarà bene costrurre i muri con tali pietre; dove scarseggiano le pietre da taglio si avrà ricorso ai mattoni ed al pietrame. In siti vicini a ricche foreste può tornare utile il legname in molte costruzioni, e in altri in cui abbonda il ferro se ne può vantaggiosamente trar partito.

L'essere convenientemente solida, è condizione essenziale di qualsiasi architettonica combinazione e, anche dal lato artistico, è importante di provare essersi soddisfatto a quest'importante condizione. L'architetto deve porre ogni cura per ottenere ogni cosa in modo da non urtare colle idee fondamentali di solidità; nessuna parte robusta sembri sopportata da una più debole; si presentino come più resistenti quelle parti della costruzione che si manifestano soggette alle pressioni maggiori ed esposte alle più potenti cause di distruzione. Il debole che contrasta col forte può attirare l'attenzione ed eccitare le meraviglie, ma il buon gusto lo riprova: l'ardimento nelle costruzioni può avere del merito, ma la temerità conduce sempre a cattive conseguenze.

4. Bellezza. - Un edifizio, ben distribuito, colle diverse sue parti aventi forme e dimensioni convenienti alla loro destinazione, coi materiali da costruzione giudiziosamente ripartiti, manifestante all'esterno l'interna sua composizione, fa provare quella piacevole sensazione che ha il privilegio di produrre la vista del bello. Un edifizio, che mostri una viziosa disposizione, una malintesa ripartizione nei materiali, una dubbia solidità, si stima come non soddisfacente allo scopo per cui venne elevato, e, per eleganti che siano i contorni, per brillante che sia la decorazione, produce sull'animo nostro una cattiva sensazione, perchè giudichiamo di avere sott'occhio lo spettacolo del male. Le forme, che risultano dalle convenienze, dagli usi e dalla necessaria solidità, concorrono adunque a rendere bello un edifizio, e quindi, per quanto è possibile, importa di metterle in evidenza. Esse determinano un'espressione vera, indipendente da ogni convenzione, cioè il carattere generale che conviene all'edifizio, e, siccome tutte sono il risultato di un medesimo assieme di dati, contribuiscono grandemente all'unità ed all'armonia.

Non bisogna però credere che sia stretto obbligo di mettere in evidenza, nella forma di un edifizio, quanto può essere necessario agli usi ed alla solidità della costruzione: l'utile non è giammai così assoluto nelle sue esigenze da non ammettere diverse soluzioni; e sta all'architetto di saper profittare di questa latitudine, per introdurre nelle sue composizioni altre sorgenti di bellezza, e sopratutto l'ordine e la semplicità.

Un edifizio è ordinato e semplice quando, presentando una comoda disposizione ed una facile costruzione, permette di distinguere senza fatica le diverse sue parti, di riconoscere con facilità le loro relazioni, e di apprezzarne le ragioni che le motivarono. L'ordine è una dote che grandemente contribuisce alla unità degli architettonici lavori; esso è come un testimonio delle cure avute nel loro stabilimento e prova che nulla venne posto a caso. La semplicità poi è un merito in quanto cerca di allontanare le complicate relazioni che potrebbero riuscire difficili e talvolta anche inaccessibili alla nostra intelligenza: essa però non è chiamata a dominare; sta al di sotto di quanto impongono le esigenze del soggetto, e se in un dato lavoro importa di avere una legge semplice, è innanzi tutto necessario di averla intelligente.

Giova ancora avvertire che la semplicità e l'ordine non si possono manifestare al medesimo grado in tutti i tempi e in tutti gli edifizii. Ciò che conviene ad una nazione ben incivilita, non può adattarsi ad una nazione poco innoltrata nei progressi della civiltà: una certa costruzione può ammettere un ordine sommo nelle sue parti senza perdere di carattere e d'importanza; un'altra invece mancherebbe di essere vera, e perderebbe di carattere qualora volesse presentare questa qualità nel medesimo grado. L'architetto che compone, deve combinare le cose in modo da riunire contemporaneamente l'ordine alla varietà, la semplicità alla bellezza.

In un edifizio veramente bello, oltre i meriti di utilità, di ordine e di semplicità, che riconosce e di cui giudica la nostra intelligenza, altri ve ne sono di natura più delicata e più sublimi, che il nostro sentimento soltanto può apprezzare e che attribuiscono alla composizione quel carattere di suprema perfezione che è l'essenza del bello, ossia quel bello ideale che dal razionale si distingue in quanto rifugge da ogni descrizione, in quanto non è subordinato a precetti, in quanto nasconde come ci commove, in quanto è l'espressione di una legge di cui non ci è permesso penetrare i misteriosi secreti. Questo bello ideale, dote esclusiva delle opere dei grandi artisti, è quello che anima la composizione; che armonizza le proporzioni già giudiziosamente scelte; che aggiunge espressione, varietà e grazia alle forme già in generale assunte come convenienti, e che, all'unità, derivata dall'aver soddisfatto all'utile, all'ordinato ed al semplice, accoppia quell'unità morale che, con manifestazioni varie, ha il potere di conservare il medesimo carattere.

Non tutti gli edifizii però concedono la medesima latitudine all'architetto di genio. Alcuni, come prigioni, ospedali, abitazioni volgari, trattengono le sue facoltà creatrici fra limiti assai ristretti; altri, come templi, monumenti onorifici, teatri, palazzi, ed in genere tutti quelli che sono destinati a soddisfare ai bisogni dello spirito anzichè a quelli del corpo, lasciano aperto il più vasto campo alla sua immaginazione. Siccome però il bello può variare le sue ma-

nifestazioni all'infinito, a seconda delle convenienze morali del soggetto e del sentimento che le apprezza, ne segue che l'arte deve sempre intervenire in tutte le architettoniche composizioni, e che non si può essa formulare con regole nè apprendere con precetti.

CAPITOLO II.

Fondazioni e sotterranei.

- 5. Fondazioni Le fondazioni per costruzioni civili si eseguiscono colle norme e coi procedimenti che già vennero svolti nella parte pubblicata di questo lavoro sull'arte di fabbricare, al capitolo V del volume intitolato: Lavori generali di architettura civile, stradale ed idraulica. Le fondazioni per escavazioni, intieramente riempite di muratura, si impiegano quando il fondo incompressibile trovasi a piccola profondità sotto il piano di base dei muri dell'edifizio che vuolsi costrurre; e, quando il fondo incompressibile esiste a grande profondità sotto il detto piano, bisogna ricorrere alle fondazioni con pilastri, oppure a quelle con pozzi, e talvolta persino a quelle con palificate. Quando incontrasi un fondo compressibile, se pur non bastano i metodi di costipamento, è giuocoforza impiegare i grandi imbasamenti, gli archi rovesci, i zatteroni di legname, le platee generali di calcestruzzo o di muratura ed i pali a vite. Finalmente, quando incontrasi un terreno attraversato da acque e di natura mobile, si può cercare di prosciugare lo sterro per fondazioni, col metodo dei pozzi e dei fossi di prosciugamento, operando come si è detto nel numero 49 del citato volume, oppure, se il terreno mobile è di natura sabbiosa, si possono applicare i metodi di fondazione su sabbia bollente. Anche le fondazioni mediante pali a vite con spire molto larghe e le fondazioni su platea generale già vennero impiegate nei terreni mobili, e si ottennero generalmente dei plausibili risultati.
- 6. Sotterranei. Chiamansi sotterranei quelle parti degli edifizii civili che totalmente o per la massima parte trovansi sotto terra, e che generalmente vengono destinate all'uso di cantine, di magazzini, di cucine e di officine.

I sotterranei, per quanto è possibile, devono essere asciutti; dovendo servire come cantine, importa che si trovino in tali condizioni da mantenersi la loro temperatura pressochè costante tanto nell'inverno quanto nell'estate, e tra 12 e 14 gradi centigradi; e dovendo servire per cucine e per laboratorii, conviene che siano forniti di tali e tante aperture da ricevere la maggior quantità possibile di luce.

Per rapporto alle dimensioni dei sotterranei nulla si può dire di assoluto. Nelle ordinarie fabbriche per abitazioni civili, le dimensioni orizzontali dei diversi membri componenti i sotterranei derivano da quelle dei piani superiori; mentre nei paesi nei quali viene prodotto molto vino arriva ben di frequente che le dimensioni delle cantine determinano quelle dei piani superiori. In questo ultimo caso si fissa la larghezza dei sotterranei dietro le dimensioni locali delle botti e gli intervalli che devono esistere fra le file delle botti medesime, per la facilità di sorveglianza e la comodità del servizio, in modo che non siavi terreno perduto e che le corde delle vôlte dei sotterranei non risultino troppo grandi. In quanto all'altezza dei sotterranei, varia essa generalmente fra metri 3,50 e 5,00 compresa la spessezza dei vôlti e dei pavimenti del piano superiore; ed è da ritenersi che le altezze prossime al maggiore degli indicati limiti convengono principalmente per quei sotterranei destinati ad officine ed in cui un gran numero di persone deve continuamente lavorare.

7. Muri dei sotterranei. — I muri dei sotterranei devono sempre avere grossezze un po' maggiori di quelle dei muri corrispondenti del piano terreno, ed in ogni caso queste grossezze devono essere tali che, indicando con

T" il peso dell'intiero fabbricato esistente al di sopra del piano orizzontale costituente la base dei muri dei sotterranei sulle fondazioni,

Ω la superficie di questa base, n'' il coefficiente di stabilità,

R" il coefficiente di rottura per pressione della muratura, e ponendo

$$T''=n''R''\Omega$$
,

deve risultare

$$n'' < \frac{1}{10}.$$

Per l'applicazione di questa formola è necessario conoscere il

valore di R" non che il peso T". Il valore di R" si può assumere nelle ordinarie circostanze della pratica, quale risulta dalla tavola che segue:

INDICAZIONE DELLA MURATURA	del decimetro cubo	valore di R' ossia resistenza alla rottura per pressione riferita al millimo quadro
the state of the s	Cg	Cg
Muratura di pietrame con malta di buon cemento	2,50	Cg 1,40
Muratura di pietrame con malta di calce idraulica .		0,50
Muratura di pietrame con malta di calce grassa Muratura in conci di pietra da taglio con malta di	a material	0,35
buon cemento	2,60	2,00
calce idraulica		0,72
calce grassa	errain est	0,50
buon cemento	2,20	1,50
Muratura di mattoni con malta di calce idraulica .		0,50
Muratura di mattoni con malta di calce grassa	MI, TO	0,40
Muratura di calcestruzzo	2.20	0.48

I valori di R" posti in questa tavola si riferiscono piuttosto alle malte che entrano nella composizione delle murature, anzichè alle pietre di cui sono queste formate. Segue da ciò che trattandosi di pietre, la cui resistenza alla rottura sia inferiore a quelle delle malte, si devono assumere per valori di R" quelli che convengono alle pietre e non quelli che trovansi nella tavola. Per le murature in conci tagliati con tutta diligenza ed in mattoni accuratamente lavorati, usano alcuni costruttori far poco conto della presenza della malta nei giunti, ed assumere il valore di R" ben di poco inferiore a quello delle pietre o dei mattoni che entrano nella loro composizione (num. 20).

In quanto al valore di T", consta esso di più parti, facili ad ottenersi quando si conoscano le dimensioni del fabbricato; una di queste parti è il peso proprio della muratura, che si ottiene facendo il suo volume e moltiplicandolo pel peso dell'unità di volume, desunto dalla seconda colonna della riportata tavola.

In pratica si può generalmente determinare la grossezza di un muro qualunque per sotterraneo, aumentando di una lunghezza variabile fra metri 0,10 e metri 0,25 la grossezza del corrispondente muro del piano terreno. Quest'ultima grossezza poi si ottiene con norme che verranno date nel seguito di questo volume.

8. Volte dei sotterranei. — Nei sotterranei convengono generalmente quelle volte che, oltre di presentare tutte le garanzie di solidità, risultano di facile costruzione.

Le figure rettangolari, quelle parallelogrammiche e quelle di forma trapezia, in cui l'altezza del trapezio è piccola, si coprono generalmente con vôlte a botte; si impiegano le vôlte a padiglione, oppure quelle a crociera per coprire figure poligonali qualunque; per le figure circolari ed ovali, e per le figure aventi la forma di corone circolari si adottano le vôlte a bacino e le vôlte anulari; e finalmente tornano utili le vôlte conoidiche in quei casi in cui avviene di dover coprire un trapezio avente l'altezza molto grande e le basi piuttosto corte. Le vôlte conoidiche possono anche tornare utili per coprire le figure quadrilatere in cui trovansi due lati opposti non molto lontani tra di loro.

Per quanto si riferisce alle dimensioni delle vôlte dei sotterranei, si può ritenere che, se pur è possibile, si debbano esse costrurre a tutta monta, e che in ogni caso la monta non debba essere minore di 1/5 della corda; che per corde non eccedenti 4 metri, possano convenire le vôlte con spessezza uniforme pari alla dimensione media del mattone, ossia di circa metri 0,12; che per corde comprese fra 4 e 7 metri si possa adottare la stessa spessezza alla chiave, ma portarla alla dimensione massima del mattone. ossia a circa metri 0,24 all'imposta, incominciando quest'aumento di grossezza al livello del piano orizzontale che dista dal piano d'imposta di circa 1/3 della saetta; e finalmente che, per corde comprese fra 7 ed 8 metri, possa ancora convenire la stessa spessezza alla chiave, purchè si porti alla dimensione massima del mattone, ossia a circa metri 0,24 la spessezza del vôlto verso le reni, ed alla grossezza di un mattone e mezzo, ossia a circa metri 0,36 la spessezza all'imposta.

Le norme or ora stabilite possono tornare utili nelle ordinarie circostanze; quando però si tratta di vôlte per sotterranei, destinate a sopportare grandi pesi, bisogna generalmente aumentare le dette grossezze, ed è per questo che ben sovente si porta alla dimensione massima del mattone, ossia a circa metri 0,24, la spessezza alla chiave delle vôlte sotto gli androni e di quelle sottostanti a magazzini in cui si devono raccogliere molti materiali pesanti.

Allorquando trattasi di coprire un sotterraneo che si estende

considerevolmente in lunghezza, senza avere una larghezza eccedente gli 8 metri, torna generalmente vantaggioso di costrurre dei robusti archi colle loro corde nel senso della detta larghezza, e di costrurre fra questi archi delle vôlte a botte, cui si assegneranno le grossezze risultanti dalle norme già stabilite. Invece di vôlte a hotte si possono anche costrurre delle vôlte a vela, oppure delle vôlte a crociera, ma in questo caso è bene che la distanza fra i niani di testa vicini di due archi successivi non ecceda la citata lunghezza di 8 metri, per non avere che vôlte di ordinaria portata. Una disposizione analoga conviene per un sotterraneo che molto si estende in lunghezza ed in larghezza: stabiliendo una o più file di colonne o di pilastri, riesce possibile costrurre dei robusti archi, alcuni colle loro corde nel senso della lunghezza ed alcuni colla loro corda nel senso della larghezza del sotterraneo da coprirsi; costruendo poi delle vôlte a vela o delle vôlte a crociera fra questi archi ed i muri perimetrali, si può coprire l'intiero sotterraneo, senza eccedere le ordinarie portate. Per quanto si riferisce alle dimensioni degli archi che, unitamente ai muri perimetrali, concorrono a sostenere le interposte vôlte, si può ritenere che le loro grossezze devono almeno superare della dimensione media del mattone, ossia di circa metri 0,12, quelle delle vôlte che contro essi si appoggiano; e che la loro lunghezza nel senso delle generatrici difficilmente può essere inferiore a metri 0,50.

Dovendosi costrurre una vôlta per sotterranei, posta in condizioni eccezionali, e per cui non si credono applicabili le norme pratiche ora esposte, prima di passare alla materiale sua esecuzione conviene studiarsi il progetto mediante appositi disegni, e passare quindi alla verificazione della sua stabilità con metodi analoghi a quelli che, parlando delle vôlte a botte, vennero esposti nella parte già pubblicata di questo lavoro sull'arte di fabbricare, al capitolo XI del volume intitolato Resistenza dei materiali e stabilità delle costruzioni, e che, modificati come si vedrà nel capitolo IV di questo volume, possono anche servire a verificare la stabilità delle vôlte a bacino, di quelle a padiglione, di quelle a botte con teste di padiglione e di quelle a crociera.

Al di sopra dei vôlti dei sotterranei, nell'intento di raggiungere il livello al quale vuol essere stabilito il pavimento del piano terreno, si fa un riempimento con detriti di pietra, con rottami di fabbrica, con altri minuti materiali che trovansi sul cantiere. Questo riempimento convenientemente si comprime e con tutta la cura si cerca di ridurlo a presentare superiormente una superficie orizzontale.

I muri dei sotterranei, determinati in grossezza come si è detto nel precedente numero, riescono generalmente insufficienti a poter sopportare da soli le spinte delle terre che contro di essi si devono trovare ad opera finita; ed il motivo per cui essi non rovinano sta essenzialmente in ciò, che le vôlte dei sotterranei agiscono come altrettanti ostacoli capaci di opporsi allo spostamento ed al rovesciamento dei detti muri, sotto l'azione delle spinte delle terre.

9. Finestre e porte pei sotterranei. — Molte sono le disposizioni che vengono adottate in pratica per dar luce ai sotterranei, e le più usuali di queste disposizioni trovansi rappresentate nelle figure 1°, 2°, 3°, 4° e 5° mediante due sezioni, una verticale determinata dalla retta UV, passante per l'asse di una finestra e perpendicolare al muro in cui questa trovasi praticata, l'altra orizzontale, determinata dalla retta XY e fatta a circa metà della altezza del sotterraneo che si considera.

Il primo modulo di finestra $(fig.\ 1)$ si riduce unicamente ad una nicchia A praticata nel muro per tutta l'altezza del sotterraneo e coperta superiormente o da una robusta inferriata o da una lastra di ghisa, oppure da un lastrone di pietra con fessure o con fori pel passaggio della luce. La larghezza \overline{ab} della nicchia varia fra 1 metro ed 1,60; e la sua profondità si determina in guisa da essere almeno eguale alla dimensione media del mattone, ossia di circa metri 0,12, la grossezza minima \overline{cd} del muro contro terra. Questo muro poi si costruisce a guisa d'arco coll'asse verticale e colla saetta \overline{ec} che sia almeno 18/ della corda, giacchè è questa la forma che meglio gli conviene onde porlo in condizioni di ben resistere alla spinta delle terre.

Il modulo di finestra, di cui si ha la rappresentazione nella figura 2° , è analogo al primo, salvo che la nicchia A, chiusa contro terra da un arco col suo asse verticale, si estende oltre la grossezza del muro. L'inferriata, o la lastra traforata che deve dar passaggio alla luce, copre il segmento acb; la larghezza \overline{ab} della nicchia varia come nel primo modulo; la saetta \overline{ce} , che non si assume mai minore di 1/6 della corrispondente corda \overline{ab} , si può anche prendere eguale alla semi-corda; e la spessezza \overline{cd} nel mezzo del muro contro terra non deve essere inferiore alla dimensione media del mattone, ossia a circa metri 0.12.

Nella figura 5° si ha una modificazione del secondo modulo di finestra, onde renderla adatta alle circostanze in cui è necessario che la luce piombi nei sotterranei, passando nella grossezza del loro muro. La nicchia A, per la parte che trovasi esterna al detto muro, è coperta con una vôlta, la cui superficie d'intrados è un quarto di sfera o una mezza calotta sferica, secondo che la figura acb è un mezzo circolo o un segmento circolare; e l'apertura per cui la luce arriva al sotterraneo trovasi posta fra due piccoli archi B e B'. L'arco B' si può anche vantaggiosamente sopprimere, facendo in modo che l'inferriata o la lastra traforata si estenda superiormente da q in f. Per quanto spetta alle dimensioni di questo terzo modulo di finestra, valgono quelle già indicate parlando dei due primi moduli, e solo convien aggiungere che la lunghezza dei due archi B e B' nel senso delle generatrici può essere eguale alla dimensione media del mattone. - Quando il pavimento del piano terreno di un edifizio trovasi elevato dell'altezza di un gradino sul snolo esterno, all'inferriata od alla lastra traforata si sostituisce il gradino, e l'apertura pel passaggio della luce vien ridotta a una feritoia longitudinale C che si lascia nell'alzata.

Il quarto modulo di finestra per sotterranei, analogamente al primo, presenta una nicchia A $(fig.\ 4)$ tutta posta nella grossezza del muro, salvo che, invece di occupare l'intiera altezza del detto muro, termina essa al disotto secondo un piano inclinato hi. Siccome poi, contrariamente a quanto si è supposto pei primi tre moduli, si ammette che il vôlto abbia una delle sue imposte sul muro stesso nel quale trovasi l'apertura, per ottenere che la luce piombi dall'alto nel sotterraneo si rende necessaria la costruzione di un'unghia C, che corrispondentemente alla finestra trova appoggio contro un arco B impostato sui due fianchi della finestra medesima. Relativamente alle principali dimensioni da adottarsi per le finestre di questo quarto modulo, vale quanto si è detto parlando del primo modulo, e solamente conviene far osservare che l'altezza \overline{mn} deve essere la minima possibile.

Allorquando vuolsi che la luce arrivi ai sotterranei, non già passando pei vani di inferriate o di lastre traforate, ma sibbene passando per aperture identiche a quelle delle finestre ordinarie, torna utile la disposizione adottata nella figura 5° . Ciascuna finestra consta di un'apertura A posta a piccola altezza sul suolo esterno, alla quale tien dietro il vano B con larghezza \overline{ab} variabile fra metri 1 ed 1,50, e compreso fra due piani inclinati ed ed ef diver-

genti verso il basso. Se la vôlta del sotterraneo ha una sua linea d'imposta sul muro in cui trovasi la finestra, il piano inclinato ef passa generalmente al di sopra di questa linea, e la copertura del vano della finestra pel tratto eg viene quasi sempre formato mediante mattoni posti di piatto, in guisa da ottenere un muriccio con spessezza di circa metri 0,06, il quale appoggia inferiormente alla vôlta del sotterraneo e superiormente alla piattabanda od al vôltino che copre l'apertura A in corrispondenza della grossezza del muro. — Ben sovente il vano B si costruisce con larghezza non costante, ma si fa in modo che questa cresca venendo dall'alto al basso.

Le finestre per sotterranei, rappresentate nelle figure 1°, 3°, 4° e 5° convengono in tutti quei casi in cui non è permesso occupare il suolo esteriore all'edifizio pel posamento delle inferriate o delle lastre traforate per dar passaggio alla luce; quelle invece rappresentate nella figura 2º vantaggiosamente si possono adottare in tutti i casi in cui nulla osta di porre in opera le inferriate o le lastre traforate esternamente e contro il muro nel quale le finestre devono essere aperte. Dovendosi poi illuminare dei vasti sotterranei posti sotto portici, sotto gallerie ed in genere al di sotto di luoghi coperti nei quali c'è abbondanza di luce, oltre le finestre da praticarsi nei muri laterali, si possono anche lasciare delle aperture nei vôlti, ed elevare in corrispondenza di queste aperture dei piccoli muri verticali, per raggiungere il pavimento del piano terreno dove si coprono o mediante inferriate, o mediante piastre di ghisa a trafori od anche mediante robuste lastre di vetro. Questa disposizione fa sì che la luce arriva ai sotterranei attraversando corti pozzi di sezione orizzontale circolare, o quadrata, o rettangolare.

Le vôlte dei sotterranei hanno generalmente le loro imposte tanto in basso, che difficilmente l'intiera altezza delle porte può restare al di sotto di esse. Segue da ciò, che in corrispondenza delle aperture dei sotterranei quasi sempre bisogna trovar mezzo di innalzare le superficie d'intrados dei vôlti, la qual cosa assai facilmente si ottiene mediante apposite unghie, che per facilità di esecuzione ordinariamente si fanno cilindriche o cilindroidiche con generatrici orizzontali. Queste aperture poi o sono coperte da piattabande o da archi (Lavori generali d'architettura civile, stradale ed idraulica, num. 225, 224, 225, 226, 227 e 228), e tutte le volte che vi ha una piattabanda è conveniente che al di sopra di essa siavi un arco A (fig. 6) detto sordino o arco di scarico, il quale serve ad im-

pedire che la piattabanda venga eccessivamente caricata dalla muratura sovrastante. Le grossezze delle piattabande nel senso verticale si possono determinare colle regole pratiche che si dànno nel numero 26.

- 10. Pavimenti dei sotterranei. La terra naturale convenientemente compressa, e ridotta a presentare superiormente un piano orizzontale, somministra un suolo abbastanza resistente in quei sotterranei che, oltre di trovarsi in terreni buoni e non attraversati da acque, vengono destinati ad uso di cantine o di siti di deposito per private famiglie. Nei sotterranei però per grandi cantine, per spaziosi e frequentati magazzini, per laboratorii, per cucine, e generalmente in tutti quelli in cui vi può essere gran concorso di persone, si rende indispensabile la costruzione di solidi pavimenti, e principalmente tornano utili i battuti comuni, i lastrici, i lastricati, i pavimenti d'asfalto ed i tavolati.
- 11. Scale dei sotterranei. Le scale dei sotterranei presentano generalmente quella disposizione che naturalmente si manifesta siccome la più semplice, e nella quale i gradini trovano appoggio su due muri paralleli. La larghezza di queste scale varia nelle ordinarie circostanze fra 1 e 2 metri; e se in qualche caso eccezionale è necessario adottare una larghezza maggiore di 2 metri, conviene che i gradini abbiano qualche punto d'appoggio intermedio, la qual cosa assai facilmente si può ottenere mediante muri paralleli a quelli nei quali sono fermate le estremità dei gradini elevantisi dalle fondazioni fin sotto le rampe delle scale.

Considerando in una scala due gradini successivi qualunque A e B (fig. 7), chiamando alzata la differenza di livello \overline{ab} fra le loro facce superiori, immaginando proiettato orizzontalmente lo spigolo a sulla faccia superiore del gradino B in b, e dicendo pedata la larghezza \overline{bc} , affinchè la scala risulti comoda, fra la lunghezza a dell'alzata e la lunghezza p della pedata, deve esistere la semplicissima relazione

$$a + p = 0^{m},45$$
,

la quale permette di ricavare p quando si conosce a. Il valore di a poi non può essere qualunque, giacchè l'alzata evidentemente non ammette nè un valore troppo piccolo nè un valore troppo grande, e l'esperienza ha dimostrato doversi assumere a siccome variabile fra metri 0.13 e metri 0.19.

In quello che si è detto sulle scale dei sotterranei, tacitamente si

è supposto che le rampe si proiettino orizzontalmente in altrettanti rettangoli, ossia che discendano secondo direzioni rettilinee. Presentandosi il caso di scale, le quali devono discendere secondo direzioni curvilinee, quali sono quelle a chiocciola, le facce anteriori dei gradini non risultano più parallele fra di loro e le facce superiori non riescono più della stessa larghezza per tutta la loro lunghezza; la loro larghezza massima trovasi dalla parte concava della gabbia, la larghezza minima dalla parte convessa; e, affinchè la scala riesca sufficientemente comoda, si richiede che la larghezza media di ciascuna pedata sia almeno eguale al valore di p, che ricavasi dalla stabilita relazione.

In alcune rare circostanze può avvenire di dover costrurre delle scale per sotterranei, senza che siavi la possibilità di far in modo che i gradini abbiano appoggio per le loro estremità su due muri paralleli, e per togliersi d'imbarazzo convien ricorrere alle scale a sbalzo oppure a quelle a vôlta, di cui si parlerà nel progresso di questo lavoro, trattando delle scale destinate a salire dal piano terreno a piani superiori.

12. Mezzi per rendere asciutti i sotterranei. — I sotterranei, per quanto è possibile, devono essere asciutti, e questa è una qualità della massima importanza per la conservazione dei vini, delle botti e generalmente di tutti gli oggetti che in essi si depositano.

Un sotterraneo è quasi sempre asciutto, allorquando trovasi scavato in terreno buono nel quale non penetrano le acque, ed un terreno di tal natura si rinviene assai frequentemente nei paesi viticuli. In quelle località in cui le acque s'incontrano a piccola profondità sotto la superficie del suolo, ed in quelle in cui i sotterranei asciutti per una parte dell'anno, si riempiono d'acqua col crescere dei fiumi e dei torrenti circonvicini, per premunirsi contro i danni dell'umidità e mantenere i sotterranei in uno stato conveniente di secchezza, sono necessarie opportune opere, di alcune delle quali immediatamente si dà un breve cenno.

Quando trattasi di un sotterraneo che si deve costrurre, si scava il terreno su tutta l'estensione del suolo, per una profondità di metri 0,25 a metri 0,30, e si riempie tutta l'escavazione mediante una platea di calcestruzzo fatto con malta idraulica. Fatto questo, si costruiscono i muri con buoni materiali, cementati pure con malta idraulica, e si ricoprono le pareti interne con un intonaco di buon cemento, avente la spessezza di metri 0,04 a metri 0,05, e generalmente formato con tre parti di cemento e due di sabbia. Finalmente sulla platea di calcestruzzo si stabilisce una vôlta rovescia

colla saetta di $\frac{4}{25}$ ad $\frac{4}{35}$ ed avente la spessezza del mattone. Conviene che nella formazione di questa vôlta s'impieghi malta di cemento, e di più che venga essa coperta con un intonaco simile a quello delle pareti.

Se è quistione di rendere asciutto un sotterraneo che, per non aver usato le necessarie precauzioni all'atto della sua costruzione, è infestato da abbondante umidità, si scava il suo fondo come nel caso precedente e si stabiliscono innanzi tutto la platea di calcestruzzo e la vôlta rovescia. Per quanto si riferisce ai muri, se essi sono ancora buoni, basta raschiarli e pulirli perfettamente, affinchè l'intonaco di cemento vi possa ben aderire; ma se invece vennero eseguiti con cattivi materiali e se già trovansi guasti alla superficie, è imperiosa necessità di demolirli per una parte della loro grossezza, e di sostituirvi della muratura nuova, fatta con buoni mattoni o con legamenti di pietra e malta di cemento, e di applicare quindi l'intonaco cementizio a questa muratura nuova ed alla vôlta rovescia. L'esposto metodo per mantenere asciutti i sotterranei, non è il solo applicabile nelle varie circostanze che si possono presentare. Molte volte si prende il partito di porre al di dietro dei muri dei sotterranei un masso di terra cretosa impastata e battuta, avente la spessezza di metri 0,50 a metri 0,50, e di stabilire sul suolo uno strato della stessa terra, alto circa metri 0,50, che in seguito si copre con una platea di muratura, in cui le pietre vengono cementate mediante malta idraulica. Nel caso poi in cui a poca profondità sotto il suolo dei sotterranei si trovi uno strato permeabile, possono riuscire vantaggiosi i pozzi assorbenti, destinati a raccogliere le acque provenienti da un sistema di fogne, convenientemente stabilite lungo i muri perimetrali, ed in tutti quei siti in cui maggiormente si manifestano le tracce d'umidità.

CAPITOLO III.

Parti componenti l'ossatura di una costruzione civile al di sopra dei sotterranei.

13. Assunto del presente capitolo. — In qualsiasi costruzione civile, sia essa a un sol piano, sia a più piani al di sopra dei sotterranei, riesce generalmente possibile distinguere diversi membri,

le cui separazioni sono determinate da muri, oppure da file di colonne o di pilastri, i quali devono sopportare le coperture e quanto
permanentemente ed accidentalmente vi si può trovare sopra. Per
accedere poi ad una costruzione civile, per mettere in comunicazione i diversi suoi membri e per ricevere luce dall'esterno, si
rende necessario di lasciare nei muri delle apposite aperture, che,
a seconda della loro grandezza e della loro forma, superiormente
si coprono con piattabande o con archi. I muri adunque, le colonne, i pilastri, le piattabande e gli archi, che nel loro complesso
danno l'ossatura di qualsiasi costruzione civile, sono elementi di
prima importanza; l'architetto attentamente deve badare a che
non siavi in essi deficienza di solidità; e per raggiungere lo scopo
può servirsi delle norme generali e delle regole che trovansi esposte
in questo capitolo.

14. Nozioni generali sulle grossezze da assegnarsi ai muri. -Le grossezze da assegnarsi ai muri dipendono dall'intensità e dalla direzione degli sforzi ai quali si trovano sottoposti, dalla natura e qualità dei materiali che voglionsi impiegare nella loro costruzione, dalla loro forma e dalla loro posizione relativa. Queste grossezze si devono determinare in modo che non si abbiano a temere: nè lo schiacciamento dei materiali alla base, per effetto del peso proprio dei muri e dei carichi sovrastanti; nè la rottura per scorrimento e per rovesciamento sotto l'azione delle spinte orizzontali prodotte dagli impetuosi venti e molto più dalle vôlte e da altre parti dell'edifizio a cui i muri appartengono. Nel maggior numero dei casi pratici riesce assai difficile il poter tenere stretto conto di tutte queste circostanze e, neppure l'esperienza è giunta a somministrare sufficienti dati valevoli a valutare le resistenze dei diversi materiali e le intensità degli sforzi che possono sopportare prima di essere disgiunti, tenendo conto della loro aderenza, della loro forma e della loro posizione. I lunghi e fastidiosi calcoli da instituirsi per giugnere alla determinazione della grossezza di un muro, in seguito alla considerazione delle forze che lo sollecitano e della sua resistenza, possono riescire indispensabili in casi eccezionali e nnovi; il più delle volte però conviene appoggiarsi ad esempli di costruzioni già esistenti o a regole e formole empiriche, che siano il risultato di numerose ed accurate osservazioni.

Il Rondelet nell'accreditato suo lavoro, Traité sur l'art de bâtir, ha date alcune utili e facili regole per giungere a determinare le grossezze dei muri, ed ha considerato a parte il caso di un muro isolato, quello di un muro le cui estremità si congiungono con altri

muri che concorrono con esso ad angolo, quello di edifizii semplicemente coperti da tetto, e finalmente quello delle fabbriche distribuite in varii piani per mezzo di un certo numero di solai.

15. Grossezze dei muri isolati e dei muri di cinta. — Pei muri isolati in linea retta, la grossezza deve essere compresa fra 1/12 e 1/8 dell'altezza, a seconda della bontà dei materiali e del

grado di stabilità che vuolsi avere.

9

Per ciascuno dei muri che cingono una pianta poligonale e che si attaccano gli uni agli altri negli angoli, si può determinare la grossezza colla seguente operazione grafica: costrutto l'angolo retto XAY ($\hbar g$. 8) e prese \overline{AB} e \overline{AC} rispettivamente eguali alla lunghezza l e all'altezza a che voglionsi assegnare al muro, si tiri la retta CB e prendasi su essa \overline{CD} compresa fra 1/12 e 1/8 dell'altezza; si abbassi su AY la perpendicolare \overline{DE} e si avrà in essa la grossezza domandata. Questa costruzione grafica del Rondelet si può tradurre in una semplicissima formola: perciò, indicando con p il rapporto fra \overline{CD} e l'altezza \overline{AC} , compreso fra 1/12 e 1/3, con x la grossezza del muro, e ritenute le denominazioni già stabilite per quanto concerne alla lunghezza e all'altezza, dalla considerazione dei due triangoli rettangoli CED e CAB simili fra di loro, in cui $\overline{CD} = pa$ e $\overline{CB} = \sqrt{a^2 + l^2}$, si ha

$$x = \frac{pal}{\sqrt{a^2 + l^2}} \tag{1}$$

Per muri di eguale altezza cingenti l'area di un poligono regolare, la grossezza dedotta coll'esposta regola risulta costante tutto all'intorno e diminuisce col crescere del numero dei lati del poligono e, considerando il circolo come un poligono regolare di un numero infinito di lati, la grossezza di un muro di circuito per questa figura risulterebbe eguale a zero. Il Rondelet, in vista di questa grossezza inammissibile, ha stabilito che la sua regola debba valere soltanto per quei poligoni regolari nei quali il numero dei lati non è maggiore di dodici, e che per quelli aventi un maggior numero di lati, come pure pel circolo, la grossezza del muro di cinta si debba dedurre considerando, non il poligono regolare o il circolo dato, ma sibbene il dodecagono regolare avente lo stesso raggio. Chiamando R il raggio \overline{OA} (fig. 9) di un poligono regolare avente più di dodici lati o di un circolo da cingersi me-

diante un muro di cinta, supponendo che sia AB il lato dell'esagono regolare inscritto in quel circolo ed AC quello del dodecagono regolare, si avrà

$$\overline{\text{AD}} = \frac{R}{2}, \quad \overline{\text{OD}} = \frac{R}{2} \sqrt{3}, \quad \overline{\text{CD}} = \frac{R}{2} (2 - \sqrt{3}).$$

Dal triangolo rettangolo ADC risulta

$$\overline{AC} = \sqrt{\frac{R^2}{4} + \frac{R^2}{4} (2 - \sqrt{3})^2}$$

e quindi

$$\overline{AC} = R \sqrt{2 - \sqrt{3}}$$
.

Indicando ora con x la grossezza domandata del muro di cinta che si deve supporre di lunghezza \overline{AC} si ha

$$x = \frac{p \, a \, \mathbf{R} \, \sqrt{2 - \sqrt{3}}}{\sqrt{a^2 + \mathbf{R}^2 (2 - \sqrt{3})}}.$$

Alcuni costruttori, onde semplificare i calcoli, usano dedurre la grossezza dei muri cingenti circoli o poligoni regolari di più di dodici lati, considerandoli come poligoni aventi i loro lati di lunghezza eguale alla metà del raggio; e quindi, ritenute le denominazioni già stabilite, si può porre

$$x = \frac{p a \frac{1}{2} R}{\sqrt{a^2 + \frac{R^2}{4}}},$$

che, a riduzioni fatte, diventa

$$x = \frac{paR}{\sqrt{4a^2 + R^2}}.$$

Per non essere costretti di assegnare una grossezza troppo grande ai muri di cinta molto lunghi, ben di frequente si costruiscono dei contrafforti a distanze eguali ed alle diverse parti comprese fra due contrafforti successivi si assegnano le grossezze che risultano applicandovi la formola (1). Le dimensioni delle sezioni orizzontali dei contrafforti devono essere tali che essi sporgano almeno di metri 0,05 da ambe le parti del muro di cinta e che presentino di fronte una larghezza che sia circa il quarto della loro altezza.

16. Grossezze dei muri degli edifizii coperti solamente da tetti. — In un edifizio su pianta rettangolare e coperto da un tetto a due pioventi sono da considerarsi i muri laterali che si elevano lungo i lati del rettangolo paralleli al comignolo, e gli altri due muri che si innalzano lungo gli altri due lati. — Per determinare la grossezza dei due muri che corrono parallelamente al comignolo si può far uso del seguente processo grafico del Rondelet: essendo \overline{AB} (fig. 10) la larghezza interna che deve avere l'area da cingersi con muri, \overline{AC} l'altezza di questi muri, si prenda $\overline{CD} = \frac{1}{12} \overline{AC}$ e si abbassi la perpendicolare \overline{DE} sul \overline{CA} : sarà \overline{DE} la grossezza dimandata del muro. — Per convertire questa costruzione grafica in formola, si chiami l la distanza \overline{AB} dei due muri, e si ritengano le denominazioni già stabilite per quanto concerne all'altezza ed alla grossezza del muro; dalla considerazione dei due triangoli rettangoli e simili \overline{CAB} e \overline{CED} , si ha

$$x = \frac{l \, a}{12 \, \sqrt{a^2 + l^2}}.$$

In quanto ai due muri che si elevano perpendicolarmente al comignolo, si può loro assegnare la grossezza che risulta dal considerarli come muri di cinta di altezza eguale ad \overline{FG} , oppure, come da alcuni costruttori si usa, di altezza eguale a $\overline{\frac{AC+FG}{2}}$. Il valore del coefficiente p da porsi nella formola (1) del precedente numero si può assumere di 1/12.

Nel caso di un'area rettangolare coperta da un tetto a padiglione, ossia da un tetto a quattro pioventi, due trapezii e due triangolari, i quattro muri risultano di eguale altezza, e a ciascuno di essi si può assegnare la grossezza che risulta o dall'ultima indicata costruzione grafica, o dall'ultima formola, applicate coll'assumere per l la larghezza dell'area rettangolare circondata dai detti muri.

Negli edifizii a tre navate sono da considerarsi: i muri della navata principale e quelli delle navate minori, diretti parallelamente al comignolo del tetto; i muri della navata principale e quelli delle navate minori, diretti perpendicolarmente al detto comignolo. — Il Rondelet, prendendo $\overline{BB'} = \overline{FG}$ (fig. 41) al disotto dell'orizzontale II, posta al livello del pavimento dell'edifizio, assegna a ciascuno dei due primi la grossezza \overline{DE} , che risulta portando su $\overline{CB'}$ la lunghezza \overline{CD} eguale ad 1/24 della somma dell'intera altezza $\overline{AC} = a$ con quella porzione $\overline{FG} = a'$ di tale altezza che rappresenta di quanto ciascun muro della navata di mezzo sporge sul comignolo del tetto della navata laterale adiacente, ed abbassando da \overline{DE} la perpendicolare \overline{DE} sopra \overline{AC} . Segue da ciò che, essendo l la distanza $\overline{A'B'} = \overline{AB}$, a' l'altezza $\overline{BB'} = \overline{AA'}$, a+a' l'altezza $\overline{CA'}$ ed a' la domandata grossezza dei due muri della navata principale, dalla considerazione dei due triangoli simili $\overline{CA'B'}$ e \overline{CED} risulta

$$x = \frac{(a+a')l}{24\sqrt{(a+a')^2 + l^2}}.$$

La grossezza dei due muri laterali esteriori M, paralleli ai due già considerati, si può determinare colla prima delle due formole stabilite in questo numero, assumendo per l la larghezza $\overline{\text{HI}}$ e per a l'altezza $\overline{\text{LI}}$.

Le grossezze dei muri diretti normalmente al comignolo del tetto, si possono dedurre considerandoli come muri di cinta, ed applicando quindi la prima formola del precedente numero col porre in essa per l la lunghezza orizzontale del muro che si considera, per a la sua altezza massima, o meglio la media aritmetica fra due altezze massima e minima, e per p la frazione 4/42.

Le regole che vennero date in questo numero per determinare le grossezze dei muri negli edifizii coperti solamente da tetti, suppongono che questi siano costrutti in modo da non esercitare spinte contro i muri da cui sono sopportati, ma che invece presentino tali disposizioni da contribuire al loro collegamento, come avviene quando le coperture sono sostenute da ben combinati cavalletti.

17. Fabbriche semplici, doppie e triple in profondità; muri perimetrali, muri longitudinali e muri trasversali. — Le fabbriche si dicono semplici, doppie, triple in profondità, secondo che

ammettono una sola fuga di scompartimenti fra due muri paralleli, o due fughe di scompartimenti fra tre muri paralleli, o tre fughe di

scompartimenti fra quattro muri paralleli.

Quei muri i quali racchiudono tutto all'intorno la fabbrica, che sono da capo a piedi abbandonati a sè stessi dalla parte esterna, ma bensì concatenati all'interno dal tetto, dai solai e da muri, si dicono muri perimetrali; quelli interni, generalmente paralleli ai muri perimetrali, si chiamano muri di mezzo; e finalmente quegli altri, quasi sempre normali ai muri perimetrali, e che servono ad ottenere i diversi scompartimenti, si chiamano muri trasversali.

48. Grossezze dei muri delle fabbriche numeranti varii piani con solai. — Nelle fabbriche a diversi piani, ragioni di solidità e di economia vogliono che i muri vadano assottigliandosi dalla loro base alla cima e, siccome generalmente non si possono ammettere pareti inclinate nè all'interno nè all'esterno, si prende il partito di scemare la grossezza a riprese, formando a ciascun piano una risega, senza alterare la verticalità delle facce del muro. Le riseghe si fanno generalmente al livello dei pavimenti dei diversi piani: pei muri perimetrali si effettuano all'esterno per quella parte che viene comportata dalla decorazione e all'interno pel rimanente; pei muri di mezzo e pei muri trasversali si fanno generalmente metà da una parte e metà dall'altra, salvo pei muri delle scale e dei lucernarii, dove è bene che le pareti interne si innalzino verticalmente dal fondo alla cima.

Il Rondelet, distinguendo il caso degli edifizii semplici da quello degli edifizii doppii in profondită, in seguito a numerose ed accurate osservazioni, è giunto a dare delle regole pratiche per trovare le grossezze dei muri nelle fabbriche a più piani con solai. Chiamando

d la distanza dei due muri perimetrali di una fabbrica semplice, b la profondità del pavimento del piano che si considera sotto l'origine del tetto,

n il numero dei piani superiori a quello che si considera,

z una quantità variabile da 0^m,027 a 0^m,054, secondo che i muri sono costrutti con buoni laterizii e con pietrame forte, oppure con pietrame leggiero e tenero,

la grossezza x, conveniente a ciascun piano, si può dedurre ponendo

$$x = \frac{2d+b}{48} + \alpha n \tag{1}$$

Per le fabbriche doppie in profondità, chiamando

D la distanza che devono avere i muri perimetrali,

D' la distanza di due muri trasversali, fra i quali se ne vuol interporre un terzo,

c l'altezza del piano nel quale vuolsi determinare la grossezza di un muro di mezzo o di un muro trasversale.

α' una lunghezza variabile da 0^m,013 a 0^m,027,

si possono dedurre le grossezze x_p , x_m ed x_t , corrispondenti ai muri perimetrali, ai muri di mezzo ed ai muri trasversali, mediante le semplicissime formole

$$x_{p} = \frac{D+b}{48} + \alpha n$$

$$x_{m} = \frac{D+c}{36} + \alpha' n$$

$$x_{t} = \frac{D'+c}{36} + \alpha' n,$$

dove α , b ed n hanno i significati che loro vennero attribuiti nello stabilire la formola (1).

19. Grossezze dei muri delle fabbriche numeranti diversi piani con volte. - Le regole esposte nell'ultimo numero, seguite generalmente in Francia ed applicabili ai casi di edifizii i cui piani sono separati da soffitti, non sono più applicabili quando le vôlte tengono il luogo di questi. Un muro che sopporta una vôlta si trova sottoposto a pressioni verticali e ad azioni orizzontali: le prime tendono a schiacciare i materiali che trovansi verso le infime parti del muro: le seconde tendono a farlo scorrere o a rovesciarlo tutto od in parte. Le forze orizzontali, dette spinte, sono generalmente le più influenti: esse dipendono dalla forma, dalle dimensioni e dal sistema di costruzione delle vôlte; e le grossezze da adottarsi pei muri si dovrebbero dedurre considerando la intensità delle spinte, le posizioni dei loro punti d'applicazione, l'aderenza dei materiali, l'attrito che può aver luogo nello scorrimento di un pezzo di muro, e finalmente quelle resistenze che possono opporre le chiavi in ferro e tutti quei mezzi che s'impiegano per ben tenere collegati i muri di uno stesso edifizio. Il problema, quando si voglia tener conto di tutte le circostanze che lo accompagnano, è assai difficile e, anche risolvendolo approssimativamente, imbarazza in calcoli lunghi e fastidiosi, che nel maggior numero dei casi riescono inutili,

sia perchè gli edifizii con vôlte sono assai numerosi, sia perchè gli insegnamenti dell'esperienza non possono mancare, ed i punti di paragone sono facili a raccogliersi, sia perchè ciascuna località offre delle prescrizioni sufficientemente determinate, che devono essere accettate come risultamenti di una lunga esperienza.

In Torino, i diversi piani delle fabbriche civili, eccettuato l'ultimo, sono generalmente coperti con vôlte, e nelle fabbriche da costruirsi con buoni materiali, le grossezze x_p ed x_t dei muri perimetrali e dei muri trasversali si possono ritenere come espresse dalle formole

$$x_p = 0^m, 45 + 0^m, 12n,$$

 $x_t = 0^m, 45 + 0^m, 06n.$

essendo n il numero dei piani superiori a quello che si considera. La grossezza data dall'ultima formola pei muri trasversali permette che nell'ultimo piano vi stiano le canne del cammino colla larghezza di circa $0^m,25$, circondate da una parte con un muriccio grosso come la dimensione media del mattone, e dall'altra con un muriccio avente la dimensione minima.

Se credesi sufficiente di contenere le canne da camino all'ultimo piano in muricci aventi la grossezza rappresentata dalla dimensione minima del mattone, si possono anche determinare le grossezze x_p ed x_t mediante le formole

$$x_p = 0^m, 39 + 0^m, 12 n$$

 $x_t = 0^m, 39 + 0^m, 06 n.$

Per le fabbriche doppie in profondità, si dà ai muri di mezzo la stessa grossezza dei muri perimetrali. Per le fabbriche triple in profondità, si assegnano ai muri perimetrali le stesse grossezze che convengono alle fabbriche doppie; e ai due muri di mezzo, quando la loro distanza è minore di 5 metri, si dànno grossezze eguali a quelle dei muri trasversali. Se la distanza dei muri di mezzo è maggiore di 5 metri, allora si può loro assegnare la stessa grossezza dei muri perimetrali.

20. Colonne. — Chiamansi colonne quei sostegni isolati che hanno forma cilindrica, e di cui conviene far uso nelle costruzioni civili in tutti quei casi nei quali bisogna ridurre la superficie occupata dai muri, nell'intento di ottenere vasti locali, e principalmente per conservare ampii passaggi in quei siti che continuamente

L'ARTE DI FABBRICARE.

Costruzioni civili, ecc. - 3

devono trovarsi esposti al transito o che, per la loro destinazione, copiosamente devono trovarsi illuminati ed aereati.

Le colonne costituiscono i sostegni isolati di forma più conveniente; giacchè la forma cilindrica, a parità di volume, offre minori ostacoli alla circolazione, è meno soggetta a degradazioni, e presenta una conveniente resistenza al rovesciamento.

In una colonna si distinguono abitualmente tre parti: la base, il fusto ed il capitello. La base ha per iscopo di dare alla colonna un ampio appoggio sulla sua fondazione e quindi, oltre di contribuire ad aumentare l'altezza, notevolmente influisce sulla stabilità. L'utilità delle basi delle colonne è adunque incontestabile; se non che esse hanno l'inconveniente di porre qualche ostacolo alla circolazione, per cui in alcune circostanze conviene sopprimerle, od almeno fare in modo che tutti i loro membri presentino una sezione orizzontale circolare. Il fusto costituisce la parte più importante della colonna, ed è dalle sue dimensioni che dipende la resistenza del sistema. Il suo diametro non è generalmente costante per tutta la sua altezza; alla sommità è meno lungo di quello alla base, e questo perchè, trovandosi la pressione aumentata alla base dal peso del fusto, è razionale il ripartirla su una superficie più ampia. Finalmente il capitello è destinato a somministrare un conveniente appoggio alla parte di costruzione che la colonna deve sopportare, ed a ridurre la portata delle pietre, delle piattabande o degli archi che superiormente devono riunire le colonne fra di loro.

Per quanto si riferisce alle dimensioni delle colonne, si dovrebbero esse dedurre dagli sforzi cui trovansi sottoposte, ed in modo che in esse non possa avvenire nè rottura per pressione, nè rottura per rovesciamento. Trattandosi però di colonne in pietra e di colonne in muratura, vi sono delle proporzioni medie fra il raggio, le altezze e gli aggetti, le quali nelle ordinarie circostanze assicurano la necessaria stabilità, che per generale consentimento sono accettate in pratica, e che si devono considerare siccome i risultati di ripetute osservazioni e di una lunga esperienza. Per le colonne più massicce, il diametro del fusto presso la base deve essere da 1/7 ad 4/8 dell'altezza; per le più sottili questo diametro si può assumere di 1/10 dell'altezza; e finalmente per quelle intermedie conviene che il detto diametro sia 1/9 dell'altezza. L'accennata intiera altezza della colonna, per una quantità eguale o di poco maggiore del raggio del fusto in basso, vien data alla base; quando i capitelli sono a semplici modanature hanno generalmente un'altezza eguale al detto raggio del fusto, e quando sono a fogliami ammettono un'altezza di circa i 7/3 dello stesso raggio. Per quanto si riferisce al diametro del fusto nella sua estremità superiore, si può ritenere che convenga assumerlo dei 5/6 di quello adottato per l'estremità inferiore e che il decrescimento di sezione del fusto debba incominciare a partire da 1/5 della sua altezza. Alcuni costruttori, secondochè trattasi di colonne con diametro di 1/7, di 1/8, di 1/9 e di 1/10 dell'altezza, sogliono assumere il diametro superiore del fusto dei 4/5, dei 5/6, dei 6/7 e dei 7/8 del diametro inferiore. Venendo ora agliaggetti delle basi e dei capitelli sui fusti delle colonne, si può dire: che un aggetto dei 2/3 del raggio del fusto può convenire per quelle; e che per questi si può adottare l'aggetto dei 5/12 del raggio, quando sono a semplici modanature, di 5/18 del raggio quando sono ornati con evolute come nell'ordine ionico, e di 1/3 del raggio quando sono a fogliami come negli ordini corintio e composito. Gli aggetti delle basi s'intendono misurati in corrispondenza del mezzo di una faccia verticale del plinto, e gli aggetti dei capitelli in corrispondenza del mezzo di una faccia laterale della tavola.

Le regole date sulle proporzioni fra le parti principali delle colonne sono semplicemente destinate a porre i principianti sulla strada di poter ritrarre un primo abbozzo di colonna, quando è data la sua altezza od il suo diametro, senza però presentare nulla di assoluto. Se le circostanze particolari in cui si devono stabilire delle colonne palesano la convenienza di eseguirle senza attenersi alle prescrizioni delle indicate regole, si può questo fare liberamente : ed in generale conviene ritenere che, a seconda del carattere che vuolsi dare ad un colonnato, s'addice al gusto dell'architetto di convenientemente regolare le proporzioni. In quegli edifizii, che devono presentare un carattere di robustezza e di solidità a tutta prova, convengono le colonne massicce, mentre le colonne svelte e con piccolo diametro s'addicono a quegli altri che devono avere un carattere d'eleganza e di leggerezza. Per rapporto agli aggetti non bisogna dimenticare che in generale convengono gli aggetti piccoli nelle basi che hanno tal posizione da poter porre ostacoli alla libera circolazione, ed in quelle che determinano un'eccessiva sporgenza in qualche membro architettonico sottostante, e che la stessa prescrizione devesi osservare nei capitelli, quando il loro sporto nasconde all'occhio dell'osservatore qualche oggetto che importa mantener scoperto.

Non sempre le colonne sono isolate, ed in molte circostanze

trovansi addossate a muri con isporgenza su questi variabile fra i 2/3 ed i 3/4 del diametro.

Allorquando sonvi ragioni di dubitare se una colonna trovasi in buone condizioni di stabilità, è necessario accertarsi di ciò che realmente ha luogo. Chiamando perciò

T" il peso della parte di fabbricato sopportato dalla colonna, R" il coefficiente di rottura per pressione del materiale di cui la colonna è formata,

n" il cofficiente di stabilità,

 Ω la superficie della minima sua sezione orizzontale, e ponendo

$$T''=n''R''\Omega$$
,

deve risultare $n'' < \frac{1}{10}$.

Se la colonna è di muratura, si assumeranno per valori di R" quelli contenuti nella tavola che venne data nel numero 7. Se invece la colonna è di pietra ed in un sol pezzo, si prenderanno i valori di R" riportati nella tavola che segue:

INDICAZIONE DELLE PIETRE	PESO MEDIO del decimetro cubo	valore di R' ossia resistenza alla rottura per pressione riferita al millimº quadro
The motion descentation and series	Cg Cg	Cg Cg
Calcari teneri	1,40 a 2,20	0,60 a 1,30
Calcari mezzani	2,20 2,60	1,30 3,00
Calcari mezzani	2,60 2,90	3,00 8,00
Calcare d'Angera	and to make a love of	1,95 4,04
Calcare di Moltrasio	0.50	2,19 3,80
Marmo di Candoglia sul Lago maggiore	2,70	2,27 4,17
Calcare d'Ornavasso ,	comborroop to	2.75 6,66 3,15 4,79
Calcare di Breno	2,71	
Marmo bianco di Carrara		3,20 3,29 a 5,15
Calcare oscuro di Saltrio	2,72	3,40 7,92
Marmo nero di Varenna	2,72	3,58 5,19
Marmo di Canora	2,70	3,60
Marmo di Genova		3,76 a 5,74
Marmo di Muzzo	In one work	4,05 6,92
Marmo di Creola		4,10 7,90
Marmo di Creola	o minimum mily	4,20 5,84
Calcare bianco di Lovera	ke manufirth	4,30 5,93
Marmo turchino di Genova	2,71	5,00
Marmo turchino di Genova	1,40 a 2,20	0,04 a 0,90
Pietre silicee mezzane	1,20 2,60 2,60 2,90	0,90 4,20
Pietre silicee dure	2,60 2,90	4,20 8,00
Ceppo mezzano di Brembate	0.70	0,80 1,20
Ceppo gentile di Brembate	2,30	0,83 2,50
Ghiandone di Verona	2,21	1,82 3,71 1,40 2,97
Pietra arenaria tenera di Vigano	2,21	1,50 4,33
Pietra arenaria di Viggiù	2,23	2,19 4,29
Chiandone di Valmadrera		2,32 4,11
Ghiandone di Valmadrera	2,61	2,63 5,10
Arenaria di Sarnico	1000	3,37 5,42
Arenaria porfirica Sunona di Lovere	II I burn to the	3,65 5,87
Cornettone argentino di Viganò	1300	4,36 4,96
Cornettone argentino di Vigano	2,66	4,62 6,92
Granito bigio di Alzo sul Lago d'Orta	2,66	6,80
Granito rosso di Baveno	2,60 2,62	6,90
Granito bigio di Alzo sul Lago d'Orta	2,62	6,90 7,90 8,00 4,20
Sienite della Balma presso Biella	2,75	8,00
Granito rosso di Baveno Granito della Riva di Chiavenna sul Lago di Como Sienite della Balma presso Biella Pietra argillosa di Firenze Pietre vulcaniche tenere Pietre vulcaniche mezzane Pietre vulcaniche dure Pietra pomice Tufo di Roma Lava tenera di Napoli Lava grigia di Roma Lava di Napoli Lava di Napoli Basalti	0.60 0 0 00	0.74 0.070
Pietre vulcaniche mezzane	9 90 9 60	9 30 5 00
Pietre vulcaniche dure	2,60 2,95	5 90 90 00
Pietra pomice	0.60	0.34
Tufo di Roma	1.22	0.57
Lava tenera di Napoli	1.72	1.60
Lava grigia di Roma	1,97	2,28
Lava di Napoli	2,61	5,92
Basalti	2.95	20.00

Molti dei valori di R" contenuti in questa tavola vennero ricavati da una recente pubblicazione delle interessanti esperienze sulla resistenza dei materiali, state instituite nel R. Istituto tecnico superiore di Milano, per cura del distinto professore Celeste Clericetti. I valori del peso medio del decimetro cubo tornano utili allorquando, volendosi verificare la stabilità della colonna nella sezione più bassa del fusto, è necessario tener anche conto del suo peso.

21. Pilastri. — Si dà il nome di pilastri a quei sostegni che talvolta si costruiscono invece delle colonne, e che presentano una sezione rettangolare invece d'una sezione circolare.

I pilastri, al pari delle colonne, possono essere isolati, oppure addossati ad un masso murale. Nel primo caso hanno generalmente sezione quadrata; fanno l'ufficio di colonne isolate; e come queste presentano le tre parti, base, fusto e capitello. Le proporzioni medie, fra il raggio inferiore del fusto di una colonna, le altezze e gli aggetti, convengono pure pei pilastri quando al raggio si sostituisca il semi-lato della loro sezione quadrata, la quale generalmente non varia da un estremo all'altro del fusto.

I pilastri addossati a muri possono avere su questi degli aggetti variabili fra limiti assai lontani. Difficilmente però questi aggetti sono maggiori dei 3/4 e minori di 4/10 della larghezza dei pilastri a cui si riferiscono.

Occorrendo di dover verificare la stabilità di pilastri in muratura od in pietra, si ricorrerà alla formola ed ai dati del precedente numero.

22. Sostegni e colonne in legno. — In molte costruzioni appartenenti al dominio dell'architettura civile e dirette ad uno scopo industriale, ben di frequente ai pilastri ed alle colonne in muratura od in pietra si sostituiscono i sostegni o le colonne in legno.

Chiamando

P il peso che il sostegno deve sopportare,

p il peso della unità di volume del legname di cui il sostegno è formato,

R" il coefficiente di rottura per pressione dello stesso legname, n" il relativo coefficiente di stabilità,

h l'altezza del sostegno ed

Ω la superficie della sua sezione retta,

si ha: che la pressione sulla base inferiore del sostegno è

e che quindi l'equazione determinatrice di Ω risulta

$$P + p h \Omega = n'' R'' \Omega$$
.

Il valore di n'' si deve assumere non maggiore di 4/10; ed i valori di p e di R'', a seconda della diversa essenza del legname e per quelli che ordinariamente si impiegano come sostegni, si possono prendere come risulta dalla seguente tavola:

INDICAZIONE DEI LEGNAMI										del decimetro cubo	valore di R' ossia resistenza alla rottura per pressione riferita al millimº quadro				
Abete bianco		101						1		No.	107		ANY.	Cg 0,50	Cg 1,50
Abete giallo											100			0,67	2,25
Larice rosso														0,70	4,50
Olmo			7.4					1					V	0,73	2,00
Pino						i e	%					3.0		0,58	1,90
Quercia debol	e											4		0,76	4,25
Quercia forte			500			14		1						0,85	6,50

Una volta determinato il valore di Ω , essendo note tutte le dimensioni della sezione retta del sostegno meno una, si calcola questa dimensione incognita, e quindi si paragona l'altezza h del sostegno con quella dimensione della sezione retta che costituisce la sua grossezza g, la qual grossezza è il lato minore della sua sezione retta per un sostegno parallelepipedo, ed il diametro per un sostegno cilindrico. Se $\frac{h}{g} < 10$ o al più = 10, si ritengono come definitivi i risultati ottenuti cogli accennati calcoli; se invece $\frac{h}{g} > 10$, si

i risultati ottenuti cogli accennati calcoli; se invece $\frac{h}{g} > 10$, si procede ad una nuova determinazione di Ω risolvendo l'equazione

$$P + p h \Omega = \frac{n'' R'' \Omega}{m},$$

dove m rappresenta un coefficiente di riduzione (Resistenza dei ma-

teriali e stabilità delle costruzioni, num. 55), il cui valore deve variare col rapporto $\frac{h}{g}$ come lo indica la tavola che segue:

Rapporto $\frac{h}{g} = 10$, 15, 20, 25, 30, 35, 40, 45, 50, 60. Coefficiente m = 1, 1,2, 1,5, 1,9, 2,4, 3,1, 4, 5, 6,8, 12. Quando il rapporto dell'altezza alla grossessa dei sostegni non è uno di quelli contenuti nella tavola, si trova il coefficiente di riduzione, che va abbastanza bene pel rapporto dato, col metodo delle parti proporzionali.

Allorquando vuolsi determinare un lato della sezione retta di un sostegno di quercia, di larice rosso, di pino resinoso e d'abete, avente sezione quadrata oppure sezione rettangolare, si possono anche utilmente impiegare le equazioni di stabilità risultanti dalle forme empiriche di Hodgkinson (Resistenza dei materiali e stabilità delle costruzioni, num. 36). Queste equazioni, chiamando

a il lato, in centimetri, della sezione retta di un sostegno a base quadrata,

b il lato maggiore, pure in centimetri, della sezione retta di un sostegno a base rettangolare,

c il lato minore della stessa base, anche espresso in centimetri,

h l'altezza del sostegno in decimetri,

T" la forza premente espressa in chilogrammi,

 α un coefficiente numerico variabile colla qualità del legname, n'' il coefficiente di stabilità,

sono: pel sostegno a sezione retta quadrata

$$n'' \propto \frac{a^4}{h^2} = T''$$
;

pel sostegno a sezione retta rettangolare

$$n'' \propto \frac{b c^3}{h^2} = T''$$
.

Il coefficiente di stabilità n'' non si assume generalmente maggiore di 1/10, ed il coefficiente α si può prendere eguale a

1600 per l'abete giallo,

1800 per la quercia debole,

2142 per il larice rosso e pel pino resinoso,

2565 per la quercia forte.

La penultima equazione serve a ricavare a quando sono note le quantità h e T", e l'ultima si presta alla determinazione di b o di c quando, oltre di conoscere h e T", si conosce c o b.

25. Sostegni e colonne in ghisa. — Nelle moderne costruzioni, e principalmente in quelle che si fanno per iscopi industriali, sono vantaggiosi i sostegni in ghisa, la quale viene per tali lavori preferita al ferro, sia per la gran resistenza che presenta allo schiacciamento, sia per le forme ornamentali che si possono dare alle colonne con essa formate.

I sostegni in ghisa si fanno pieni, allorquando importa di rendere la minima possibile la loro grossessa; in tutte le altre circostanze è vantaggioso il farli cavi. Quando sono pieni, la loro sezione orizzontale suol essere un quadrato, un circolo o una croce a braccia eguali o disuguali. Quest'ultima disposizione è la più conveniente sotto il riguardo dell'economia di materiale, ma esige un po' più di larghezza, e, sotto il punto di vista dell'arte, pare meno commendevole delle altre due, perchè essa è meno facile ad apprezzarsi e non offre le medesime risorse d'ornamentazione.

Qualunque sia la forma della sezione retta dei sostegni in ghisa, conviene fare in modo che essi risultino più larghi verso il mezzo della loro altezza che alle loro estremità, giacchè quasi sempre sono soggetti ad inflettersi prima di rompersi. Questo rigonfiamento, che, senza essere perfettamente motivato, qualche volta venne praticato nelle colonne in pietra è d'un' incontestabile utilità nelle colonne in ghisa e produce un buon effetto, in quanto manifesta un giudizioso impiego della materia.

I capitelli e le basi sono indispensabili nei sostegni in ghisa, allorquando la costruzione che sopportano e quella nella quale trovansi stabilite le loro estremità inferiori, sono eseguite in materiali meno resistenti dell'indicato metallo; giacchè è allora essenziale di ripartire le pressioni sopra superficie maggiori di quelle che presentano le sezioni rette dei sostegni. Nell'intento poi di ben fermare superiormente ed inferiormente questi sostegni, si lasciano abitualmente dei tenoni più o meno sporgenti al di sopra dei capitelli ed al di sotto delle basi. Alcune volte i sostegni in ghisa si dispongono per gruppi di due, di tre od anche di quattro, ed è allora indispensabile di stabilire fra essi una tale solidarietà che non possano separatamente inflettersi. Perciò si uniscono, a determinate altezze, mediante collari di ferro, e si fa in modo che i tenoni dei capitelli vengano ad attraversare una medesima piattaforma sovr'essi stabilita.

I sostegni cavi sono da preferirsi a quelli pieni, sotto il doppio rapporto dell'economia e dell'aspetto che presentano. Essi permettono di far sopportare una più grande pressione ad una medesima quantità di materia, giacche le resistenze rapidamente decrescono, a misura che aumenta il rapporto dall'altezza alla grossezza; e, più apparenti, essi hanno qualche cosa di più monumentale, e più efficacemente possono contribuire alla bellezza dell'edifizio al quale essi appartengono. Il vuoto praticato nel loro interno può d'altronde essere utilizzato in diverse maniere, e soventi volte lo è per dare scolo alle acque pluviali.

I sostegni in ghisa aventi sezione circolare e presentanti quindi la forma di colonne, sono quelli che meglio convengono nelle ordinarie circostanze; ma la proporzione d'osservarsi fra la loro altezza ed il loro diametro deve essere ben diversa da quella che si adotta nelle colonne in pietra. La ghisa è più resistente della pietra, e, per questo motivo, non solo comporta, ma esige proporzioni più leggiere e svelte. Molti costruttori assumono il diametro delle colonne in ghisa variabile fra 1/16 ed 1/25 della loro altezza.

In quanto alla spessezza delle colonne in ghisa, convien innanzi tutto osservare, che le esigenze della loro esecuzione per via di fusione non permettono che si vada al di sotto di certi limiti dipendenti dall'altezza delle colonne, e questi limiti si possono fissare di

> 12 millimetri per le colonne alte da 2 a 5 metri 15 " " 5 a 4 "

Ciò premesso, volendosi determinare la superficie della sezione retta che deve presentare un sostegno in ghisa, di forma e di altezza prestabilita, e destinato a sopportare un dato peso, si chiamino:

P la pressione alla quale il sostegno deve trovarsi sottoposto;

p il peso dell'unità di volume della ghisa;

R" il suo coefficiente di rottura per pressione;

n" il relativo coefficiente di stabilità;

h l'altezza del sostegno;

Ω la superficie della sua sezione retta.

L'equazione determinatrice di Ω è come quella del numero precedente, ossia

$$P + p h \Omega = n'' R'' \Omega \tag{1},$$

nella quale conviene assumere per valore di p, chilogrammi 7,20 per ogni decimetro cubo; per valore di R", 63 o tutto al più 70 chilogrammi per millimetro quadrato; e per valore di n", 1/6 o tutto al più 1/5. Calcolato il valore di Ω, essendo cognite tutte le dimensioni della sezione retta del sostegno meno una, si passa alla ricerca di questa dimensione incognita, e quindi si paragona l'altezza h del sostegno con quella dimensione della sezione retta che costituisce la sua grossezza g. Nel caso della sezione quadrata questa grossezza non è altro che il suo lato; nel caso della sezione rettangolare vien essa rappresentata dal lato minore del rettangolo; è il diametro esterno della colonna nel caso della sezione circolare; e nel caso della sezione a croce è la minima delle due dimensioni della sezione, secondo gli assi delle braccia. Nel caso, ben raro nella pratica, in cui trovasi $\frac{h}{q}$ < 5 si ottiene come definitivo il risultato ottenuto colla formola (1); diversamente bisogna procedere ad una nuova determinazione di Ω risolvendo l'equazione

$$P + p h \Omega = \frac{n'' R'' \Omega}{m}$$
 (2),

dove m rappresenta un coefficiente di riduzione (Resistenza dei materiali e stabilità delle costruzioni, num. 35), il cui valore deve variare col rapporto $\frac{h}{g}$ nel modo espresso dalla seguente tabella:

Rapporto
$$\frac{h}{g}$$
=5, 12, 24, 36, 48, 60.
Coefficiente m =1, 1,2, 2, 5, 6, 12.

Se il rapporto dell'altezza alla grossezza del sostegno non è uno di quelli contenuti nella tavola, si trova col metodo delle parti proporzionali il coefficiente di riduzione che va abbastanza bene pel particolare rapporto che si ha.

Quando si tratta di determinare la grossezza di una colonna vuota in ghisa, si può preventivamente fissare il diametro esterno, cosicchè, conoscendosi l'altezza della colonna, si conosce pure il rapporto $\frac{h}{g}$. Allora si calcola la superficie Ω mediante la formola (2); si deduce il diametro interno: e la metà della differenza fra il diametro esterno ed il diametro interno rappresenta la spessezza della colonna.

Pago reller gloiged per ogni dem. cubire by het.

Il diametro delle colonne piene, od uno dei due diametri delle colonne vuote in ghisa, si può anche determinare convenientemente applicando le formole di Hodgkinson (Resistenza dei materiali e stabilità delle costruzioni, num. 36). Queste formole, dicendo

d il diametro di una colonna piena espresso in centimetri,

d' e d" i due diametri, esterno l'uno ed interno l'altro, di una colonna vuota, pure espressi in centimetri,

h l'altezza della colonna in decimetri,

T" la forza premente espressa in chilogrammi,

α un coefficiente numerico che si può assumere di 10676,

n'' il coefficiente di stabilità eguale ad 1/6 o tutto al più ad 1/5, sono: per le colonne piene

$$n'' \propto \frac{d^{3,6}}{h^{1,7}} = T'';$$

per le colonne vuote

$$n'' \propto \frac{d'^{3,6} - d''^{3,6}}{h^{1,7}} = T''.$$

Di più facile maneggio delle equazioni or ora stabilite sono quelle che si possono derivare dalle formole dell'ingegnere Love (Resistenza dei materiali e stabilità delle costruzioni, num. 37). Considerando il caso di una colonna piena, e chiamando

d il suo diametro espresso in centimetri,

h la sua altezza pure in centimetri, e attribuendo ad n'' ed a T'' i significati che già loro vennero dati in questo numero, si ha

$$n'' \frac{7500 d^4}{4,846 d^2 + 0,0043 h^2} = T'',$$

la quale serve a determinare d quando si conoscono h e T''.

Se invece di una colonna piena si ha una colonna vuota, per cui d' rappresenta il diametro esterno, e

d" il diametro interno, espressi in centimetri, s'incomincia a calcolare la quantità n"R'₂ ponendo

$$n'' R'_2 = n'' \frac{7500 d'^4}{1,846 d'^2 + 0,0043 h^2};$$

dopo si passa alla ricerca della quantità R"2, data da

$$R''_2 = n'' R'_2 - T''$$

e finalmente si viene alla determinazione del diametro interno d'' mediante la formola

$$n'' \frac{7500 \, d''^4}{1,846 \, d''^2 + 0,0043 \, h^2} = R''_2.$$

Allorquando, essendo noto il diametro esterno d', si è calcolato il diametro interno d'' di una colonna vuota in ghisa, si verifica se la differenza d'-d'' è maggiore, eguale o minore del doppio della spessezza limite conveniente all'altezza della colonna proposta; nei primi due casi si ritiene per buono il diametro interno trovato; nel terzo caso si tiene per diametro interno la differenza fra il diametro esterno e il doppio dell'indicata spessezza limite.

24. Sostegni e colonne in ferro. — Il ferro resiste alla compressione meno della ghisa, e per questo motivo generalmente viene questa preferita a quello, nella formazione di sostegni e di colonne destinate a sopportare delle pressioni dirette secondo i loro assi. Non è però da dirsi che il ferro debbasi totalmente proscrivere per questi usi; esso è meno fragile della ghisa, e per questa ragione con vera utilità s'impiega in quelle costruzioni nelle quali i pezzi fragili facilmente possono compromettere la loro stabilità.

Dicendo

P il peso che il sostegno deve sopportare,
p il peso dell'unità di volume del ferro,
R" il suo coefficiente di rottura per pressione,
n" il relativo coefficiente di stabilità,
h l'altezza del sostegno, ed
Ω la superficie della sua sezione retta,
si ha la seguente equazione determinatrice di Ω

$$P + ph\Omega = n'' R'' \Omega \tag{1},$$

nella quale convien generalmente porre: per valore di p, chilogrammi 7,77 per ogni decimetro cubo; per valore di R'', chilogrammi 25 per millimetro quadrato; e per valore di n'', 1/6 o tutto al più 1/5. Una volta calcolato il valore di Ω , siccome devono essere note tutte le dimensioni della sezione retta del sostegno meno una, riesce facile passare alla ricerca di questa dimensione incognita.

Pero del forso por agent dem entre by 7.77. - Confirmed diretteres que projetone Ky. 25 per millionede quedels

Dopo di ciò, si paragona l'altezza h del sostegno con quella sua dimensione orizzontale che ne costituisce la grossezza g, la quale nel caso della sezione retta rettangolare è rappresentata dal lato minore di questa sezione, mentre lo è dal diametro nel caso della sezione retta circolare. Il risultato ottenuto calcolando la superficie Ω colla formola (1) non è quasi mai quello da assumersi come definitivo, giacchè non avviene quasi mai che il rapporto $\frac{h}{g}$ sia minore od eguale a 3. Generalmente il detto rapporto è maggiore di 3, e bisogna allora procedere ad una nuova determinazione di Ω mediante l'equazione

$$P + p h \Omega = \frac{n'' R'' \Omega}{m},$$

nella quale m è un coefficiente di riduzione (Resistenza dei materiali e stabilità delle costruzioni, num. 35) da assumersi come risulta dalla seguente tavola:

Rapporto
$$\frac{h}{g}$$
=3, 12, 24, 36, 48, 60. Coefficiente m =1, 1,2, 2, 3, 6, 12.

Allorquando il rapporto dell'altezza h alla grossezza g del sostegno non è uno di quelli contenuti nella tavola, si trova il coefficiente di riduzione che va abbastanza bene pel caso particolare usando del metodo delle parti proporzionali.

Dalla formola empirica data dall'ingegnere Love per calcolare la resistenza alla rottura per pressione nelle colonne piene di ferro (Resistenza dei materiali e stabilità delle costruzioni, num. 37), riesce facile il dedurre l'equazione di stabilità conveniente alla determinazione del diametro di queste colonne. Questa equazione, dicendo

d il diametro della colonna espresso in centimetri,

h la sua altezza pure in centimetri, e

T" la forza premente secondo l'asse della colonna espresso in chilogrammi, risulta

$$n'' \frac{2500 d^4}{1,973 d^2 + 0,00064 h^2} = T'',$$

nella quale n'' è il coefficiente di stabilità da assumersi, come già si è detto in questo numero.

Quando invece del diametro di una colonna piena in ferro vuolsi trovare il diametro interno d'' di una colonna vuota, conoscendosi di già il suo diametro esterno d', s'incomincia a trovare la quantità n'' R'₂ (Resistenza dei materiali e stabilità delle costruzioni, num. 45) mediante la formola

$$n'' R'_2 = n'' \frac{2500 d'^4}{1,973 d'^2 + 0,00064 h^2}$$
 (2),

dopo si viene al calcolo della quantità R"2 data da

$$R''_{2} = n''R'_{2} - T''$$

e finalmente si deduce il valore di d" dall'equazione

$$n'' \frac{2500 \, d''^4}{1,973 \, d'_9 + 0,00064 \, h^2} = R''_2 \tag{3}.$$

Le lunghezze d', d'' ed h devono essere espresse in centimetri ed in chilogrammi le forze $n''R'_2$, T'' ed R''_2 .

- 25. Osservazione relativa al modo di resistere di più sostegni assieme uniti. - In parecchie circostanze, e principalmente i sostegni metallici, trovansi disposti per gruppi di due, di tre ed anche di quattro. Avvenendo questo, è utile di stabilire fra essi una tale solidarietà che non possano inflettersi separatamente, e per ottenere questo basta unirli a differenti altezze mediante collari in ferro, e fare in modo che una medesima piastra venga attraversata dai tenoni dei capitelli. Allorquando i sostegni sono in numero di tre o di quattro, si valuta la resistenza di ciascun sostegno, considerandolo come avente per altezza la massima distanza verticale fra due collari successivi; oppure, se vuolsi introdurre nei calcoli l'altezza totale, si considera il loro complesso siccome formante un sostegno vuoto d'un sol pezzo. In tutti i casi, si trova una resistenza superiore al triplo o al quadruplo di quella di un sostegno isolato. Quando i sostegni sono disposti per gruppi di due, questo benefizio non è assicurato che secondo la direzione della linea che li unisce.
- 26. Piattabande. Le piattabande (Lavori generali d'architettura civile, stradale ed idraulica, num. 223, 224, 225 e 228) sono quelle vôlte che si costruiscono nella grossezza dei muri onde coprire

le luci rettangolari in essi praticate, e che sovente s'impiegano in sostituzione degli architravi sulle colonne e sui pilastri.

Queste vôlte hanno generalmente grossezza costante dalla chiave all'imposta, e nelle ordinarie circostanze della pratica, in cui vi sono al di sopra di esse dei sordini (fig. 6), si può ritenere siccome accettabile: la spessezza corrispondente alla dimensione massima del mattone, ossia di circa metri 0,24 per aperture non eccedenti un metro; quella corrispondente alla dimensione media aumentata della dimensione massima del mattone, ossia di circa metri 0,36 per aperture comprese fra metri 1 ed 1,50; quella corrispondente a due volte la dimensione massima del mattone, ossia di circa metri 0,48, per aperture di 1,50 a 2 metri; quella corrispondente alla dimensione media del mattone aumentata di due volte la dimensione massima, ossia di circa metri 0,60 per aperture da metri 2 a 2,50; e finalmente quella corrispondente a tre volte la dimensione massima del mattone, ossia di circa metri 0,72 per aperture di 2,50 a 3 metri.

Per giustificare in qualche modo come le indicate dimensioni per la grossezza di una piattabanda siano ammissibili in pratica, e come conducano ad un eccesso anzichè ad un difetto di stabilità, ecco come assai semplicemente si può procedere. Essendo ABCD (fig. 12) una piattabanda al di sopra della quale esiste il vôlto di scarico o sordino HKINML, si può supporre che essa sopporti il proprio peso non che quello del masso murale DCIKH, ed in pari tempo si può considerare siccome un cuneo posto fra due ritegni resistenti e su essi appoggiato per le due facce AD e BC. Ciò premesso, prendendo ad esame una parte di piattabanda lungo l'unità e chiamando

2 a la larghezza AB dell'apertura che essa copre,

2 α l'angolo AOB dei due piani d'imposta,

b l'altezza FG del piano delle imposte del sordino, che si suppone a tutta monta, sull'estradosso della piattabanda,

II il peso dell'unità di volume di muratura,

T la pressione su ciascuno dei giunti d'imposta AD e BC,

Q la componente orizzontale di questa pressione,

c la grossezza EF della piattabanda,

si ha: che le lunghezze OE ed OF sono date da

 $\overline{OE} = a \cot \alpha$,

 $\overline{OF} = a \cot \alpha + c;$

che la semi-larghezza superiore FC della piattabanda, cui si suppone eguale la semi-corda GI del sordino, vien espressa da

$$\overline{FC} = (a \cot \alpha + c) \tan \alpha = a + c \tan \alpha;$$

che il peso della piattabanda A BCD risulta

$$\Pi \left[(a+c\tan \alpha)(a\cot \alpha+c)-a^2\cot \alpha \right] = \Pi \left(2ac+c^2\tan \alpha\right);$$

che il peso del masso murale parallelepipedo DCIH vale

$$2 \prod b (a + c \tan \alpha);$$

e finalmente che il peso del masso murale semi-cilindrico HKC si esprime con

$$\frac{1}{2} \prod \pi (a + c \operatorname{tang} \alpha)^2.$$

Se ora, trascurando l'attrito e la coesione, si esprime che il cuneo ABCD è in equilibrio sotto l'azione dell'intiero peso che sopporta e delle reazioni T, normali ai giunti d'imposta, si ha

$$2 \operatorname{T} \operatorname{sen} \alpha = \Pi \left[2a c + c^{2} \operatorname{tang} \alpha + 2b (a + c \operatorname{tang} \alpha) + \frac{1}{2} \pi (a + c \operatorname{tang} \alpha)^{2} \right],$$

dalla quale, per essere Q=T cos a, si deduce

$$2Q \tan \alpha = \Pi \left\{
\begin{array}{l}
\left(\frac{1}{2}\pi \tan \alpha + 1\right)c^{2} \tan \alpha \\
+2\left[a\left(\frac{1}{2}\pi \tan \alpha + 1\right) + b \tan \alpha\right]c \\
+a\left(2b + \frac{1}{2}\pi a\right)
\end{array}\right\} (1).$$

Ciò premesso, si consideri la piattabanda siccome un solido com-L'Arte di fabbricare Costruzioni civili, ecc. — 4 presso normalmente alla sezione verticale EF dalla forza Q, si ammetta che la rottura tenda a manifestarsi alla chiave per aprimento verso l'intrados e per rotazione attorno allo spigolo F dell'estrados, e vogliasi che la piattabanda sia stabile anche nell'ipotesi che la pressione riferita all'unità di superficie su EF varii linearmente da E in F, in modo da essere nulla in E e massima in F. In quest'ipotesi, rammentando quanto si è stabilito nel numero 181 del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, il punto d'applicazione della pressione sul giunto EF si deve supporre posto ad un terzo di FE a partire da F; e quindi, come facilmente risulta da quanto si è detto nei numeri 137 e 185 dello stesso volume, la pressione massima riferita all'unità di superficie ha luogo in F. Questa pressione massima vale

$$2rac{Q}{c}$$
 ,

e, affinchè siavi stabilità, è necessario che c non sia minore di quello che ricavasi dall'equazione

$$2\frac{Q}{c} = n''R'',$$

essendo n'' il coefficiente di stabilità ed R'' il coefficiente di rottura per pressione della materia di cui la piattabanda è formata. Sostituendo nell'ultima equazione il valore di $2\,Q$ dato dalla (1) si trova

$$\frac{\Pi}{\tan \alpha} \left\{ \begin{array}{c} \left(\frac{1}{2}\pi \tan \alpha + 1\right) c \tan \alpha \\ +2\left[a\left(\frac{1}{2}\pi \tan \alpha + 1\right) + b \tan \alpha\right] \\ +\frac{a}{c}(2b + \frac{1}{2}\pi a) \end{array} \right\} = n'' R'' \quad (2).$$

la quale permette di determinare la grossezza c della piattabanda quando si conoscano le quantità Π , a, b ed α , non che i due coefficienti n'' ed R''.

Generalmente l'angolo AOB, formato dai due piani d'imposta, è di 60°, e quindi l'angolo ∝ risulta di 50°. In questo caso si ha

$$\tan \alpha = \frac{1}{\sqrt{3}} = 0,577$$

$$\frac{1}{2} \pi \tan \alpha + 1 = 1,907$$

$$\left(\frac{1}{2} \pi \tan \alpha + 1\right) \tan \alpha = 1,101,$$

e l'equazione (2) si riduce a

1,732 .
$$\Pi \left\{ 1,101 \cdot c + 2(1,907 \cdot a + 0,577 \ b) + \frac{a}{c} (2b + 1,571 \cdot a) \right\} = n'' R''.$$

Ponendo ora in quest'equazione II = 2200cg per metro cubo, $R'' = 500000^{cg}$ per metro quadrato e $b = 1^m$, per $2a = 1^m$ e $c=0^{m}.24$ si trova n''=0.069, per $2a=2^{m}$ e $c=0^{m}.48$ risulta n'' = 0.098, per $2a = 3^m$ e $c = 0^m$, 72 si deduce n'' = 0.127. Questi valori di n" fanno vedere come le regole pratiche conducano ad un eccesso di stabilità per aperture di 1 metro, al giusto grado di stabilità per aperture di 2 metri, e ad una lieve deficienza di stabilità per aperture di 3 metri. Se però si osserva che nell'instituire i calcoli non si tenne conto dell'attrito e della coesione delle malte, che difficilmente l'altezza b arriva ad 1 metro, che ben di frequente il sordino è a monta depressa, che quasi sempre i mattoni possono sopportare un po' più di 500000 chilogrammi per metro quadrato, e che le dimensioni stesse dei mattoni esigono che si facciano variare le grossezze delle piattabande della loro dimensione media, agevolmente si comprende quanto siano razionali le regole pratiche sovraindicate, e come la loro applicazione non possa generalmente condurre ad inconvenienti.

27. Archi. — Gli archi od arcate (Lavori generali d'architettura civile, stradale ed idraulica, num. 223, 226, 227 e 228) sono quelle vôlte cilindriche che sovente si costruiscono nelle grossezze dei muri, per lasciare delle aperture arcuate, per trasmettere le pressioni su piedritti resistenti e così preservare da eccessive pressioni le parti deboli dei muri, per far gravitare il peso di un muro sopra colonne o sopra pilastri ad esso sottostanti, e finalmente per

dare solidi appoggi a quelle vôlte, che, per le particolari circostanze in cui si trovano, non si possono sostenere mediante muri pieni.

Gli archi, di cui si fa uso nelle costruzioni civili, ben sovente hanno grossezza costante; però non sono rari i casi in cui si costruiscono di grossezza crescente dalla chiave all'imposta, e quando sono in mattoni si ottiene quasi sempre quest'aumento di grossezza mediante riseghe. Le corde e le saette degli archi, le loro direttrici, i pesi che devono sopportare e la distribuzione di questi pesi sono gli elementi che influiscono sulla determinazione delle loro grossezze; e, volendosi dare il progetto di un arco, dietro l'esempio di archi analoghi a quello che vuolsi progettare, già costrutti e che hanno fatto buona prova, oppure mediante formole empiriche dedotte da numerose ed accurate osservazioni su opere che hanno bene riuscito, conviene innanzi tutto assumersi la grossezza che pare conveniente di assegnare alla chiave. Moltissime sono le formole empiriche usate dagli ingegneri pratici per dedurre la detta grossezza, ed immediatamente si passa a stabilirne alcune, ben semplici e contemporaneamente utili nell'esecuzione di archi per costruzioni civili.

La grossezza di un arco alla chiave non può essere al di sotto di un certo limite determinato dalla forma e dimensioni dei materiali che s'impiegano per la sua costruzione, e contemporaneamente deve variare col suo raggio allorquando è circolare la direttrice della superficie d'intrados dell'arco. Segue da ciò, che analogamente a quanto già fecero gli ingegneri Rondelet, Perronet, Saint-Guilhem e Dejardin, si può assumere la grossezza x alla chiave, siccome espressa dalla semplicissima formola

$$x=a+br$$
,

essendo a e b due coefficienti da determinarsi empiricamente in seguito a numerose ed accurate osservazioni su archi già costrutti e che hanno fatto buona prova, ed essendo r il raggio dell'arco circolare costituente la direttrice della superficie d'intrados. Ora, osservando gli archi che vengono eseguiti nelle costruzioni civili, e tenendo presente che generalmente s'impiegano mattoni nella costruzione di questi archi, riesce facile il convincersi che non conviene ammettere per a un valore inferiore alla dimensione massima del mattone che è di circa metri 0,24. Ponendo poi nell'ultima formola per x e per r le grossezze alla chiave ed i raggi delle direttrici dell'intrados di archi già esistenti, e facendo quest'opera-

zione per molti archi a tutta monta, per molti archi dell'ampiezza di 90° e per molti altri dell'ampiezza di 60°, si arriva a trovare che la media aritmetica dei valori di b è: di circa 0,40 per gli archi a tutta monta; di circa 0,07 per gli archi dell'ampiezza di 90° e di circa 0,05 per gli archi dell'ampiezza di 60°. Segue da ciò che, per determinare le grossezze alla chiave di quegli archi la cui superficie d'intrados ha per direttrice un arco di circolo, si possono impiegare le formole empiriche:

$$x = 0^{\text{m}}, 24 + 0, 10 \, . r$$
 (1)

quando l'arco è a tutta monta;

$$x = 0^{\text{m}}, 24 + 0,07 \cdot r$$
 (2)

quando l'arco è a monta depressa coll'ampiezza di 90°; ed

$$x = 0^{\text{m}}, 24 + 0,05 \cdot r$$
 (3)

quando l'arco è pure a monta depressa, ma coll'ampiezza di 60° . In queste formole il valore di r si deve esprimere in metri, ed allora anche la grossezza x trovasi riferita all'unità metro. Per archi la cui ampiezza è compresa fra 180° e 90° si adotterà per x un valore intermedio a quelli dati dalle formole (1) e (2); ed analogamente si assumerà per x un valore intermedio a quelli dati dalle formole (2) e (3) per archi la cui ampiezza è compresa fra 90° e 60° . Avvenendo di dover costrurre un arco avente per direttrice della superficie d'intrados una mezza ellisse od una mezza ovale, si può determinare la grossezza alla chiave mediante la formola (2), ponendo in essa per r il raggio di curvatura nel punto più alto della direttrice.

Le riportate formole empiriche ed altre, che l'architetto può impiegare nella determinazione delle grossezze degli archi alla chiave, non tengono conto di elementi che hanno la massima influenza sulla stabilità delle costruzioni, quali sono le resistenze dei materiali ed i carichi sotto i quali si devono trovare. Segue da ciò, che le formole empiriche non sono altro che mezzi per dare delle indicazioni approssimative; che si possono ridurre i risultati a cui esse conducono quando si devono porre in opera dei materiali molto resistenti; e che per contro può convenire di aumentarli quando questi materiali sono di cattiva qualità, ed in tutti quei casi in cui gli archi devono sopportare dei pesi straordinarii. Negli archi di struttura laterizia la grossezza alla chiave sarà multipla della

dimensione media del mattone, e, quantunque le formole empiriche diano sempre un valore di x maggiore di metri 0,24, pure in quelli di raggio non eccedente il metro e sopportanti un masso murale elevantesi sull'estrados dell'arco non più di metri 0,25 si può assumere la dimensione massima del mattone per grossezza dell'arco alla chiave.

Determinata la grossezza di un arco alla sua chiave, conviene decidere se si vuol esso conservare di grossezza uniforme, oppure se vuolsi che questa grossezza cresca dalla chiave all'imposta. La prima disposizione generalmente si adotta negli archi di piccola corda, in quelli a monta depressa e quando non devono sopportare dei grandi carichi; mentre la seconda conviene negli archi che hanno una corda molto grande, che non sono a monta molto depressa e che devono sopportare dei grandi pesi. L'accrescimento di grossezza dalla chiave all'imposta non è subordinato ad una legge fissa; in generale però si ottengono degli archi in buone condizioni di stabilità, facendo in modo che nei giunti AB e CD (fig. 15) inclinati di un angolo di 60° colla verticale OF passante pel punto culminante dell'arco, siavi una grossezza doppia di quella adottata pel giunto EF alla chiave. Per determinare i giunti intermedii ai due AB e CD, si può descrivere l'arco circolare passante pei tre punti B, F e D. Se l'arco deve essere costrutto in mattoni coll'estrados a riseghe, si può far in modo che corrispondentemente ai giunti inclinati a 60° sul piano verticale passante per la generatrice più elevata della superficie d'intrados presentino le grossezze AB e CD (fig. 14) doppie della grossezza EF alla chiave, e stabilire tante riseghe che ciascuna di essa presenti il risalto della dimensione media del mattone in corrispondenza di giunti inclinati fra loro di angoli eguali. Così, essendo EF=0^m, 56 e quindi AB=CD=0^m, 72, siccome metri 0,36 equivalgono a tre grossezze medie di mattone, si possono dividere i due archi AE e CE in tre parti eguali e porre le riseghe in corrispondenza dei giunti determinati dai punti A, G ed H, C, K ed I.

Una volta eseguito il progetto di un arco, coll'assegnare ad esso le grossezze risultanti dalle esposte semplicissime regole, convien distinguere se esso trovasi nelle stesse circostanze di molti archi già costrutti e che hanno fatto buona prova, oppure se trovasi in condizioni eccezionali. Nel primo caso si può passare senz'altro alla sua costruzione; e nel secondo è necessario procedere alla verificazione della sua stabilità, applicando il metodo che verrà indicato nel numero 29, 30, 31, 32 e 33, e che direttamente emana da quanto si è detto nella parte già pubblicata di questo lavoro sull'arte di fabbricare, al capitolo XI del volume intitolato Resistenza

dei materiali e stabilità delle costruzioni. Trovandosi che l'arco presenta un conveniente grado di stabilità, si procede a farlo eseguire colle dimensioni primitivamente assegnategli; diversamente bisogna studiare le modificazioni da introdursi nelle sue dimensioni, per ottenere il progetto di un'opera la quale dopo la sua esecuzione possa trovarsi in buone condizioni d'equilibrio.

28. Piedritti. — Le piattabande e gli archi esercitano sui muri, sui pilastri e sulle colonne ed in genere sui piedritti che loro servono di sostegno, non solo delle pressioni verticali, ma ben anche delle considerevoli spinte orizzontali, per cui in essi può avvenire rottura per pressione, per scorrimento e per rovesciamento. Il maggior pericolo di rottura per schiacciamento ha generalmente luogo alla base dei piedritti; la rottura per scorrimento sovente tende manifestarsi presso l'imposta degli archi; e, se può aver luogo rovesciamento, esso per lo più avviene, o attorno ad uno spigolo appartenente al perimetro, oppure attorno ad una retta che passa per un vertice della base dei piedritti.

Nel caso di un piedritto P (fig. 15) sul quale trovano appoggio due archi eguali A, le due spinte orizzontali Q prodotte dagli archi sono eguali, e direttamente contrarie, esse si elidono, ed il piedritto P trovasi solamente sottoposto ad una forza comprimente, la cui intensità sulla sezione di base ab è data dal peso del piedritto P, aumentato della somma dei pesi dei due semi-archi A ed ancora

dalla somma di tutti i pesi che questi sopportano.

Se invece contro un piedritto P (fig. 16) viene ad appoggiare un sol arco, la spinta orizzontale Q, libera di manifestare la propria potenza, tende a produrre scorrimento su un giunto orizzontale cd situato presso l'imposta, e rovesciamento attorno allo spigolo b'c' della base del piedritto. La somma dei pesi del semi-arco A, del masso B e di quanto trovasi al disopra del piano orizzontale ef condotto pel punto culminante dell'estrados del detto arco, dà la pressione da cui deriva la resistenza d'attrito sul giunto cd; aggiungendo a questa somma di pesi quello del piedritto P, si ha quella forza, il cui momento rispetto allo spigolo b'c' costituisce il momento resistente al rovesciamento; e questa stessa forza rappresenta la pressione che ha luogo sulla base ab, la qual pressione non ammette generalmente una ripartizione uniforme sulla base.

Presentandosi il caso di un piedritto P (fig. 17) il quale sopporta due archi eguali ed opposti A non che un terzo arco B, le spinte orizzontali Q dei due primi, siccome eguali e direttamente contrarie, si elidono; mentre la spinta Q' tende a produrre scorrimento sulla

sezione orizzontale cd situata presso l'imposta e rovesciamento attorno allo spigolo esterno a'b' della base del piedritto. Sì l'uno che l'altro però di questi due fenomeni non possono avvenire senza che gli archi laterali A ne risentano l'influenza, per cui questi contribuiscono ad aumentare la resistenza allo scorrimento e la resistenza al rovesciamento. Segue da ciò che, nel calcolare la pressione che ha luogo su cd, per poi dedurre la resistenza dovuta all'attrito, bisogna anche tener conto dei pesi dei due semi-archi A non che di tutti i carichi che essi sopportano, e che lo stesso devesi fare tanto nel calcolo del momento resistente al rovesciamento attorno allo spigolo a'b', quanto nel calcolo della pressione sulla base ab.

Nei piedritti posti sugli angoli degli edifizii e sopportanti due archi A e B (fig. 18) le cui corde si trovano in due direzioni fra loro perpendicolari od anche in due direzioni inclinate sotto un angolo qualunque, le due spinte orizzontali 0 e 0' operano per produrre scorrimento e rovesciamento. Lo scorrimento tende a manifestarsi su un piano orizzontale cd situato presso le imposte degli archi nella direzione della diagonale CR del parallelogramma CQ, RQ',, i cui lati CQ, e CQ', oltre di essere paralleli alle spinte Q e Q', sono anche proporzionali alle loro intensità. Il rovesciamento tende manifestarsi attorno ad una retta passante per b', la cui direzione riesce determinabile con metodi analoghi a quelli che si adottano per la determinazione dell'asse neutro e delle linee di egual tensione e di egual pressione nei corpi sottoposti a flessione (Resistenza dei materiali e stabilità delle costruzioni, capitolo VI). Quando i due archi A e B sono eguali fra di loro, quando le loro imposte sono allo stesso livello e quando la sezione orizzontale a'b'e'f'g'h' del piedritto è simmetrica rispetto alla retta q'b', le due forze Q e Q' si trovano in uno stesso piano orizzontale, esse sono eguali, la loro risultante è nel piano verticale determinata dalla citata retta g'b', ed il rovesciamento tende a manifestarsi per rotazione attorno alla retta condotta per b' perpendicolarmente alla g'b'. Trascurando la coesione delle malte, la resistenza che si oppone allo scorrimento è quella d'attrito per la pressione prodotta sulla sezione orizzontale cd dal peso dei due semi-archi A e B, da tutti i pesi che essi sopportano e dal peso del masso murale che verticalmente elevasi sopra quella parte di cd sulla quale non gravitano gli accennati archi. Aggiungendo alla somma di tutti questi pesi quello del piedritto P, si ha la forza comprimente sulla total base a'b'e'f'q'h', ed il momento di questa forza rispetto all'asse di rotazione passante per b', costituisce il momento resistente al rovesciamento.

Per accertarsi in ogni caso se un piedritto destinato a sopportare piattabande od archi trovasi in buone condizioni di stabilità, conviene determinare le forze verticali e le spinte orizzontali che su esso operano, ed applicarvi quindi le equazioni di stabilità, quali vennero date nei capitoli III, V e VIII del volume sulla resistenza dei materiali e stabilità delle costruzioni, parlando delle resistenze alla pressione, allo scorrimento ed al rovesciamento. Le forze verticali si determinano in seguito alla destinazione ed alle dimensioni delle parti dell'edifizio che il piedritto è destinato a sopportare. Le spinte orizzontali si deducono: mediante la formola (1) del numero 26, per le piattabande; coi metodi di verificazione delle stabilità dei vôlti in muratura quali vennero dati nel capitolo XI del citato volume e quali trovansi applicati nei numeri che seguono, per gli archi. Dalle indicate equazioni di stabilità si deducono i coefficienti di stabilità, i quali accennano a piedritti posti in buone condizioni d'equilibrio, tuttavolta che siano essi minori di 1/10 se trattasi di pressione, e minori di 2/5 se trattasi di scorrimento e di rovesciamento.

La verificazione della stabilità dei piedritti, che riesce lavoro spedito e facile finchè trovansi in essi cimentate le sole resistenze alla pressione ed allo scorrimento, diventa generalmente lavoro assai lungo quando è necessario tener conto della resistenza al rovesciamento. Per buona sorte però nei più frequenti casi della pratica può essere di grande aiuto l'esperienza e l'osservazione, le quali insegnano non doversi temere la rottura per rovesciamento quando si faccia in modo che le spinte orizzontali degli archi due a due si elidano del tutto od almeno in parte, e quando si assegnino ai piedritti di spalla lunghezze non inferiori alla metà delle corde degli archi che essi sopportano.

29. Operazioni preliminari alla verificazione della stabilità di un arco. — La prima di queste operazioni consiste nel rappresentare in disegno il profilo ABCD (fig. 37) della metà dell'arco, il profilo ADEFG di un piedritto, ed il profilo CLMK del riempimento murale, che ben di frequente trovasi al di sopra dell'arco e che generalmente è terminato da un piano orizzontale.

Dopo di ciò, si divide il profilo dell'arco ABCD mediante linee rette normali alla curva d'intrados, facendo in modo che una di queste rette sia la b_5 K passante pel punto K in cui la retta XK, che rappresenta la parete interna del muro elevantesi al di sopra dell'arco, incontra la direttrice DC dell'estrados dell'arco medesimo; e, per ciascheduno dei punti di divisione che così si deter-

minano sulla detta direttrice dell'estrados, si conducono nella figura CLMK altrettante linee verticali, che si considerano siccome altrettanti giunti possibili di rottura. Supponendo che le indicate rette normali alla curva direttrice dell'intrados siano le b, c, b, c, b, c, b, c, b₄c₄ e bK, si fa generalmente in modo che gli angoli fatti da due successive di esse siano una parte aliquota dell'ampiezza dell'arco Bbs, allorquando quest'arco è circolare. Se il detto arco Bbs è una curva policentrica (Geometria pratica applicata all'arte del costruttore, parte prima, capitolo III), si procura che cada un giunto in corrispondenza di ciascuno dei punti di raccordamento e che i giunti intermedii risultino talmente disposti da dividere in parti eguali l'arco d'intrados che incontrano. Quando la direttrice dell'intrados è una curva ellitica od un'altra curva qualunque, i diversi giunti all'intrados si tracciano quasi sempre in modo da essere eguali gli sviluppi degli archi in cui essi dividono la direttrice dell'intrados. Nei casi frequenti della pratica in cui il riempimento murale CLMK è terminato superiormente da un piano orizzontale e che su questo piano trovano appoggio parecchi pezzi, i quali, come sarebbero le travi di un solaio, sono destinati a trasmettere delle forti pressioni sul detto masso murale, conviene prendere sulla orizzontale LM i punti per cui devono passare i giunti verticali del riempimento, in modo che essi corrispondano alla metà delle distanze che esistono fra i punti d'appoggio successivi; condurre pei punti così determinati sull'orizzontale LM altrettante verticali fino ad incontrare la curva d'estrados CK; e finalmente far passare i giunti normali alla curva d'intrados BA pel punto K, non che pei punti che restano determinati dalle dette verticali sulla curva d'estrados. Se avviene che la linea, rappresentante il profilo della superficie secondo cui superiormente termina il riempimento murale che trovasi al di sopra dell'arco, presenti dei vertici, conviene per questi condurre altrettanti giunti verticali nel riempimento, e considerare nell'arco i giunti normali all'intrados corrispondenti agli indicati giunti verticali, non che altri giunti intermedii a questi, qualora non si trovino essi sufficientemente vicini.

In seguito all'indicata scomposizione della figura BLMK b_5 , che per semplicità si suppone fatta in modo da dar luogo solamente a cinque parti, si procede alla determinazione degli angoli α_4 , α_2 , α_3 , α_4 ed α_5 che i giunti b_4c_1 , b_2c_2 , b_3c_3 , b_4c_4 e b_5 K fanno rispettivamente colla verticale; e, prendendo per unità il grado, s'incomincia a registrare questi angoli nella prima colonna, intitolata angoli α , di un casellario come quello di cui vien dato il modulo

DISTANZE	D ₁ =	D2=	. D ₃ =	D,=	D ₅ =	D ₁ =
E PESI	- b	P ₂ ==	P ₃ =	P ₄ =	P ₅ =	P _i =
DISTANZE	e ₁ =	63	29	64	65.	A solution
PESI	$=$ ^{1}a	v₂==	v3=	= [†] ⁄ ₄	\$2°	Lya
DISTANZE d e 8	$d_1 = -\delta_1 = -\delta_1$	d ₂ ====================================	d3 ==	- d4 ==	d ₅ == − − − − − − − − − − − − − − − − − −	$ a_i $
PESI per	=1 _n =	μ ₂ =	рз =	- p ₁ =	т ₅ =	$p_i =$
AREE	S ₁ =	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	83 = 23	= +5	75	Solar Solar
AREE	=1,,	10 10 1 10 1 10 10 10 10 10 10 10 10 10	f3=	14=	t ₅ =	= 1,
ELEMENTI LINEARI PEL CALCOLO DELLE AREE Basi Altezze						9
ANGOLI	a a	42=	z3		α22==	" _i =0

Fatto questo, conviene determinare le aree delle figure BLn, c, b, $b_4 c_4 n_4 n_2 c_2 b_2$, $b_2 c_2 n_2 n_3 c_3 b_3$, $b_3 c_3 n_3 n_4 c_4 b_4$ e $b_4 c_4 n_4 M K b_5$. Ora, supponendo che RSTUVX (fig. 58) rappresenti una qualunque di queste figure, si vede che essa consta di un trapezio STUV, le di cui basi ST e VU sono due rette verticali, e del quadrilatero mistilineo RSVXZ, il quale, con sufficiente approssimazione per la pratica, si può considerare a perimetro poligonale quando la saetta YZ dell'arco RZX sia piccola in confronto della corda RX e quando quella non eccede 1/15 di questa. Ammesso che al detto quadrilatero mistilineo si possa sostituire il quadrilatero i cui quattro lati sono RS, SV, VX ed XR, si può quest'ultimo considerare siccome composto dei due triangoli RSV ed RXV; cosicchè, misurando mediante la scala (Operazioni topografiche, num. 11 e 12) le rette RV, SS', XX', TS, UV e U'T', riesce facile il calcolare le aree dei due triangoli RSV ed RXV, la cui somma dà quella del quadrilatero RSVX, non che quella del trapezio STUV. Quanto si è detto doversi fare per trovare l'area della figura RSTUVX, si applichi a tutte le figure analoghe (fig. 37) $BLn_4c_4b_4$, $b_4c_4n_4n_9c_6b_9$, $b_9c_9n_9n_3c_3b_3$, $b_3c_3n_3n_4c_4b_4$ e $b_4c_4n_4MKb_5$, ponendo le dimensioni lineari che servono a trovare le aree dei triangoli e dei trapezii nella seconda e nella terza colonna del casellario; registrando nella quarta colonna, intitolata aree t, le aree dei triangoli $BCc_1 = t_1$ e $Bb_1c_1 = t_1'$, $b_1c_1c_2 = t_2$ e $b_1b_2c_2 = t_2'$, $b_2 c_2 c_3 = t_3$ e $b_2 b_3 c_5 = t_3'$, $b_3 c_5 c_4 = t_4$ e $b_5 b_4 c_4 = t_4'$, $b_4 c_4 K = t_5$ e b₄b₅K=t₅'; e ponendo nella quinta colonna, intestata aree s e σ, le aree dei quadrilateri BC $c_1b_1 = s_1$, $b_1c_1c_2b_3 = s_2$, $b_2c_2b_3c_3 = s_3$, $b_z c_z b_a c_4 = s_4$ e $b_a c_4 \times b_5 = s_5$, non che quelle dei trapezii $CL n_i c_i = \sigma_i$, $c_1 n_1 n_2 c_2 = \sigma_2$, $c_2 n_2 n_5 c_5 = \sigma_5$, $c_5 n_5 n_6 \epsilon_6 = \sigma_4$ e $c_4 n_4 MK = \sigma_5$. Oltre le indicate aree, conviene anche procurarsi quella ti del triangolo mistilineo AK bs, che generalmente si può considerare come un triangolo rettilineo.

Se ora si suppone che siano

Il il peso del metro cubo di muratura, facile a dedursi dai dati che trovansi nella seconda colonna della tabella del numero 7,

L la lunghezza dell'arco nel senso delle sue generatrici, moltiplicando le superficie s_4 e σ_1 , s_2 e σ_2 , s_3 e σ_3 , s_4 e σ_4 , s_5 e σ_5 , t_1 per il prodotto IIL, si ottengono rispettivamente i pesi p_4 e π_4 , p_2 e π_2 , p_3 e π_5 , p_4 e π_4 , p_5 e π_5 , p_4 dei massi murali rappresentati in $B C c_4 b_4$ e $C L n_4 c_4$, $b_4 c_4 c_2 b_2$ e $c_4 n_1 n_2 c_2$, $b_2 c_2 c_5 b_5$ e $c_2 n_2 n_5 c_5$, $b_5 c_5 c_4 b_4$ e $c_5 n_5 n_4 c_4$, $b_4 c_5 k_5$ e $c_4 n_4 k_5$, k i quali pesi si devono scrivere nella sesta colonna del casellario, intitolata pesi p e π .

Calcolate e debitamente registrate nel casellario le aree s, s2, s_3 , s_4 ed s_5 , σ_4 , σ_2 , σ_5 , σ_4 e σ_5 , non che i corrispondenti pesi p_4 , p_2 , p_5 , p_4 e p_5 , π_4 , π_2 , π_5 , π_4 e π_5 , bisogna procedere alla determinazione dei centri di superficie delle figure quadrilatere alle quali esse aree ed essi pesi si riferiscono. Per questa determinazione conviene praticamente procedere col semplicissimo metodo che immediatamente si espone ragionando sulla figura 39, nella quale trovasi rappresentata una qualunque delle parti in cui venne scomposta la figura BLMKb₅ (fig. 37), non che la retta BL, traccia del piano verticale passante pel la generatrice culminante B dell'intrados dell'arco col piano sul quale venne fatto il disegno di cui si parlò nel principio di questo numero. Per il quadrilatero RSVX si conducono le due diagonali XS ed RV; una di queste diagonali, per esempio la XS, si divide per mezzo in a; si prende sull'altra $\overline{Vd} = \overline{Rb}$; si tira la retta \overline{ad} ; e si prende $\overline{ag} = \frac{1}{3} \overline{ad}$. Il punto q così ottenuto è il centro di superficie del quadrilatero RSVX (a). Analogamente si determina il centro di superficie y

(a) La verità della regola data, per determinare il centro di superficie del quadrilatero, assai facilmente può essere dimostrata. Sia RSVX (fig. 40) un quadrilatero qualunque e sia \overline{XS} una sua diagonale. Se si divide per mezzo questa diagonale in a e se tiransi le due rette \overline{Ra} e \overline{Va} , il centro di superficie del triangolo RSX trovasi in c ad una distanza $\overline{ac} = \frac{1}{3} \overline{aR}$ da a, ed il centro di superficie del triangolo VSX trovasi in e ad una distanza $\overline{ae} = \frac{1}{3} \overline{aV}$ da a. Ora, se immaginasi tirata la retta \overline{ec} , il centro di superficie della somma delle aree dei detti due triangoli, e quindi il centro di superficie del proposto quadrilatero, deve trovarsi in tal punto g di \overline{ec} da essere verificata l'equazione

$$\frac{\overline{eg}}{\overline{cg}} = \frac{\mathbf{T}}{\mathbf{T}'},$$

dove T e T' rappresentano rispettivamente le aree dei due triangoli RSX e VSX. Ma, per avere questi due triangoli la stessa base, per la similitudine dei due triangoli RPb e VQb i quali risultano abbassando dai vertici R e V le due perpendicolari $\overline{\text{RP}}$ e $\overline{\text{VQ}}$ su SX e per essere ee parallela a VR, si ha l'eguaglianza di rapporti

$$\frac{\mathbf{T}}{\mathbf{T}'} = \frac{\overline{\mathbf{R}\,\mathbf{P}}}{\overline{\mathbf{V}\,\mathbf{Q}}} = \frac{\overline{\mathbf{R}\,\mathbf{b}}}{\overline{\mathbf{V}\,\mathbf{b}}} = \frac{\overline{c\,\mathbf{h}}}{\overline{e\,\mathbf{h}}}\,,$$

cosicchè

$$\frac{\overline{eg}}{\overline{cg}} = \frac{\overline{ch}}{\overline{eh}} .$$

del quadrilatero STUV, dividendo per metà la diagonale VT in a, prendendo Uδ=Sβ, tirando la retta αδ e portando su essa $\overline{\alpha \gamma} = \frac{1}{2} \overline{\alpha \delta}$. Una volta determinati i due centri di superficie $g \in \gamma$, si abbassano da essi le perpendicolari gf e y \varphi su BL, e, confrontandole colla scala, si misurano le loro lunghezze. La costruzione che venne fatta sulla figura 59 per determinare i due punti q e γ e per trovare le loro distanze gf e γ φ dalla BL, si ripeta (fig. 37) per tutte le figure $BLn_1c_1b_1$, $b_1c_1n_1n_2c_2b_2$, $b_2c_2n_2n_5c_3b_5$, $b_3 c_2 n_3 n_4 c_5 b_6$ e $b_6 c_6 n_6$ MK b_5 per ottenere i centri di superficie g_4 , g_2 , g_3 , g_4 e g_5 , γ_4 , γ_9 , γ_3 , γ_4 e γ_5 e per trovare le distanze di questi centri dalla ZBL, le quali distanze, rispettivamente indicate colle lettere d_1 , d_2 , d_3 , d_4 e d_5 , d_4 , d_2 , d_5 , d_6 e d_5 , si pongono nella settima colonna del casellario, intitolata distanze d e d, unitamente alla distanza di del centro di superficie del triangolo mistilineo AKb, pure dall'indicata verticale. Questo triangolo mistilineo poi, con sufficiente approssimazione, si può considerare come rettilineo nelle ordinarie circostanze della pratica.

Sovente avviene che al disopra del masso murale CLMK hanno luogo delle pressioni verticali applicate in dati punti della ML, come sarebbero le pressioni che vi esercitano le travi di un solaio, oppure che contro lo stesso masso trovansi impostate delle vôlte il cui peso, per l'intermezzo del detto masso murale, viene a far sentire la sua azione sull'arco ABCD. Ora, per ciascuna delle parti CLn_1c_1 , $c_1n_1n_2c_2$, $c_2n_2n_3c_3$, $c_3n_3c_4n_4$, c_4n_4 MK si potranno conoscere esattamente od almeno approssimativamente: le pressioni verticali su $\overline{Ln_1}$, su $\overline{n_1n_2}$, su $\overline{n_2n_3}$, su $\overline{n_3n_4}$ e su $\overline{n_4M}$, od i pesi delle parti di vôlta che su essi si possono supporre impostate; le distanze dei punti d'applicazione delle dette pressioni o dei detti pesi dal

Componendo questa proporzione ed osservando che

$$\overline{eg} + \overline{cg} = \overline{ch} + eh,$$

immediatamente si ricava

$$\overrightarrow{eg} = \overrightarrow{ch}$$
.

il qual risultato porta a conchiudere, che il centro di superficie g, oltre di trovarsi sulla retta ec parallela a VR, deve anche trovarsi sulla retta ad determinata col prendere $vd = \overline{Rb}$, e ad una distanza da a che sia la terza parte di \overline{ad} , giacchè, per essere i punti c ed e ad un terzo di \overline{aR} e di \overline{aV} a partire da a, anche il punto g, intersezione di ad con ec, deve trovarsi ad un terzo di \overline{ad} a partire dallo stesso punto a.

piano verticale determinato dal giunto verticale BC della chiave. Le indicate pressioni verticali e gli indicati pesi da porsi nell'ottava colonna del casellario intitolata pesi v, siano rispettivamente v_4 , v_2 , v_5 , v_4 e v_5 , e le distanze dei loro punti d'applicazione dal definito piano verticale da registrarsi nella nona colonna del casellario intestata distanze e, siano rispettivamente e_4 , e_2 , e_5 , e_4 ed e_5 .

Nella decima colonna del casellario, avente per titolo pesi P, si possono ora inscrivere i pesi P_4 , P_2 , P_5 , P_4 , P_5 e P_i rispettivamente sopportati dalle parti BCe_4b_4 , BCe_2b_2 , BCe_3b_5 , BCe_4b_4 , $BCKb_5$ e BCKA dell'arco proposto, i quali pesi si ottengono nel modo espresso dalle seguenti formole

$$P_{4} = p_{4} + \pi_{4} + v_{4}$$

$$P_{2} = P_{4} + p_{2} + \pi_{2} + v_{2}$$

$$P_{3} = P_{2} + p_{3} + \pi_{3} + v_{3}$$

$$P_{4} = P_{3} + p_{4} + \pi_{4} + v_{4}$$

$$P_{5} = P_{4} + p_{5} + \pi_{5} + v_{5}$$

$$P_{i} = P_{5} + p_{i}.$$

Finalmente nell'undicesima colonna del casellario, il cui titolo è distanze D, si pongono le distanze D_1 , D_2 , D_3 , D_4 , D_5 e D_1 , dei punti d'applicazione dei pesi sopportati dalle parti BCc_1b_1 , BCc_2b_2 , BCc_5b_3 , BCc_4b_4 , $BCKb_5$ e BCKA dell'arco proposto, dal piano verticale passante per la generatrice più elevata dell'intrados. Queste distanze si ottengono applicando il teorema dei momenti e ponendo

$$\begin{split} \mathbf{D_4} &= \frac{p_4 \, d_4 + \pi_4 \, \delta_4 + v_4 \, e_4}{\mathbf{P_4}} \\ \mathbf{D_2} &= \frac{\mathbf{P_4} \, \mathbf{D_4} + p_2 \, d_2 + \pi_2 \, \delta_2 + v_2 \, e_2}{\mathbf{P_2}} \\ \mathbf{D_3} &= \frac{\mathbf{P_2} \, \mathbf{D_2} + p_3 \, d_3 + \pi_3 \, \delta_3 + v_3 \, e_3}{\mathbf{P_3}} \\ \mathbf{D_4} &= \frac{\mathbf{P_3} \, \mathbf{D_3} + p_4 \, d_4 + \pi_4 \, \delta_4 + v_4 \, e_4}{\mathbf{P_4}} \\ \mathbf{D_5} &= \frac{\mathbf{P_4} \, \mathbf{D_4} + p_5 \, d_5 + \pi_5 \, \delta_5 + v_5 \, e_5}{\mathbf{P_5}} \\ \mathbf{D_i} &= \frac{\mathbf{P_5} \, \mathbf{D_5} + p_i \, d_i}{\mathbf{P_i}}. \end{split}$$

I metodi tenuti per determinare le aree s_4 , s_2 , s_3 , s_4 ed s_5 , σ_4 , σ_2 , σ_s , σ_a , σ_s e t_i , non che le distanze d_i , d_2 , d_3 , d_4 e d_5 , δ_4 , δ_2 , δ_5 , δ_4 , ∂_s e d_i si devono ritenere siccome metodi d'approssimazione convenienti nelle ordinarie e più frequenti circostanze della pratica. Qualora però le dette aree e le dette distanze si vogliano esattissime, riesce possibile l'ottenerle quando si abbiano le equazioni delle linee AB, KC ed ML rispetto a due assi coordinati ortogonali, di cui uno sia orizzontale e l'altro verticale, diretto secondo la retta ZL, e quando siano effettuabili le integrazioni, a cui conducono le formole relative alla determinazione delle aree e dei centri di superficie delle figure piane. Nel caso frequentissimo della pratica in cui è una linea retta la ML e due archi circolari le curve AB e DC, la determinazione esatta delle dette aree e delle dette distanze riesce facilissima, giacchè una qualunque di esse, come $BL_{n_0}c_0b_0$, si deve considerare siccome la differenza fra il trapezio ZLn2c2 ed il settore circolare ZBb2, per le quali due figure in modo spedito ed elementare si sanno determinare non solo le aree, ma anche le posizioni dei centri di superficie.

30. Verificazione della stabilità di un arco nell'ipotesi che la rottura tenda a manifestarsi per aprimento alla chiave verso l'intrados. — La rottura per aprimento alla chiave verso l'intrados tende principalmente a manifestarsi negli archi a tutta monta ed in quelli a monta depressa caricati in tutti i punti del loro estrados o nel loro mezzo, e quindi il metodo di verificazione formante l'oggetto del presente numero è uno di quelli che più di frequente si presenta nella pratica delle costruzioni.

Determinazione della spinta orizzontale. Ultimate le operazioni preliminari di cui si è parlato, e registrati nel casellario i risultati di tali operazioni, si può procedere alla determinazione della spinta orizzontale dell'arco, nell'ipotesi che già si verifichi la sfavorevole circostanza di trovarsi esso in procinto di aprirsi alla chiave verso l'intrados ed alle reni verso l'estrados. Perciò, disegnato in iscala piuttosto grande il mezzo profilo ABCD (fig. 41) dell'arco con tutti i giunti b_1e_1 , b_2e_2 , b_3e_3 , b_4e_4 , e b_5 K, prendasi sul giunto di chiave BC il punto N in modo che risulti $\overline{\text{CN}} = \frac{1}{3}\overline{\text{BC}}$, e questo punto N può essere considerato come il punto d'applicazione della spinta orizzontale domandata (Resistenza dei materiali e stabilità delle costruzioni, num. 181). Pel detto punto N conducasi la orizzontale NS, e si portino su essa le distanze

$$\overline{NG}_4 = D_4$$
, $\overline{NG}_2 = D_2$, $\overline{NG}_3 = D_2$,
 $\overline{NG}_4 = D_4$ e $\overline{NG}_5 = D_5$.

Pei punti G_4 , G_2 , G_3 , G_4 e G_5 , così determinati, si conducano altrettante verticali e si portino su esse, in una scala sufficientemente grande, le lunghezze G_4S_4 , G_2S_2 , G_5S_5 , G_4S_4 e G_5S_5 rappresentanti rispettivamente i punti P_4 , P_2 , P_3 , P_4 e P_5 .

Fatto questo, sui giunti b_1c_1 , b_2c_2 , b_3c_3 , b_4c_4 e b_5 K si prendano i punti m_1 , m_2 , m_3 , m_4 ed m_5 in modo che abbiasi $\overline{b_1m_i} = \frac{1}{3}\overline{b_4c_4}$,

$$\overline{b_2 m_2} = \frac{1}{3} \overline{b_2 c_2}, \ \overline{b_2 m_3} = \frac{1}{3} \overline{b_3 c_3}, \ \overline{b_4 m_4} = \frac{1}{3} \overline{b_4 c_4} \ \text{e} \ \overline{b_5 m_5} = \frac{1}{3} \overline{b_5 \text{K}}. \text{Sui ca-}$$

teti $\overline{G_4S_4}$, $\overline{G_2S_2}$, $\overline{G_5S_5}$, $\overline{G_4S_4}$ e $\overline{G_5S_5}$ si costruiscano i triangoli rettangoli $G_4S_4Q_4$, $G_2S_2Q_2$, $G_5S_5Q_5$, $G_4S_4Q_4$ e $G_5S_5Q_5$ in modo che le loro ipotenuse passino pei punti m_4 , m_2 , m_3 , m_4 ed m_5 , e colla scala che servì alla determinazione dei cateti verticali si misurino i cateti orizzontali $\overline{S_4Q_4}$, $\overline{S_2Q_2}$, $\overline{S_5Q_5}$, $\overline{S_4Q_4}$ ed $\overline{S_5Q_5}$. Fra questi cateti uno, per esempio $\overline{S_4Q_4}$, sarà maggiore degli altri, ed è questo che si deve assumere siccome graficamente rappresentante la spinta orizzontale dell'arco, quando ammettasi che si trovi esso in tali sfavorevoli condizioni da essere imminente l'apparizione dei primi segni di rotazione per aprimento alla chiave verso l'intrados e per aprimento alle reni verso l'estrados.

Quel giunto, cui corrisponde il più lungo dei detti cateti orizzontali, per gli archi caricati in tutti i punti del loro estrados e caricati nel loro mezzo trovasi ordinariamente: a circa 50° a partire dall'imposta per quelli a tutta monta; a circa 50° a partire dall'imposta per quelli aventi per direttrice dell'intrados una mezza ovale la cui monta sia fra 1/3 ed 1/4 della corda; e finalmente all'imposta per quelli a monta depressa aventi per curva direttrice della superficie d'intrados un arco di circolo d'ampiezza minore di 120°.

La spinta orizzontale dell'arco, che venne determinata graficamente, è anche suscettiva di una determinazione numerica. Conviene perciò prepararsi un casellario; marcare nella sua prima colonna gli angoli α dei diversi giunti colla verticale; e quindi passare alla determinazione in metri di tutti i giunti (fig. 37) $\overline{BC} = a$, $\overline{b_1c_1} = a'_1$, $\overline{b_2c_2} = a'_2$, $\overline{b_3c_5} = a'_5$, $\overline{b_4c_4} = a'_4$ e $\overline{b_5}$ $\overline{K} = a'_5$ per scrivere le loro lunghezze nella seconda colonna intitolata lunghezze a ed a'.

L'ARTE DI FABBRICARE.

Costruzioni civili, ecc. - 5

200	C LIPS	A Comment			and the a
NZ.	- 01=	0,9=	03=	04=	Q ₅ =
	P ₁ =	P ₂ =	P3=	P4=	P ₅ ==
out of	=10	02=	63=	= 40	65=
	$b_1 =$	b2=	$b_3 = -$	*pq	$b_5 = -$
Instru	D1=	D2=	D3=	D4=	D ₅ =
archaris- languages	Δ1=	Δ2=	Δ3=	Δ4=	Δ5=
a ==	a' ₁ =	a' ₂ =	a'3=	a'4=	a'5 =
den Ha	$\alpha_1 = -$	α ₉ =	α3=	= 4p	α ₅ ==
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Fatto questo, dai punti b_4 , b_5 , b_5 , b_4 e b_5 si abbassano altrettante perpendicolari sulla retta LBZ; si ottengono le loro lunghezze Δ_4 , Δ_2 , Δ_3 , Δ_4 e Δ_5 ; e si marcano esse nella terza colonna del casellario intestata distanze Δ . Togliendo rispettivamente da queste distanze Δ_4 , Δ_2 , Δ_3 , Δ_4 e Δ_5 la distanza D_4 , D_2 , D_3 , D_4 e D_5 riportate nella quarta colonna del casellario, nelle differenze

$$\Delta_4 - D_4 = b_4$$

$$\Delta_2 - D_2 = b_2$$

$$\Delta_3 - D_3 = b_3$$

$$\Delta_4 - D_4 = b_4$$

$$\Delta_5 - D_5 = b_5,$$

si hanno le distanze orizzontali dei centri di superficie delle figure $\operatorname{BL} n_1 c_1 b_1$, $\operatorname{BL} n_2 c_2 b_2$, $\operatorname{BL} n_3 c_3 b_5$, $\operatorname{BL} n_4 c_4 b_4$ e $\operatorname{BLMK} b_5$ dei punti b_4 , b_5 , b_5 , b_4 e b_5 , le quali distanze trovansi nella quinta colonna del casellario intestata distanze b.

Dopo di ciò, si conduce pel punto B la orizzontale BO, dai punti b_4 , b_2 , b_3 , b_4 e b_5 si abbassano su essa le perpendicolari, e si determinano le loro lunghezze c_4 , c_2 , c_3 , c_4 e c_5 da inscriversi nella sesta colonna del casellario intitolata differenze di livello c. Nella settima colonna si trascrivono i pesi P_4 , P_2 , P_3 , P_4 e P_5 ; e finalmente applicando la formola

$$Q = P \frac{3b + a' \sin \alpha}{2a + 3c - a' \cos \alpha} \tag{1}$$

(Resistenza dei materiali e stabilità delle costruzioni, numero 182) col porre successivamente in essa per a' le lunghezze a'_1 , a'_2 , a'_3 , a'_4 ed a'_5 , per b le lunghezze b_4 , b_2 , b_5 , b_4 e b_5 , per c le lunghezze c_4 , c_2 , c_5 , c_4 e c_5 , per α gli angoli α_4 , α_2 , α_5 , α_4 ed α_5 , e per P i pesi P₄, P₂, P₅, P₄ e P₅, si calcolano le spinte Q₄, Q₂, Q₅, Q₄ e Q₅, i cui valori vengono trascritti nell'ottava colonna del casellario che porta per titolo spinte Q. Il maggiore Q_m, degli accennati valori di Q, rappresenta la spinta orizzontale dell'arco.

Conoscendosi analiticamente le tre linee AB, K C ed ML, riesce generalmente possibile di esprimere le lunghezze a', b e c, non che il peso P, in funzione dell'angolo α che la normale alla curva AB fa colla verticale. Allora si può fare la prima derivata di Q per rapporto ad α ed eguagliarla a zero per ricavare da essa quel valore particolare α' di α cui corrisponde il massimo valore Q_m della spinta orizzontale, il qual valore massimo risulta ponendo α' invece di α nell'espressione generale di Q ridotta a contenere la sola variabile α .

Costruzione della curva delle pressioni. Trovata la spinta orizzontale, si passa alla costruzione della curva delle pressioni, ossia del luogo geometrico dei punti d'applicazione delle pressioni sui diversi giunti (Resistenza dei materiali e stabilità delle costruzioni, numero 186). Perciò, presi come già si è detto i punti G_4 , G_2 , G_3 , G_4 e G (fig. 42) sull'orizzontale NS e condotte per essi le verticali G_4 S_4 , G_2 S_2 , G_3 S_3 , G_4 S_4 e G_5 S_5 di lunghezze eguali a quelle che le stesse rette hanno nella figura 41, si costruiscano i triangoli rettangoli G_4 S_4 R_4 , G_2 S_2 R_2 , G_3 S_3 R_5 , G_4 S_4 R_4 e G_5 S_5 R_5 , i cui cateti orizzontali S_4 R_4 , S_2 R_2 , S_3 R_5 , S_4 R_4 ed S_5 R_5 siano tutti eguali al più lungo, S_4 Q_4 , dei cateti orizzontali dei triangoli rettangoli che vennero costrutti nell'indicata figura 41. I punti e_4 , e_2 , e_5 , e_4 ed e_5 , in cui le ipotenuse G_4 R_4 , G_2 R_2 , G_3 R_5 , G_4 R_4 e G_5 R_5 degli accennati triangoli rettangoli incontrano rispettivamente i giunti b_4 c_4 , b_2 c_2 , b_5 c_5 , b_4 c_4 e K b_5 , ed il punto N, sono altrettanti punti per cui passa la curva delle pressioni.

Fatto questo, si calcoli il peso p' della parte di arco proiettata nel triangolo mistilineo AKb_s ($\hat{\mu}g$. 43), e si determini il centro di superficie g del detto triangolo mistilineo che generalmente, con sufficiente approssimazione, si può considerare come rettilineo. Si conduca per g la verticale gg' fino ad incontrare la G_5R_5 in g', e si porti su essa la distanza $g'\overline{S}$ la quale, nella scala che già servì a determinare le rette rappresentanti i pesi P_4 , P_2 , P_3 , P_4 e P_5 , rappresenti il peso g'. Conducendo per S la retta \overline{SR} eguale e parallela a G_5R_5 e tirando la retta $\overline{g'R}$, si ha in quest'ultima la rappresentazione grafica della spinta R che l'arco esercita contro il piedritto; ed il punto E, in cui questa retta incontra la AK, è un punto appartenente alla curva delle pressioni.

Una volta determinati i punti N, e_i , e_2 , e_5 , e_4 , e_5 ed E (fig. 42 e 43) appartenenti alla curva delle pressioni, si può questa approssimativamente tracciare, e si conchiuderà che (Resistenza dei materiali e stabilità delle costruzioni, num. 186) l'arco è in buone condizioni di stabilità per quanto si riferisce alla rottura per rotazione attorno ad uno spigolo dell'intrados o dell'estrados, ossia che non è ancora imminente l'apparizione dei primi segni di rotazione, allorquando questa curva si trova tutta fra le due curve NT ed UV (fig. 43) che passano pei punti dei diversi giunti che sono rispettivamente ad 1/3 delle lunghezze dei giunti medesimi a partire dall'estrados e dall'intrados dell'arco. Se la curva delle pressioni cade fuori della superficie compresa fra le due curve NT ed UV, usano i pratici convenientemente modificare il progetto dell'arco, per ottenere che la prima curva, per tutta l'estensione dell'arco, venga a trovarsi fra le altre due.

I punti e_4 , e_2 , e_5 , e_4 ed e_5 (fig. 42) si possono anche numericamente determinare calcolando le distanze $\overline{b_4} \, \overline{e_4} = d_4'$, $\overline{b_2} \, \overline{e_2} = d_2'$, $\overline{b_5} \, \overline{e_5} = d_5'$, $\overline{b_4} \, \overline{e_4} = d_4'$ e $\overline{b_5} \, \overline{e_5} = d_5'$ che essi hanno dall'intrados dell'arco. Conviene perciò prepararsi un registro in cui si trovino: gli angoli α dei diversi giunti colla verticale; le distanze orizzontali b dei punti G_4 , G_2 , G_5 , G_4 e G_5 dai punti b_4 , b_2 , b_5 , b_4 e b_5 ; le differenze di livello c fra il punto c ed i detti punti c e c si noti pesi c para c para c para c para c para dell'arco alla chiave e la spinta c para Nell'ultima colonna di questo registro, intitolata c distanze c d', si pongono le domandate distanze c d', c si pongono le domandate distanze c c', c si pongono le domandate distanze c si pongono le domandate c si pongono le domandate distanze c si pongono le domandate c s

ANGOLI α	DISTANZE b	di livello	PESI P	GROSSEZZA alla chiave a e spinta Qm	DISTANZE
$\alpha_1 = \underline{\qquad}$ $\alpha_2 = \underline{\qquad}$	$b_1 = $ $b_2 = $	$c_1 = $ $c_2 = $		a=	$d'_1 =$ $d'_2 =$
α ₃ =	b ₃ =	c ₃ =	P ₃ =	Q _m =	d' ₃ =
$\alpha_5 = 0$ $\alpha_i = 0$	$b_5 = $ $b_i = $	c ₅ =	P ₅ =	Maria A	d' ₅ =

Considerando una parte qualunque BCVX dell'arco (fig. 59) e chiamando

- a l'altezza BC del giunto verticale alla chiave,
- b la distanza orizzontale fra il punto X e la verticale passante pel punto d'applicazione di tutti i pesi sopportati dalla parte di arco BCVX,
 - c la differenza di livello fra il punto X ed il punto B,
 - α l'angolo del giunto XV colla verticale,
 - P il peso corrispondente alla parte di arco BCVX,
 - Qm la spinta orizzontale dell'arco,
- d' la distanza \overline{Xe} del punto e, in cui la pressione che si verifica sul giunto VX incontra il giunto stesso, dal punto X,

si ha: che il peso P, la spinta Qm e la reazione che la parte di

arco sottostante al giunto XV esercita contro la parte superiore, devono farsi equilibrio attorno allo spigolo proiettato nel punto X; per guisa che, essendo le stesse $Q_{\rm m}$ e P le due componenti orizzontale e verticale dell'or indicata reazione, risulta l'equazione di equilibrio (b)

$$Q_m \left(\frac{2}{3}a+c\right) - Pb - Q_m d'\cos\alpha - Pd'\sin\alpha = 0,$$

dalla quale si ricava

$$d' = \frac{1}{3} \frac{Q_{m}(2 a + 3 c) - 3 P b}{Q_{m} \cos \alpha + P \sin \alpha}$$
 (2).

Ponendo ora successivamente in quest'equazione per b le lunghezze b_4 , b_2 , b_3 , b_4 e b_5 , per c le lunghezze c_4 , c_2 , c_3 , c_4 e c_5 , per α gli angoli α_1 , α_2 , α_3 , α_4 ed α_5 , e per P i pesi P_4 , P_2 , P_5 , P_4 e P_5 , si ottengono i corrispondenti valori d_4 , d_2 , d_3 , d_4 e d_5 di d che servono alla determinazione dei punti e_4 , e_2 , e_3 , e_4 ed e_5 (fig. 42).

L'equazione (2), oltre di servire alla determinazione dei punti e_i , e_2 , e_3 , e_4 ed e_5 , serve anche a fissare il punto E (fig. 45) mediante la sua distanza $\overline{AE} = d_i$ da A; e, per ottenere questo, basta fare in detta equazione $\alpha = 0$ e porre, invece di P, il peso P_i sostenuto dalla parte di arco ABCK (fig. 57), invece di b la distanza orizzontale b_i fra il punto A e la verticale passante pel punto d'applicazione dell'indicato peso, ed invece di c la differenza di livello c_i fra il punto B ed il punto A.

In quanto poi alla spinta R che l'arco esercita contro il piedritto e che trovasi applicata nel punto E (fig.~43), si può essa considerare siccome la risultante delle due forze fra loro ortogonali, rappresentate dalle quantità note Q_m e P_i , e quindi il suo valore vien dato da

$$R = \sqrt{Q_m^2 + P_i^2}.$$

Conoscendosi analiticamente le tre linee AB, KC ed ML (fig.

(b) Quest'equazione, quando in essa si ponga $\frac{1}{3}$ a' invece di d e Q invece di Q_m , immediatamente conduce all'equazione (1) che servi alla determinazione della spinta orizzontale dell'arco.

57), riesce possibile esprimere b, c e P in funzione dell'angolo α , ed allora, per qualsiasi giunto, riesce facilmente determinabile il punto in cui esso vien incontrato dalla curva delle pressioni.

Verificazione della stabilità sotto il rapporto della resistenza alla rottura per scorrimento. Nel fare questa verificazione, usano i costruttori trascurare la resistenza dovuta alla tenacità dei cementi, giacchè col tempo potrebbe essa venir meno, e tengono soltanto conto della resistenza dovuta all'attrito. Per condurre poi a compimento l'operazione, prendasi un punto qualunque C (fig. 44), e conducansi per esso le due rette fra loro perpendicolari CO e CV, rappresentanti rispettivamente un'orizzontale ed una verticale. Fatto questo, prendansi sulla retta CV a partire da C le lunghezze CS, CS, CS, CS, e CS, di lunghezze rispettivamente eguali a quelle delle rette G, S, G, S, G, S, G, S, e G, S, delle figure 41 e 42; e, pei punti S4, S2, S5, S4 ed S5 si conducano le orizzontali S1R4, S2R2, S3R5, S, R, ed S, R, tutte eguali in lunghezza al più lungo dei cateti orizzontali SARA dei triangoli rettangoli che vennero costrutti nell'accennata figura 41. Dopo di ciò, si tirino le rette CR, CR, CR_s, CR_s e CR_s (fig. 44), le quali evidentemente rappresentano le pressioni che hanno rispettivamente luogo sui giunti b₄c₄, b₂c₂, b₅c₅, b_k c_k e b_sK (fig. 42); e pel punto C (fig. 44) conducansi le rette CN₄, CN2, CN3, CN4 e CN5 facenti coll'orizzontale CO gli angoli a4, a2, α₅, α₄ ed α₅, rappresentanti per conseguenza le direzioni delle normali ai detti giunti. Si misurino gli angoli R, CN, R, CN, R, CN, Ra CNa ed R5 CN5; e, se tutti questi angoli sono minori dell'angolo d'attrito, ossia dell'angolo la cui tangente è il coefficiente d'attrito f della materia di cui l'arco è formato, è segno che esso trovasi in buone condizioni di stabilità sotto il rapporto della resistenza allo scorrimento. Il detto coefficiente d'attrito varia colla natura dei materiali costituenti l'arco, e mediamente si può esso assumere eguale a 0,57, cosicche il corrispondente angolo d'attrito è di 29° 41'.

Invece di misurare gli angoli R_4 CN_4 , R_2 CN_2 , R_3 CN_3 , R_4 CN_4 ed R_5 CN_5 , e di osservare se sono minori dell'angolo di 29° 41', conviene generalmente: abbassare dai punti R_4 , R_2 , R_3 , R_4 ed R_5 le perpendicolari R_4 T_4 su CN_4 , R_2 T_2 su CN_2 , R_3 T_3 su CN_3 , R_4 T_4 su CN_4 ed R_5 T_5 su CN_5 ; procurarsi le lunghezze delle indicate perpendicolari, non che le altre CT_4 , CT_2 , CT_3 , CT_4 e CT_5 ; e fare i

rapporti
$$\frac{\overline{R_4} \, \overline{T_4}}{\overline{C} \, T_4}$$
, $\frac{\overline{R_2} \, \overline{T_2}}{\overline{C} \, T_2}$, $\frac{\overline{R_3} \, \overline{T_3}}{\overline{C} \, T_3}$, $\frac{\overline{R_4} \, \overline{T_4}}{\overline{C} \, T_4}$ ed $\frac{\overline{R_5} \, \overline{T_5}}{\overline{C} \, T_5}$. Se tutti

questi rapporti risultano minori di 0,57, le pressioni sui diversi giunti dell'arco fanno colle normali ai giunti medesimi un angolo minore di quello d'attrito, e quindi trovasi esso in buone condizioni di stabilità per rapporto alla resistenza allo scorrimento.

Trovandosi che un arco già progettato non presenta la necessaria resistenza allo scorrimento, è necessario di convenientemente variarne il progetto, facendo in modo che venga a crescere la resistenza d'attrito sui giunti pei quali venne essa trovata deficiente.

Qualora, invece di operare con un metodo grafico, credasi miglior partito di appigliarsi ad un procedimento numerico, conviene prepararsi un registro, come quello del quale si dà il modulo, in cui si trovino: gli angoli α_1 , α_2 , α_3 , α_4 e α_5 dei diversi giunti colla verticale; i noti pesi P_4 , P_2 , P_3 , P_4 ed P_5 ; la spinta orizzontale Q_m non che il coefficiente d'attrito f conveniente alla muratura di cui l'arco è formato; le componenti T ed N, parallele e normali ai giunti, delle pressioni che su essi hanno luogo; i rapporti $\frac{T}{N}$ fra le indicate pressioni parallele e normali; ed i coefficienti di stabilità relativi alla resistenza dovuta all'attrito.

COEFFICIENTE di stabilità		n44 ¹¹ ===		n ₁₃₁ v =	= 1,17u	n ₁₅ 1v ==
RAPPORTI T		T ₁ =	T ₂ N ₂	T _s	T4 ===	N _s
COMPONENTI delle pressioni sui giunti	N	N ₁ =	N ₂ =	N ₃ ==	N ₄ =	N ₅ =
	T	$T_1 =$	T2=	T3=	T4=	T ₅ ==
SPINTA Qm e coefficiente d'attrito	SPINTA Qm coefficiente d'attrito		Om ==	Moscal Moscal Institution	f=f	mil A
PESI	la u	P ₁ =	P ₂ =	P ₃ =	P4=	P ₅ =
ANGOLI		"1 = 1 = 1	α ₂ =	¤3=	π4=	α ₅ ==

Se considerasi una parte qualunque BCVX dell'arco (fig. 59) col corrispondente sovraccarico CLUV, si ha: che sono rispettivamente $Q_m \operatorname{sen} \alpha e Q_m \operatorname{cos} \alpha$ le due componenti della spinta orizzontale Q_m parallela e normale al piano del giunto XV, inclinato alla verticale dell'angolo α ; che sono $P \operatorname{cos} \alpha$ e $P \operatorname{sen} \alpha$ le componenti analoghe del peso sopportato dall'indicata parte di arco; che le componenti T ed N vengono date dalle formole

$$T = P \cos \alpha - Q_m \sin \alpha$$

 $N = P \sin \alpha + Q_m \cos \alpha$.

Se ora successivamente si pongono in queste equazioni, per P i pesi P_4 , P_2 , P_3 , P_4 e P_5 , per α gli angoli α_4 , α_2 , α_3 , α_4 ed α_5 , e per Q_m il suo valore, si ottengono i valori particolari T_4 , T_2 , T_3 , T_4 e T_5 di T non che i valori particolari N_4 , N_2 , N_3 , N_4 ed N_5 di N_5 , e quindi si può passare ad ottenere i rapporti $\frac{T_4}{N_4}$, $\frac{T_2}{N_2}$, $\frac{T_3}{N_3}$, $\frac{T_4}{N_4}$ e $\frac{T_5}{N_5}$. Se tutti questi rapporti sono minori del coefficiente d'attrito f, è segno che non può avvenire rottura per scorrimento lungo i giunti considerati, e, siccome chiamando n_4 il coefficiente di stabilità relativo alla resistenza dovuta all'attrito, per un giunto qualunque deve essere verificata l'equazione

$$T = n_{\bullet}^{\text{IV}} f N$$
,

si ottengono i coefficienti di stabilità n_{ii} , n_{iz} , n_{iz} , n_{iz} , n_{iz} e n_{iz} relativi alla resistenza d'attrito provocata sui diversi giunti considerati col dividere i quozienti $\frac{T_4}{N_4}$, $\frac{T_2}{N_2}$, $\frac{T_3}{N_3}$, $\frac{T_4}{N_4}$ e $\frac{T_5}{N_5}$ per il coefficiente d'attrito f. Per generale consentimento dei pratici poi si considera l'arco siccome presentante le più ampie guarentigie di stabilità, allorquando nessuno degli indicati coefficienti n_{iz} , $n_$

Verificazione della stabilità sotto il rapporto della resistenza allo schiacciamento. Per operare questa verificazione, è necessario conoscere per ciascuno dei giunti le componenti normali delle pressioni che su essi si verificano, le lunghezze dei giunti medesimi, non che le distanze dei punti N, e_1 , e_2 , e_5 , e_4 ed e_5 (fig. 42) dalla curva d'intrados.

Chiamando

K' la pressione riferita al metro quadrato ed espressa in chilogrammi, che ha luogo sullo spigolo d'intrados di un giunto qualunque e

K" la pressione analoga che ha luogo sullo spigolo d'estrados dello stesso giunto, si hanno le formole (c)

(c) Se nelle formole determinatrici di Q₁ e di Q₂, che trovansi a pagina 321 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, si fa

$$Q_1 = K'$$
, $Q_2 = -K''$, $T'' = N$,

$$\mathbf{K}' = 2\left(2 - 3\frac{d'}{a'}\right) \frac{\mathbf{N}}{a'\mathbf{L}} \tag{3},$$

$$\mathbf{K}'' = 2\left(-1 + 3\frac{d'}{a'}\right) \frac{\mathbf{N}}{a'\mathbf{L}} \tag{4},$$

nelle quali

a' rappresenta la lunghezza in metri del giunto che si considera, d' la distanza, pure in metri, del punto d'applicazione della pressione che su esso ha luogo, dall'intrados dell'arco,

L la lunghezza, anche in metri, che l'arco presenta nel senso delle sue generatrici,

se osservasi che nel caso particolare si ha

$$v' = v'' = \frac{1}{2} a'$$
,

$$V = \frac{G^{2}}{V_{i}} = \frac{\frac{1}{12} a'^{2}}{\frac{1}{2} m a'} = \frac{a'}{6 m} = \frac{a'}{\frac{1}{2} a' - d'} = \frac{a'^{2}}{6 (a' - 2 d')},$$

$$\Omega = a'L$$

immediatamente risultano le stabilite formole determinatrici di K' e di K", le quali in altro modo possono anche essere dedotte come segue.

Sia ABCD (fig. 45) una figura rettangolare, avente il lato $\overline{AB} = a'$ ed il lato $\overline{BC} = L$. Questa figura rappresenti un giunto qualunque dell'arco; la lunghezza di questo giunto, fra l'intrados e l'estrados, sia a', e si estenda esso per una lunghezza eguale ad L nel senso della corrispondente generatrice dell'intrados. La retta EF divida per metà i due lati \overline{BC} ed \overline{AD} di lunghezza L, e G sia il punto nel quale agisce la pressione N diretta normalmente al giunto medesimo. Finalmente sia \overline{BC} lo spigolo di detto giunto che trovasi sull'intrados, \overline{AD} quello che trovasi sull'estrados, ed il punto G disti da BC di $\overline{FG} = a'$.

Ammettendo che la pressione riferita all'unità di superficie su rette parallele a B C, comprese fra B C ed A D, varii di quantità proporzionali alla distanza che le dette parallele hanno dalla B C medesima, si ha: che, essendo K' la pressione riferita all'unità di superficie in un punto qualunque di B C e K'' la pressione pure riferita all'unità di superficie in un punto qualunque di A D, la differenza delle pressioni riferite all'unità di superficie e verificantisi in un punto qualunque di B C e di A D, è

che, essendo x la distanza FK fra il lato BC ed una retta qualunque HI ad esso

N la componente normale della pressione che si verifica sul giunto per cui voglionsi trovare i valori di K' e di K''.

Applicando successivamente le formole (3) e (4) col porre in esse, la lunghezza a, a_1 , a_2 , a_5 , a_4 ed a_5 dei diversi giunti \overline{BC} , $\overline{b_4c_4}$, $\overline{b_2c_3}$, $\overline{b_3c_5}$, $\overline{b_4c_4}$ e $\overline{b_5K}$ invece di a', le distanze $\frac{2}{5}a$, d_4' , d_2' , d_5' , d_4' e d_5' dei punti N, e_4 , e_2 , e_3 , e_4 ed e_5 dall'intrados invece di a',

parallela condotta nel rettangolo ABCD, la differenza fra le pressioni riferite all'unità di superficie che hanno luogo su BC e su H1 viene data da

$$\frac{\mathbf{K'}-\mathbf{K''}}{a'}x;$$

che la pressione riferita all'unità di superficie, in un punto qualunque della AI, vale

$$K' = \frac{K' - K''}{a'} x;$$

che la pressione elementare, su una lista rettangolare HII' H' lunga $\overline{\text{HI}} = \text{L}$ ed alta $\overline{\text{KK'}} = dx$, risulta

$$\left(K' - \frac{K' - K''}{a'}x\right) L dx;$$

che il momento di questa pressione elementare rispetto alla retta BC ammette per valore

$$\left(\,\mathrm{K}' - \frac{\mathrm{K}' - \mathrm{K}''}{a'}\,x\right) \mathrm{L}\,x\,d\,x.$$

Ora, la somma delle diverse pressioni elementari che hanno luogo sul rettangolo ABCD deve eguagliare la total pressione N, e la somma dei momenti di queste pressioni elementari per rapporto a BC deve eguagliare il momento N d' della stessa pressione N pure rispetto a BC; cosicchè risultano le seguenti equazioni

$$\int_0^{a'} \left(\mathbf{K'} - \frac{\mathbf{K'} - \mathbf{K''}}{a'} x \right) \mathbf{L} \, dx = \mathbf{N}$$

$$\int_0^{a'} \left(\mathbf{K'} - \frac{\mathbf{K'} - \mathbf{K''}}{a'} x \right) \mathbf{L} x \, dx = \mathbf{N} \, d',$$

le quali, eseguiti gli integrali ed operate le convenienti riduzioni, diventano

$$\frac{K' + K''}{2} a' L = N \qquad (a),$$

$$\frac{\mathbf{K}' + 2\mathbf{K}''}{6} a'^2 \mathbf{L} = \mathbf{N} d' \tag{3}$$

le pressioni normali Q_m , N_4 , N_2 , N_3 , N_4 ed N_5 invece di N e la lunghezza L dell'arco nel senso delle generatrici, si ottengono le pressioni massime e minime riferite al metro quadrato ed espresse in chilogrammi, che si verificano sui diversi giunti. Per il giunto alla chiave si ha che la massima pressione riferita all'unità di superficie ha luogo sullo spigolo d'estrados, e per tutti gli altri giunti si verifica questa pressione massima sullo spigolo d'intrados o su quello d'estrados, secondoche i valori dei d', sempre compresi fra 1/3 e 2/3 dei valori dei corrispondenti a', sono minori o maggiori di 1/2 a'.

I risultati a cui conducono le formole (3) e (4) si marcano generalmente in apposito registro. Nella sua prima colonna si pongono gli angoli α dei giunti, pei quali voglionsi trovare i valori di K' e di K'', colla verticale; nella seconda le lunghezze a' dei giunti medesimi;

Queste due equazioni servono alla determinazione delle due pressioni K' e K'', la prima delle quali ha luogo sul lato \overline{BC} e la seconda sul lato \overline{AD} .

Ricavando il valore di K" dalla (a), si ha

$$\mathbf{K''} = \frac{2 \,\mathrm{N}}{a' \,\mathrm{L}} - \mathbf{K'} \tag{7}.$$

e, posto questo valore di K' nell'equazione (3), risulta

$$\mathbf{K'} = 2\left(2 - 3\frac{d'}{a'}\right)\frac{\mathbf{N}}{a'\mathbf{L}} \tag{5}.$$

Sostituendo ora nella (7) il trovato valore di K', si ottiene

$$\mathbf{K}'' = 2\left(-1 + 3\frac{d'}{a'}\right) \frac{\mathbf{N}}{a'\mathbf{L}} \tag{(a)}$$

Le formole (δ) e (λ) sono appunto quelle che già vennero date per trovare la massima e la minima pressione riferite all'unità di superficie su ciascun giunto dell'arco. La (δ) dà la pressione riferite all'unità di superficie sullo spigolo d'intrados e la (7) dà la pressione pure riferita all'unità di superficie sullo spigolo d'estrados.

E -			-			1	=
COEFFICIENTB di stabilità n''	"ou	=""1"	$n_2'' = -$	n3"=	=""	$n_5^n =$	
PRESSIONE K'' all' estrados	K ₀ "=	K ₁ "=	K ₂ '' =	K ₃ "=	$K_{i}{''} = -$	K ₅ "=	No.
PRESSIONE K' all'intrados	K ₀ '=	K ₁ '=	K2'=	K3'=	K4' =	K5' =	
LUNGHEZZA Lunchezza e coefficiente di rottura per pressione R''	lationer		di ette	man in			IT.
PRESSIONI	$N_0 = Q_m$	N ₁ =	N ₂ =	N ₃ =	N,	N ₅ =	
DISTANZE d'	$a_0' = \frac{2}{5}a$						
DIST	d ₀ ' =	$q_1' =$	$d_{2'}=$	$d_3' =$	$a_{i'}=$	$d_5' =$	E E
LUNGHEZZE DIST	$a_0'=a$ $d_0'=a$	$a_1' = - a_1' =$	$a_2' = a_2' = a_2' =$	$a_3' = - a_3' =$	a4'= a4'=	$a_5' = a_5' =$	in the same

nella terza la distanza d' dei punti d'applicazione delle varie pressioni sui giunti dall'intrados; nella quarta le pressioni che hanno luogo normalmente ad essi giunti; nella quinta la lunghezza L dell'arco nel senso delle generatrici ed il coefficiente di rottura per la muratura di cui è formato il vôlto; nella sesta e nella settima le pres-

sioni K' e K" che si verificano all'intrados ed all'estrados dei varii giunti considerati; e finalmente nell'ottava i coefficienti di stabilità n", ossia i quozienti delle massime pressioni riferite all'unità di superficie che si verificano sui diversi giunti pei relativi coefficienti di rottura.

Quando avviene che alcuno dei centri di pressione e_i , e_2 , e_3 , e_4 ed e_5 (fig. 42 e 43) trovasi fuori della superficie compresa fra le due curve NT ed UV, ma che trovasi nel profilo dell'arco, non è a dirsi che questo ultimo sia sempre in cattive condizioni di stabilità. Così, se bc rappresenta un giunto qualunque (fig. 46) e se la pressione che ha luogo su questo giunto trovasi applicata nel punto e, in modo da essere $bc < \frac{1}{3}bc$, per questo solo fatto non si può asserire che nel detto giunto siavi deficienza di stabilità, e, per arrivare ad una giusta conclusione, è necessario calcolare la massima pressione riferita all'unità di superficie che si verifica sullo spigolo proiettato in b. Per calcolare questa pressione serve la formola (d)

$$\mathbf{K} = \frac{2}{3} \frac{\mathbf{N}}{\mathbf{d}' \mathbf{L}} \tag{5},$$

nella quale

d' rappresenta la distanza be espressa in metri, e K la domandata massima pressione espressa in chilogrammi e

(d) Questa formola si deduce: o da quella determinatrice di Q₁, che trovasi a pagina 528 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni per la risoluzione del problema I del numero 137, facendo in essa

$$Q_1 = K$$
, $T'' = N$

$$m = \frac{\frac{1}{2}a' - a'}{\frac{1}{2}a'} = \frac{a' - 2a'}{a'}, \quad ab = a'L$$

oppure dalle due formole (δ) e (λ) della nota (c).

Volendola dedurre dalle formole (3) e (λ) della nota (c), conviene osservare che per $d' < \frac{1}{3}$ a' il valore di K'' risulta negativo, la qual cosa significherebbe che, sullo spigolo proiettato in c, dovrebbe verificarsi una tensione e non una pressione. Ora, se trascurasi la coesione dei cementi, non si può ammettere uno sviluppo di tensione in un giunto qualsiasi di un arco; per cui è giuocoforza il conchindere che in c si verificherà un distacco fra la parte superiore e la parte inferiore dell'arco medesimo. Questo distacco poi cesserà ad una certa distanza \overline{b} $\overline{d} = \overline{c}'$ dal punto b, la qual distanza si determinerà cercando qual è quel valore particolare \overline{c}' di a' per

riferita al metro quadrato, mentre N ed L hanno i significati che già loro vennero attribuiti nel dare le equazioni (3) e (4).

La formola (5) evidentemente si applica anche al caso in cui il centro di pressione e trovasi dalla parte dell'estrados e quando esso dista dall'estrados meno di 1/3 della lunghezza \overline{cb} del giunto. Conviene però ricordare che in questo caso si deve porre nella formola invece di d' la distanza del centro di pressione dall'estrados.

Una volta determinate le pressioni massime riferite al metro quadrato, che si verificano in ciascuno dei giunti (fig. 43) BC, b, c, b₂c₂, b₃c₅, b₄c₄ e b₅K (applicando le formole (3) e (4), dove i centri di pressione si trovano nella superficie compresa fra le due curve NT ed UV, e la formola (5) in qualche rarissimo caso, in cui vuolsi tollerare che alcuno dei centri di pressione sia esteriore alla detta superficie), si dividono esse pel conveniente coefficiente di rottura per pressione (num. 7) riferito al metro quadrato. Questi quozienti, delle pressioni massime riferite al metro quadrato pel detto coefficiente di rottura, rappresentano i coefficienti di stabilità n" pei diversi giunti; e si conchiuderà che l'arco è stabile quando tutti sono minori di 1/10. Se alcuni degli accennati quozienti sono maggiori di 1/10, manca nell'arco quel grado di stabilità, che per generale consentimento dei pratici vuolsi nelle opere murali ben eseguite; è necessario modificarne il progetto aumentando la grossezza; e di nuovo bisogna ripigliare tutta l'operazione che conduce a verificarne la stabilità. Quando i quozienti rappresentanti i coefficienti di stabilità, essendo eguali od inferiori ad 1/10, si scostano però ben poco da questa frazione, l'arco presenta la necessaria

cui è nullo il valore K". Eguagliando perciò a zero il secondo membro dell'equazione (λ) della nota (c) e cangiando a' in δ' , si ha

$$-1+3\frac{d'}{\delta'}=0$$

d'onde

$$\delta' = 3 d'$$
.

il qual valore di è' posto nella formola (è) della nota (c) invece di a', conduce alla formola

$$\mathbf{K}' = \frac{2}{3} \frac{\mathbf{N}}{d' \mathbf{L}}!,$$

che è appunto la formola stata data per trovare la pressione massima riferita all'unità di superficie per un giunto b c, il cui centro di pressione e dista meno di $\frac{1}{3}$ della lunghezza del giunto dall'intrados dell'arco.

stabilità, nè si devono modificare le sue dimensioni. Quando finalmente i detti quozienti di molto sono inferiori ad 1/10, esiste nell'arco un eccesso di stabilità, e talvolta, per ragioni di economia, può essere il caso di dover diminuire la sua spessezza onde ottenere che i valori dei diversi coefficienti di stabilità non si scostino molto dalla frazione 1/10.

31. Verificazione della stabilità di un arco, nell'ipotesi che la rottura tenda a manifestarsi per aprimento alla chiave verso l'estrados. — Questo modo di rottura può avvenire negli archi a monta rialzata, in quelli a sesto acuto ed in quelli a monta qualunque, ma molto caricati sui fianchi. Come lo indica la figura 47, due parti A ed A' tendono a cadere all'indentro girando attorno agli spigoli a ed a' situati sull'intrados, ed altre due parti B e B', appoggiandosi l'una contro l'altra lungo lo spigolo e posto alla sommità dell'intrados, vengono sollevate girando attorno agli spigoli b e b' appartenenti all'estrados.

Determinazione della spinta orizzontale. Per questa determinazione s'incomincia dal fare tutte le operazioni preliminari di cui si è parlato nel numero 29, e quindi si procede con un metodo affatto analogo a quello seguito nel precedente numero. Il punto d'applicazione U (fig. 48) dell'indicata spinta si assume ad una distanza $\overline{B}\overline{U}$ dall'intrados dell'arco, che sia 4/3 di $\overline{B}\overline{C}$; ed i punti m_4 , m_2 , m_5 , m_4 ed m_5 si prendono in modo da risultare $\overline{b_4}$ $\overline{m_4} = \frac{1}{3}$ $\overline{c_4}$ $\overline{b_4}$,

$$\overline{b_2m_2} = \frac{1}{3} \overline{c_2b_2}$$
, $\overline{b_5m_5} = \frac{4}{5} \overline{c_5b_5}$, $\overline{b_4m_4} = \frac{4}{3} \overline{c_4b_4}$ e $\overline{b_5m_5} = \frac{4}{3} \overline{Kb}$. Si conduce per U la orizzontale US; si portano su essa le distanze (num. 29) $\overline{UG_4} = D_4$, $\overline{UG_2} = D_2$, $\overline{UG_3} = D_5$, $\overline{UG_4} = D_4$ ed $\overline{UG_5} = D_5$; e si costruiscono tutti i triangoli rettangoli $\overline{G_1S_1Q_1}$, $\overline{G_2S_2Q_2}$, $\overline{G_3S_3Q_3}$, $\overline{G_4S_4}$ e $\overline{G_5S_5}$ appresentino rispettivamente i pesi P_4 , P_2 , P_3 , P_4 e P_5 . La lunghezza del maggiore dei cateti orizzontali di questi triangoli

 G_5S_5 rappresentino rispettivamente i pesi P_4 , P_2 , P_3 , P_4 e P_5 . La lunghezza del maggiore dei cateti orizzontali di questi triangoli rettangoli si assume siccome graficamente rappresentante la spinta orizzontale dell'arco, quando ammettasi che si trovi esso in tali sfavorevoli condizioni da essere imminente l'apparizione dei primi segni di rottura per aprimento alla chiave verso l'estrados.

Qualora vogliasi determinare, non graficamente, ma numericamente la spinta orizzontale, si applica la formola

$$Q = P \frac{3b + a' \operatorname{sen} \alpha}{a + 3c - a' \cos \alpha},$$

Costruzione della curva delle pressioni. Determinata la spinta orizzontale, si può passare alla costruzione della curva delle pressioni, i cui punti e_4 , e_2 , e_5 , e_4 e e_5 (fig. 49) si determinano precisamente col metodo seguito nel precedente numero per trovare i punti indicati colle stesse lettere nella figura 42.

Per trovare il punto E' (fig. 50) in cui la curva delle pressioni incontra la verticale AK non che la direzione e la lunghezza della retta g'R', che è la rappresentazione grafica della spinta che l'arco esercita contro il piedritto, si procede col metodo tenuto nel precedente numero per determinare il punto E (fig. 43), la direzione e la lunghezza della retta g'R.

Determinati i punti U, e₄, e₂, e₃, e₄, e₅ ed E' (fig. 49 e 50) appartenenti alla curva delle pressioni, si può questa approssimativamente tracciare, e si conchiuderà che non è ancora imminente l'apparizione dei primi segni di rotazione, quando questa curva si trova tutta fra le due curve NT ed UV (fig. 50) che passano pei punti dei diversi giunti che sono rispettivamente ad 1/3 delle lunghezze dei giunti medesimi, a partire dall'estrados e dall'intrados dell'arco. Se la curva delle pressioni viene in qualche sito a cader fuori della superficie compresa fra le due curve NT ed UV, usano i pratici convenientemente modificare il progetto dell'arco per ottenere che la curva delle pressioni venga per intiero a trovarsi nella superficie compresa fra le due curve analoghe alle NT ed UV che si potranno tracciare sul profilo del nuovo progetto.

Volendosi determinare numericamente la curva delle pressioni, bisogna trovare le distanze d_1 , d_2 , d_5 , d_4 e d_5 che i punti (fig. 49) e_1 , e_2 , e_3 , e_4 ed e_5 hanno rispettivamente dai punti b_4 , b_2 , b_5 , b_4 e b_5 , e serve allo scopo la formola

$$d' = \frac{1}{3} \frac{Q_{\text{m}}(a+3c) - 3Pb}{Q_{\text{m}}\cos\alpha + P\sin\alpha},$$

che immediatamente si deduce dalla (2) del numero precedente col solo cangiamento di $\frac{2}{3}a$ in $\frac{1}{3}a$ e quindi di 2a in a, quando in essa si pongano: per Q_m la spinta orizzontale dell'arco; per a la sua grossezza alla chiave; per b le note distanze b_4 , b_2 , b_5 , b_4 e b_5 ; per c le differenze di livello cognite c_4 , c_2 , c_3 , c_4 e c_5 ; per a gli angoli a_4 , a_2 , a_5 , a_4 ed a_5 ; per a i pesi a_5 , a_6 , a_7 , a_8 , a_8 , a_8 ed a_8 ; per a_8 i pesi a_8 , a_8 , a_8 , a_8 ed a_8 ; per a_8 i pesi a_8 , a_8 , a_8 , a_8 ed a_8 ; per a_8 i pesi a_8 , a_8 , a_8 , a_8 ed a_8 ; per a_8 i pesi a_8 , a_8 , a_8 , a_8 ed a_8 ; per a_8 i pesi a_8 , a_8 ,

Per fissare la posizione del punto $E'(\beta g. 50)$ conviene calcolare la distanza $\overline{AE'} = d_i$. Per ottenere questa distanza, basta fare nell'ultima equazione $\alpha = 0$ e porvi: invece di P, il peso P_i sopportato dal mezzo arco P_i invece di P_i la distanza orizzontale P_i fra il punto P_i e la verticale passante pel punto d'applicazione dell'ultimo indicato peso; ed invece di P_i la differenza di livello P_i fra il punto P_i ed il punto P_i .

La spinta R' che l'arco esercita contro il piedritto, siccome equivalente alla risultante delle due forze ortogonali Q_m e P_i , viene data da

$$R' = \sqrt{Q_m^2 + P_i^2}$$
.

Verificazione della stabilità sotto il rapporto della resistenza alla rottura per scorrimento, e sotto il rapporto della resistenza allo schiacciamento. Queste verificazioni si fanno precisamente coi metodi che già vennero indicati nel precedente numero, e, quanto si è detto intorno alle medesime pel caso di archi che tendono a rompersi per aprimento alla chiave verso l'intrados, si applica pure quando vuolsi verificare la stabilità di archi la cui rottura di preferenza sarà per avvenire con aprimento alla chiave verso l'estrados.

32. Verificazione della stabilità di un arco, quando non si hanno indizii per decidere se, ammessa la possibilità di rottura, sarà questa per avvenire con aprimento alla chiave verso l'intrados o con aprimento alla chiave verso l'estrados. — In questo caso si applicano all'arco i due metodi di verificazione che

vennero indicati nei numeri 30 e 31, e si dirà che l'arco trovasi in buone condizioni di stabilità: quando le due curve delle pressioni si trovano comprese nella superficie limitata dalle due curve che passano pei punti dei diversi giunti, che distano di un terzo dei giunti medesimi dall'intrados e dall'estrados; quando le direzioni delle pressioni sui varii giunti fanno un angolo minore dell'angolo d'attrito della muratura colle normali ai piani dei giunti medesimi; e finalmente quando le pressioni riferite all'unità di superficie sui diversi spigoli che limitano i giunti, non eccedono il coefficiente di rottura conveniente alla muratura di cui l'arco è costituito (num. 7), moltiplicato pel coefficiente di stabilità 1/10.

53. Verificazione della stabilità dei piedritti. — Sia FGXY (fig. 54) un piedritto la cui proiezione orizzontale trovasi rappresentata in F'G'G''F'', e contro la sua faccia verticale GX trovisi impostato un arco, il quale ne occupa l'altezza \overline{AK} e la lunghezza orizzontale $\overline{A'A''}$. Questo piedritto sia sollecitato: dalla spinta proveniente dal detto arco applicata nel punto (E, E'); da una forza risultante dai pesi e dalle spinte delle parti di costruzione superiori al piano orizzontale XY applicata nel punto (H, H'); dal peso dell'intiero masso murale rappresentato in FGXY ed applicato in (O, O'), centro di superficie della figura FGXY. Esprimendo le lunghezze in metri e le forze in chilogrammi, si chiamino

a la lunghezza G'G" del piedritto, misurata parallelamente alle generatrici dell'arco che esso sopporta,

b la sua grossezza $\overline{FG} = \overline{F'G'}$,

c la sua altezza FY,

c' l'altezza GA della generatrice d'imposta dell'arco sul piano orizzontale FG,

II il peso del metro cubo di muratura,

S la spinta che l'intiero arco esercita contro il piedritto,

S₄ la pressione che al piedritto viene trasmessa dalla parte di costruzione che esso sopporta e che trovasi superiormente al piano XY,

P il prodotto Πabc esprimente il peso del masso murale FGXY,

 P_4 il prodotto $\prod a \ b \ (c - c')$ rappresentante il peso del masso murale ZAXY,

e vogliasi verificare se il piedritto trovasi in buone condizioni di stabilità sotto il rapporto della resistenza alla rottura per scorrimento, della resistenza alla rottura per rovesciamento e della resistenza alla rottura per schiacciamento. Verificazione della stabilità sotto il rapporto della resistenza allo scorrimento. Preso un punto qualunque H (fig. 52), si conducano per esso l'orizzontale $H\Omega$ e la verticale HV, col vertice in H si facciano gli angoli $\Omega H\Sigma$ ed $\Omega H\Sigma_4$ rispettivamente eguali agli angoli UES ed YHS₄ (fig. 51) delle forze S ed S₄ coll'orizzonte; sulla retta $H\Sigma$ (fig. 52) prendasi la lunghezza $H\overline{S}$ rappresentante la forza S, conducasi per S la retta $\overline{SS_4}$ parallela ad $H\Sigma_4$ e rappresentante la forza S,; e finalmente per S₄ si tiri la verticale $\overline{S_4P_4}$ lunga tante unità della scala che già servì a determinare le lunghezze \overline{HS} ed $\overline{SS_4}$, quante sono unità nel numero di chilogrammi esprimente il peso P₄. Fatto questo, si tracci la retta $\overline{HP_4}$ che in intensità e direzione rappresenta la risultante delle tre forze S, S₄ e P₄. Non vi sarà pericolo di rottura per scorrimento da \overline{A} verso \overline{Z} sul giunto orizzontale AZ, tuttavolta che l'angolo P₄HV sia minore dell'angolo d'attrito \overline{Z} 41', o, in altri termini, tuttavolta che, abbassando da P₄ una perpendicolare P₄T su HV, risulti il rapporto $\overline{P_4T}$

sando da P_4 una perpendicolare P_4T su HV, risulti il rapporto $\frac{\overline{P_4T}}{\overline{HT}}$ minore del coefficiente d'attrito 0,57.

Se chiamansi

β e β, gli angoli S E U ed S, H Y che le forze S e S, fanno all'orizzonte,

T la somma algebrica delle componenti orizzontali delle forze applicate al masso AXYZ,

N la somma algebrica delle componenti verticali delle stesse forze, si ha

$$T = S\cos\beta + S_1\cos\beta, \tag{1}$$

$$N = S \operatorname{sen} \beta + S_{i} \operatorname{sen} \beta_{i} + P_{i}$$
 (2),

e, una volta calcolati con queste formole i due valori di T ed N, riesce agevole il verificare numericamente se il piedritto è stabile, la qual cosa avviene quando il rapporto $\frac{T}{N}$ è minore del noto coefficiente d'attrito f di muratura sopra muratura. Se poi si pone l'equazione di stabilità

$$T = n_i^{\text{rv}} f N \tag{3},$$

e se ricavasi il valore del coefficiente di stabilità n_4^{iv} , si può decidere del grado di stabilità che il piedritto presenta, la quale per

generale consentimento dei pratici si assume siccome più che sufficiente allorquando il valore di n_4 risulta minore della frazione 2/5.

Verificazione della stabilità sotto il rapporto della resistenza al rovesciamento. Si prolunghino le direzioni OP ed HS, (fig. 51) delle due forze P ed S, fino ad incontrarsi nel punto I, e, a partire da questo punto prendansi le due lunghezze IP' ed IS', rappresentanti rispettivamente le intensità delle dette due forze P ed S,. Si costruisca il parallelogramma IP'R'S',, e la sua diagonale IR' rappresenta in intensità e direzione la risultante delle due forze P ed S. A partire dal punto K in cui la direzione IR' incontra la direzione ES della forza S, si portino sulle dette direzioni le lunghezze KS' e KR', rispettivamente rappresentanti le intensità delle due forze S ed R'; e si compia il parallelogramma KS'RR',. La retta KR rappresenta in intensità e direzione la risultante delle tre forze S, S, e P, ed il punto L in cui essa incontra la sezione orizzontale F G è quello da considerarsi siccome il centro di pressione relativo all'or indicata sezione. Quando questo punto trovasi fra F e G non può aver luogo rovesciamento del piedritto, e, quando FL è maggiore di $\frac{1}{3}$ e minore dei $\frac{2}{3}$ di FG, l'intiera sezione FG trovasi premuta.

Se \overline{FL} è minore di $\frac{4}{5}\overline{FG}$, per generale consentimento dei pratici si ammette che il piedritto non presenta la necessaria stabilità, e si può questa conseguire in due modi: o aumentando la grossezza del piedritto; o cercando di diminuire l'azione della spinta dell'arco, mediante chiavi in ferro di cui in seguito si parlerà.

Il punto L, che venne determinato graficamente, è anche suscettivo di una determinazione numerica, la quale conduce a trovare la distanza FL. Si chiamino perciò

s l'altezza GE del punto d'applicazione E della forza S al di sopra del piano orizzontale FG,

 σ_i la distanza \overline{HY} del punto d'applicazione H della forza S_i dal piano verticale FY,

d la distanza FL,

e si ritengano tutte le denominazioni già stabilite per le lunghezze $\overline{G'G''}$, \overline{FG} e \overline{GX} , per le intensità delle forze applicate al sistema, per gli angoli che esse fanno coll'orizzonte e per il peso del piedritto FGXY; osservando che le componenti orizzontale e verticale della risultante R delle forze applicate al masso murale FGXY e

quindi anche della reazione opposta al piedritto dall'appoggio sottostante ad FG sono rispettivamente

$$S \cos \beta + S_4 \cos \beta_4$$

 $S \sin \beta + S_4 \sin \beta_4 + P$

e ponendo l'equazione dei momenti rispetto allo spigolo F' F" proiettato verticalmente nel punto F, si ha

$$S s \cos \beta - S b \sin \beta + S_i c \cos \beta_i - S_i \sigma_i \sin \beta_i$$

 $-\frac{1}{2} P b + (S \sin \beta + S_i \sin \beta_i + P) d = 0,$

dalla quale si ricava

$$d = \frac{S(b \sin \beta - s \cos \beta) + S_4(\sigma_4 \sin \beta_4 - c \cos \beta_4) + \frac{1}{2}Pb}{S \sin \beta + S_4 \sin \beta_4 + P}$$
(4).

Verificazione della stabilità sotto il rapporto della resistenza allo schiacciamento. Essendo R la risultante delle forze S, S₄ e P applicate al piedritto di cui vuolsi verificare la stabilità, e trovandosi essa rappresentata in direzione ed intensità dalla retta \overline{KR} , si cerchi la sua componente verticale N, la cui rappresentazione grafica si ha nel cateto \overline{KN} del triangolo rettangolo KNR, e che numericamente si può trovare mediante la formola (2). Posto che il punto L si trovi più vicino ad F che non a G, e che si abbia $\overline{FL} > \frac{1}{3} \overline{FG}$, si calcoli la massima pressione K riferita all'unità di superficie che ha luogo sullo spigolo (F, $\overline{F'F''}$) mediante la formola (num. 30)

$$K = 2\left(2 - 3\frac{d}{b}\right) \frac{N}{ab} \tag{5}$$

nella quale a, b e d rappresentano rispettivamente le lunghezze $\overrightarrow{G'G''}$, $\overrightarrow{FG} = \overrightarrow{F'G'}$ e FL.

Può anche avvenire che il piedritto si trovi sufficientemente

stabile, quantunque la distanza \overline{FL} sia minore di $\frac{1}{3}$ \overline{FG} . In questo caso la formola determinatrice di K è (num. 30)

$$K = \frac{2}{3} \frac{N}{a d} \tag{6}.$$

Trovato il valore di K, si divida pel conveniente coefficiente di rottura per pressione (num. 7) riferito al metro quadrato. In questo quoziente si ottiene il valore del coefficiente di stabilità, ed il piedritto è stabile, quando il valore del detto coefficiente è 1/10 o minore di 1/10.

34. Determinazione delle grossezze dei piedritti. — Il costruttore, allorquando conosca le intensità e le direzioni delle forze che devono operare su un piedritto, invece di darsi arbitrariamente le dimensioni di questo per poi procedere alla verificazione della sua stabilità seguendo i metodi che vennero svolti nel precedente numero, può anche accingersi alla determinazione diretta della sua grossezza. In quello che immediatamente segue, si dà la risoluzione di questo problema e, considerando il piedritto rappresentato nella figura 54, si ritengono tutte le denominazioni che già vennero stabilite nel precedente numero.

Affinchè il piedritto presenti la necessaria resistenza allo scorrimento, nell'equazione (3) del numero precedente si pongano per T ed N i loro valori dati dalle equazioni (1) e (2), osservando che

$$P_1 = \prod a b (c - c').$$

Si ottiene allora l'equazione

$$S\cos\beta + S_i\cos\beta_i = \nu f \left[S\sin\beta + S_i\sin\beta_i + \Pi a b (c-c') \right],$$

dalla quale ricavasi la formola

$$b = \frac{1}{\prod a(c-c')} \left(\frac{S\cos\beta + S_4\cos\beta_4}{\nu f} - S\sin\beta - S_4\sin\beta_4 \right)$$
 (1),

che serve alla determinazione della grossezza $b = \overline{FG} = \overline{F'G'}$ del piedritto. Nell'applicare questa formola per le ordinarie circostanze

della pratica, convien assumere 0.57 per valore del coefficiente d'attrito f ed una frazione variabile fra 4/5 e 2/5 per valore del coefficiente di stabilità ν .

Affinchè il piedritto si trovi abbastanza stabile sotto il rapporto della resistenza al rovesciamento attorno al suo spigolo $\overline{F'F'}$, verticalmente proiettato nel punto F, si osservi: che il momento delle forze estrinseche che tendono a produrre il rovesciamento è

$$Ss\cos\beta + S_1\cos\beta_1$$
;

che il momento delle forze che si oppongono al rovesciamento è

$$Sb \operatorname{sen} \beta + S_{i}(b-s_{i}) \operatorname{sen} \beta_{i} + \frac{1}{2} \Pi a b^{2} c$$
,

dove Πabc è il peso del masso murale FGXY ed s_i la distanza XH del punto d'applicazione della forza S_i dal piano verticale GX; e che il rovesciamento è impossibile quando si ha

$$Ss\cos\beta + S_i\cos\beta_i < Sb\sin\beta + S_i(b-s_i)\sin\beta_i + \frac{1}{2}\Pi ab^2c.$$

Ora, chiamando nº il coefficiente di stabilità relativo al rovesciamento, invece dell'ultima ineguaglianza si può porre l'equazione

$$\operatorname{Sscos}\beta + \operatorname{S}_{i}c\cos\beta_{i} = n^{\text{vi}} \left[\operatorname{S}b\operatorname{sen}\beta + \operatorname{S}_{i}(b-s_{i})\operatorname{sen}\beta_{i} + \frac{1}{2}\operatorname{\Pi}ab^{2}c \right],$$
 la quale, ponendo

$$\frac{\frac{\operatorname{S} \operatorname{sen} \beta + \operatorname{S}_{4} \operatorname{sen} \beta_{4}}{\operatorname{\Pi} a c}}{\operatorname{\Pi} a c} = \mathbf{M}$$

$$\frac{2 \left(\operatorname{S} s \operatorname{cos} \beta + \operatorname{S}_{4} c \operatorname{cos} \beta_{4} + n^{\operatorname{vi}} \operatorname{S}_{4} s_{4} \operatorname{sen} \beta_{4}\right)}{\operatorname{\Pi} a c n^{\operatorname{vi}}} = \mathbf{N}$$
(2),

conduce ad ottenere

$$b = -M + \sqrt{M^2 + N}$$
 (3).

Le equazioni (2) servono al calcolo delle due quantità M ed N e l'equazione (3) si presta dopo alla determinazione di b. In quanto

poi al valore del coefficiente di stabilità n^n si suol esso assumere siccome variabile fra 4/5 e 2/5.

La formola (1) conduce a trovare un primo valore della grossezza b del piedritto, e le formole (2) e (5) conducono ad un secondo valore generalmente differente dal primo. Il maggiore dei due valori di b sarà quello da assumersi siccome rappresentante la grossezza da adottarsi in pratica.

Una volta stabilita la grossezza di un piedritto coll'applicare nel

modo indicato le formole (1), (2) e (3), bisogna accertarsi se la massima pressione riferita all'unità di superficie sul piano orizzzontale FG non eccede il limite della pressione riferita all'unità di superficie che, per generale consentimento dei pratici, si può far sopportare alla muratura, affinchè si trovi essa in buone condizioni di stabilità. Perciò, determinato il valore del peso P corrispondente alla grossezza b, mediante la formola (4) del numero precedente in cui $\sigma_i = b - s_i$, si calcoli la distanza d del punto L, in cui la risultante delle forze S, S, e P incontra il piano orizzontale F G, dal punto F, e mediante la formola (5) o la (6) dello stesso numero, secondo che d (supposto $< \operatorname{di} \frac{1}{2} b$) risulta $> \operatorname{o} < \operatorname{di} 1/3 \operatorname{di} b$, si trovi il valore di K. Dividendo questo valore di K pel conveniente coefficiente di rottura per pressione (num. 7) riferito al metro quadrato, si ha il coefficiente di stabilità, ed il piedritto si deve ritenere come stabile, quando questo coefficiente risulta eguale o minore di 1/10. Se per avventura si trova $d > \frac{1}{2}b$, la pressione massima K, invece di verificarsi sullo spigolo (F'F", F), ha essa luogo sullo spigolo (G'G", G); nelle dette equazioni (5) e (6) invece di d bisogna porre b-d; e si applicherà la formola (5) e la (6) secondo che si ha b-d>0< di $\frac{1}{5}b$.

55. Chiavi in ferro pel consolidamento degli archi e delle piattabande. — Per assicurare la stabilità degli archi, allorquando per qualsiasi causa non si possono costrurre i piedritti di grossezza corrispondente al bisogno, si fa uso di catene o chiavi in ferro, le quali, allacciando i due fianchi degli archi, si oppongono al loro discostamento.

Le chiavi o sono d'un sol pezzo, oppure di molti pezzi congiunti nelle estremità; in generale si pongono orizzontalmente; e, per renderle della massima efficacia, conviene collocarle negli archi immediatamente al disotto di quel giunto nel quale tende a manifestarsi la rottura sui fianchi, Infatti, considerando un arco ABCDEF (fig. 19), se esso si rompe per aprimento alla chiave verso l'intrados e per aprimento sui fianchi verso l'estrados nel giunto mn, l'abbassamento che subisce il vertice dell'arco produce uno spostamento del punto m, e questo punto m, passando in m', è evidentemente quello che orizzontalmente percorre il più gran spazio. Ora, siccome qualsiasi spostamento del punto m induce un movimento corrispondente nel piedritto P, il quale tende a rotare al suo piede attorno allo spigolo esterno o, ne deriva che, cercando d'impedire lo spostamento del punto m, si provvede alla sicurezza del piedritto P, e che questo rimarrà immobile quando la chiave sia disposta in modo da non permettere che il punto m si sposti. Si applichi dunque la chiave dove esiste il punto m, od immediatamente al di sotto di esso, per ottenere che non subisca spostamento, allora il piedritto P rimarrà immobile e la chiave riescirà così della massima efficacia.

Diversi sono i metodi con cui si possono congiungere le parti componenti una chiave che deve essere formata di più pezzi, e generalmente trovansi utili: l'unione ad uncino, indicata nella figura 20: quella a cerniera, come nella figura 21; quella a tenaglia con zeppe, come appare dalla figura 22; e finalmente quella a tallone con briglie e con zeppe, come risulta dalla figura 23. Allorquando una chiave vuol essere formata di due pezzi, e inoltre vuolsi rendere possibile di avvicinarli o di allontanarli più di quanto permettono i cunei, si ricorre alle unioni a vite. Una di queste unioni è rappresentata nella figura 24. Essa consiste in un pezzo d'unione C di forma prismatica, avente per sezione un poligono regolare munito di due perni p lavorati a vite in senso inverso. Questi maschii trovano le loro chiocciole entro cavità esistenti agli estremi dei due pezzi da riunirsi, per modo che quando i due maschii p sono già innoltrati nelle rispettive chiocciole, basta imprimere al pezzo d'unione C un moto rotatorio in un senso o nell'altro per ottenere che le due estremità A si allontanino o si avvicinino. Un'altra unione dello stesso genere è quella rappresentata nella figura 25. Le estremità dei due pezzi da riunirsi sono lavorate a vite in senso inverso, ed un pezzo d'unione C, foggiato a guisa di anello assai allungato, porta due aperture coi loro assi sulla stessa retta. Queste aperture sono lavorate a vite in senso inverso onde poter ricevere i maschii che presentano le estremità dei pezzi da riunirsi, e girando il pezzo d'unione C nell'uno o nell'altro senso si ottiene l'avvicinamento o l'allontanamento di quelli.

I capi delle chiavi in ferro sono fitti nei muri da esse incatenati. e si ritengono mediante lunghe spranghe chiamate bolzoni, che, passando entro gli occhi espressamente lasciati negli estremi delle chiavi e strettivi a forza di zeppe battute (fig. 26), si appoggiano per buon tratto lungo le facce esteriori dei muri. Generalmente per togliere il cattivo effetto prodotto dalla vista dei bolzoni, si usa di lasciare delle scanalature dove essi devono appoggiare contro la muratura e così si allogano e si nascondono entro queste scanalature, le quali ben di frequente si coprono esternamente mediante un intonaco murale. Affinchè poi la muratura non venga ad essere danneggiata per le enormi pressioni che vi possono produrre i bolzoni è bene che le dette scanalature siano praticate entro blocchi di durissime pietre; e generalmente torna conveniente di fare in modo che anche le estremità delle catene posino su resistenti appoggi di pietra. Per ottenere che la pressione prodotta dal bolzone contro la muratura si ripartisca su una base ampia ed anche per poter a piacimento aumentare o diminuire la tensione delle chiavi, utilmente si lavorano a vite le loro estremità, e si pongono in opera facendo in modo che attraversino una piastra P di ghisa (fig. 27) la quale fortemente vien serrata contro la muratura mediante apposita chiavarda C.

È opinione di molti valenti costruttori, che generalmente debbasi sfuggire l'impiego delle chiavi in ferro negli edifizii nuovi, e che soltanto si debbano esse considerare come utili ripieghi nei casi di minacciata stabilità; giacchè questa nelle fabbriche nuove unicamente deve dipendere dai giusti rapporti delle dimensioni e dalle resistenze delle masse componenti alle spinte ed alle forze di qualunque genere, che agiscono sulle masse stesse. Se però osservasi che nelle moderne costruzioni civili non sono più ammissibili quelle enormi grossezze di muri che generalmente si vedono negli antichi edifizii, e che le forme sottili e svelte hanno preso il posto di quelle massicce e pesanti, facilmente si comprende come in parecchie circostanze sia una necessità l'impiego delle chiavi in ferro, e come, anzichè abbandonarne l'uso, convenga studiare il mezzo di togliere il cattivo effetto che esse producono, nascondendole nelle stesse masse murali che mantengono collegate. Per ottenere questo si possono disporre le chiavi per gli archi in modo che li attraversino di poco al disopra del livello della superficie d'intrados, e, qualora siano molto lunghe, conviene di consolidarle mediante legamenti abc ed a'b'c' disposti come appare nella figura 28. I tratti orizzontali di questi legamenti, che generalmente si pongono presso le imposte

degli archi, devono avere le loro estremità e e e' lavorate come quelle delle chiavi, ed è necessario che ciascuno dei bolzoni verticali $g\,h$ e $g'\,h'$ contemporaneamente attraversi l'occhio della chiave e quello del sottostante legamento.

Le chiavi in ferro, non solo s'impiegano per mantenere uniti i piedritti sopportanti archi, ma ben anche per impedire l'allontanamento di quelli che sopportano piattabande. Quando le piattabande sono di minuti materiali, le chiavi si collocano in corrispondenza del mezzo del muro in cui si trovano un poco più vicine all'intrados che all'estrados; quando invece le piattabande sono in pietra da taglio, conviene praticare una scanalatura su ciascuna delle due facce dei cunei, le quali devono rimanere verticali, e fare in modo che, ponendoli in opera, entrino in dette scanalature due chiavi in ferro le quali, protraendosi al di là delle imposte, sono mantenute in opera da bolzoni infissi nei piedritti. Nelle piattabande in pietra da taglio si possono anche collocare le chiavi entro scanalature a fondo orizzontale, il quale sia ben di poco al di sotto della superficie d'estrados.

La determinazione della superficie della sezione retta di una chiave si determina cercando prima qual è il minimo valore della tensione che essa dovrebbe essere capace di sviluppare, per contribuire a rendere stabili i piedritti sotto il rapporto della resistenza al rovesciamento. Perciò, chiamando

T' la detta minima tensione,

t la distanza dello spigolo intorno al quale tende aver luogo il rovesciamento dal piano orizzontale passante per l'asse della catena,

e attribuendo alle lettere S, S_4 , P, b, c, s e σ_4 , β , e β_4 i significati che già loro vennero dati nei due precedenti numeri 33 e 34, si ha l'equazione

$$S s \cos \beta + S_i c \cos \beta_i = T't + S b \sin \beta + S_i \sigma_i \sin \beta_i + \frac{1}{2} P b$$
,

dalla quale ricavasi

$$T' = \frac{Ss\cos\beta + S_{i}\cos\beta_{i} - \left(Sb\sin\beta + S_{i}\sigma_{i}\sin\beta_{i} + \frac{1}{2}Pb\right)}{t}.$$

Una volta ricavato il valore di T' da questa formola, col porre in essa le quantità note che trovansi nel suo secondo membro, si può determinare la superficie Ω della sezione retta della chiave, mediante la semplicissima formola

$$\Omega = \frac{T'}{n'R'}$$
,

dove n' ed R' sono rispettivamente i coefficienti di stabilità ed i coefficienti di rottura per trazione, da assumersi: eguale alla frazione 1/6 il primo; e variabile fra 50 e 40 chilogrammi per millimetro quadrato il secondo.

Se però osservasi che le variazioni di temperatura saranno per indurre nella chiave delle notevoli variazioni di tensione, agevolmente si comprende come l'ultima formola non tenga conto di tutte le circostanze a cui la chiave può andar soggetta, e come sia preferibile di calcolare la superficie Ω della sua sezione retta in modo da soddisfare all'ineguaglianza

$$\Omega\!>\!\frac{T'}{Q'\!-\!E'\,\delta'(\theta\!-\!\boldsymbol{\theta}'')}\,,$$

che già venne dedotta risolvendo il problema I del numero 24 del volume che tratta della Resistenza dei materiali e della stabilità delle costruzioni, e che può essere trasformata nell'equazione

$$\Omega = \frac{\Gamma'}{n'R' - E'\delta(\theta - \theta'')}.$$

I valori di n' e di R' da porsi in quest'equazione per ricavare quello di Ω sono quali già vennero indicati; il valore di E', rappresentante il coefficiente di stabilità longitudinale del ferro, mediamente si può assumere di 16000 chilogrammi per millimetro quadrato; per valore di ∂ , ossia dell'allungamento proporzionale della chiave per un grado centigrado d'aumento nella temperatura, si può prendere 0,0000122; e per θ e θ'' si dovrebbero rispettivamente porre le temperature massima e minima alle quali la chiave dovrà trovarsi esposta, espresse in gradi centigradi. Se però osservasi che le temperature minime non sono che passeggiere, giacchè si verificano solo per poche ore nelle notti più fredde d'inverno, e che d'altronde l'aver introdotto il coefficiente di stabilità n' nella formola determinatrice di Ω conduce ad una superficie della chiave maggiore di quella strettamente necessaria, riesce facile il convincersi do-

versi tutto al più assumere di 25° la differenza θ —9" e doversi notevolmente diminuire questa differenza col portarla a non piu di 15° per le chiavi poste in opera in siti chiusi e riparati dagli eccessivi freddi.

36. Radiciamenti e ligati. — Nelle costruzioni civili si nascondono generalmente entro le grossezze dei muri dei travicelli di quercia, i quali, orizzontalmente collocati nelle parti più elevate di ciascun piano e convenientemente uniti coll'inchiodarvi delle piattine di ferro dove due travicelli successivi trovansi l'uno di seguito all'altro (fig. 29), o dove i travicelli posti in un muro sono incontrati da quelli situati in altri muri (fig. 50, 54 e 52), servono a mantenere ben concatenate tutte le muraglie e ad eliminare in parte gli effetti delle spinte orizzontali. Questi travicelli, detti radiciamenti, si impiegano generalmente allo stato di legname greggio, ossia in seguito ad una squadratura incompleta per levarvi la corteccia e per dar loro una forma grossolanamente parallelepipeda, e coi lati della sezione trasversale variabile fra metri 0,08 e 0,12.

I radiciamenti di legno, divenendo fracidi o riducendosi col tempo allo stato di polvere, finiscono per lasciare nei muri dei vuoti, i quali potrebbero diventare dannosi alla stabilità degli edifizii, se pure la maggior consistenza presa dalla muratura non compensasse abbondantemente l'indebolimento causato dalla mancata resistenza dei radiciamenti. Ad ogni modo, i radiciamenti di ferro sono di gran lunga migliori di quelli in legno; è sufficiente assegnare alla loro sezione trasversale le dimensioni di metri 0,015 per metri 0,025; occupano pochissimo spazio entro i muri in cui sono collocati; e qualora, venendo a riunirsi in un sol sito due o tre pezzi, si abbia l'avvertenza di collegarli ad un bolzone verticale b (fig. 33. 34, 35 e 36) solidamente infisso nel muro, si ottengono delle intelaiature molto resistenti e capaci di energicamente opporsi alle spinte orizzontali. Nelle figure 53 e 34 sono rappresentate in proiezione orizzontale due disposizioni per unire due radiciamenti di ferro negli angoli degli edifizii, e nelle figure 35 e 36 sono rappresentate le disposizioni utili per l'unione di uno o di due radiciamenti trasversali ad un altro longitudinale. Se nello stabilimento dei radiciamenti di ferro avviene di dover porre due pezzi l'uno di seguito all'altro, conviene generalmente operare l'unione dove succede l'incontro di due o tre diversi pezzi, giacchè le disposizioni espresse dalle figure 35 e 36 convengono anche pei casi in cui due diversi pezzi c e d si uniscono di punta corrispondentemente al mezzo del bolzone b. Diversamente si può far uso dell'unione a cerniera (fig. 21) oppure dell'altra a tenaglia con zeppe (fig. 22).

I radiciamenti, siano essi di legno siano di ferro, in ogni piano vogliono essere collocati al di sopra delle aperture e sotto i modiglioni. Quando sono di legno, accuratamente bisogna badare che non attraversino le canne da camino e neppure che abbiano una loro faccia sulle pareti di questi.

Negli angoli degli edifizii, ed in generale dove due muri vengono ad incontrarsi, importa mettere delle grosse pietre che penetrino tanto nell'una quanto nell'altra delle due muraglie. Queste pietre, dette *ligati* dai pratici, efficacemente contribuiscono ad impedire che un muro si disgiunga da quello che lo incontra, e notevolmente influiscono sulla stabilità degli alti edifizii.

CAPITOLO IV.

Coperture per costruzioni civili.

37. Assunto del presente capitolo. — Le coperture per costruzioni civili sono di due sorta: quelle che ricoprono il complesso degli edifizii, che li riparano dalle pioggie e dalle intemperie, e che prendono il nome di tetti; quelle che sono destinate a separare gli interni ambienti da altri sovrastanti e che trovansi esse stesse riparate dai tetti, quali sono i solai e le vôlte. Sì le une che le altre di queste coperture costituiscono un assieme di opere della massima importanza nelle costruzioni civili, ed è indispensabile di dare le norme generali per la loro costruzione nei casi più comuni e più frequenti della pratica.

ARTICOLO 1.

Tetti e tettoie.

38. Nozioni e definizioni generali. — I tetti sono coperture che si prestano per figure qualunque, e, supponendoli osservati dall'alto al basso, presentano generalmente diverse facce piane, le quali prendono il nome di falde. Si chiamano linee di gronda quelle linee orizzontali che limitano in basso le falde di un tetto; e si dicono linee di comignolo o comignoli quelle altre linee, pure orizzontali, secondo le quali superiormente vengono ad intersecarsi

le diverse falde. Le linee poi che dal comignolo si dirigono alla gronda prendono il nome di displuvii o di compluvii, secondoche osservate dall'alto al basso si presentano siccome spigoli di angoli diedri convessi o di angoli diedri concavi. Finalmente si chiama base di un tetto il poligono posto al livello delle linee di gronda, nel quale orizzontalmente si proiettano tutte le sue falde. Una retta, condotta nella falda di un tetto perpendicolarmente alle orizzontali in essa contenute, è la linea di massima pendenza di questa falda; il quoziente della differenza di livello di due punti collocati su questa linea per la loro distanza orizzontale dà la pendenza della stessa falda; ed in un medesimo tetto, affinche con egual facilità abbia luogo lo scolo delle acque su tutte le falde, si richiede che queste abbiano egual pendenza.

59. Composizione geometrica dei tetti su base rettangolare su base parallelogrammica e su base trapezia. - Il più semplice di tutti i tetti è quello che copre un'area rettangolare, ed esso può essere ad una falda, a due falde, a tre falde ossia a mezzo padiglione ed a quattro falde ossia a padiglione. Il tetto ad una sola falda ha generalmente le linee di comignolo e di gronda dirette parallelamente ai lati di maggior lunghezza del rettangolo che gli serve di base; cosicchè ammette esso una sola faccia rettangolare, in cui le linee di gronda e di comignolo costituiscono due lati opposti ed in cui gli altri due lati sono le intersezioni della falda coi piani verticali condotti pei due lati minori della base. Il tetto a due falde, dovendo avere le sue due facce egualmente inclinate all'orizzonte, ammette per comignolo una retta orizzontale, la di cui proiezione EF (fig. 55) sul piano della base ABCD divide per metà l'uno e l'altro dei lati minori AB e CD della base medesima, per guisa che la superficie di questo tetto si riduce a due facce. ciascuna delle quali è un rettangolo terminato da uno dei lati maggiori della base, dall'opposta intersezione delle falde e dalle intersezioni fra loro opposte della rispettiva falda coi due piani verticali elevati sui due lati minori della base. Il tetto a padiglione presenta quattro facce due a due eguali fra di loro. Sono trapezii le due facce inclinate verso i lati maggiori della base, sono triangoli le altre due; e, dovendo esse trovarsi egualmente inclinate all'orizzonte, il comignolo EF (fig. 54) si proietta orizzontalmente ad egual distanza dai due lati maggiori AD e BC della base. Questo tetto presenta quattro linee di displuvio, le di cui proiezioni orizzontali sono EA, EB, FC ed FD; ed evidentemente la condizione dell'uniforme pendenza in tutte le falde del tetto porta di necessità che le indicate proiezioni orizzontali dei displuvii dividono per metà gli angoli del rettangolo ABCD. Il tetto a mezzo padiglione non è altro che un tetto a padiglione in cui siasi soppressa una delle facce triangolari, come DCF, col prolungare le due facce trapezie ADFE e BCFE fino ad incontrare il piano verticale elevato per quel lato della base, il quale trovasi opposto a quello che costituisce la linea di gronda della faccia triangolare conservata.

I tetti aventi per base un parallelogramma od un trapezio ammettono una composizione geometrica, la quale non è più complicata di quella già indicata pei coperti su base rettangolare. Questi tetti possono ancora essere ad una falda, a due falde, a mezzo padiglione ed a padiglione; ma, per non stare su argomenti della massima facilità, si tralascia d'indicare qual sia la composizione geometrica dei primi tre tipi, giacchè ognuno facilmente può dedurla da quanto si è detto parlando dei tetti su base rettangolare, e si passa a parlare di quello a padiglione su base trapezia senza punto considerare il caso della base parallelogrammica, giacchè dalla base trapezia si passa immediatamente a quella parallelogrammica col supporre che le due basi della prima si riducano ad essere eguali fra di loro. In questo tetto la proiezione orizzontale EF del comignolo (fig. 55) cade ad egual distanza dai due lati paralleli AD e BC della base trapezia, e, affinchè le quattro facce abbiano eguale pendenza, i suoi due estremi E ed F devono essere determinati in modo da risultare eguali alla metà della distanza GH, che esiste fra i detti lati paralleli, le rette IE e KF condotte perpendicolarmente ai due lati non paralleli AB e CD del trapezio. Le quattro rette EA, EB, FC ed FD, che dai punti E ed F, rappresentanti le proiezioni degli estremi del comignolo sulla base, vanno ai quattro vertici della base del tetto, costituiscono le proiezioni orizzontali delle quattro linee di displuvio. La differenza che esiste fra la composizione geometrica del tetto a padiglione su base rettangolare e del tetto a padiglione su base trapezia sta unicamente in ciò, che nel secondo sono fra loro diseguali quelle facce opposte le quali nel primo sono eguali ed isoscele.

40. Composizione geometrica dei tetti pel complesso di più corpi di fabbrica. — I tetti su basi rettangolari, parallelogrammiche e trapezie si costruiscono ad una sola o a due falde, a padiglione o a mezzo padiglione, a seconda della possibilità ovvero della convenienza di rivolgere lo stillicidio verso una parte soltanto, o

due parti opposte o da tre o da tutti e quattro i lati; e dipendentemente dalle circostanze delle fabbriche adiacenti, dalle esigenze, dall'uso e dal carattere dell'edifizio da coprirsi. Sovente accade nella pratica che due o più corpi d'una medesima fabbrica, egualmente alti ed aventi per base delle figure quadrilatere, ciascuna delle quali ammette due lati paralleli, vengono ad incontrarsi; per cui si rende necessario di eseguire i rispettivi tetti, in guisa che le falde dell'uno regolarmente si congiungano a quelle dell'altro, ed in modo che abbiano eguali pendenze, che risultino di facile esecuzione e che siano atte a dare facile scolò alle acque.

Se due corpi di una fabbrica X ed Y (fig. 56), di differente larghezza, vengono a riunirsi secondo un angolo qualunque alle loro estremità, i due tetti, dovendo avere la stessa pendenza, avranno una diversa altezza. Immaginando sul corpo di fabbrica più largo X un tetto a mezzo padiglione, si determina la proiezione orizzontale \overline{aa} del suo comignolo col tirare la retta \overline{ab} parallela ed equidistante dalle due linee di gronda cd ed ef, e col fissare il punto q in modo che la perpendicolare \overline{hg} a dm risulti eguale alla metà della larghezza ik della falda X. I due displuvii del mezzo padiglione hanno le loro proiezioni orizzontali in \overline{qd} e \overline{ql} , ed osservando che il comignolo del tetto coprente il corpo di fabbrica Y deve incontrare il secondo degli indicati displuvii e di più essere parallelo ed equidistante dai due lati di gronda dm ed fn, agevolmente si comprende: essere la retta op, parallela ed equidistante da dm ed fn, la proiezione orizzontale del comignolo del tetto coprente il corpo Y; sparire la parte \overline{pl} del displuvio \overline{ql} , giacchè la faccia proiettata in plmo non è altro che il prolungamento di quella proiettata in dgl; e finalmente produrre il compluvio, proiettato orizzontalmente in \overline{pf} , l'intersezione delle due falde aventi per linee di gronda ef ed fn.

Quando i due corpi di fabbrica X ed Y sono di egual larghezza, i due comignoli si trovano in uno stesso piano orizzontale, il punto p si confonde col punto g, ed il compluvio passante per f viene a

trovarsi nel piano verticale del displuvio passante per d.

Allorquando un corpo di fabbrica X viene incontrato da un altro corpo di fabbrica Y (fig. 57) avente larghezza minore, il comignolo appartenente al tetto del primo deve essere più alto del comignolo appartenente al tetto del secondo. La proiezione orizzontale del primo comignolo cade nella retta ab condotta parallelamente alle due linee di gronda ef e cd, ad egual distanza da esse; ed analo-

gamente la projezione orizzontale del secondo comignolo si ha nella direzione q v. conservantesi egualmente distante dalle altre linee di gronda ik ed lm. Il punto h, che limita questo comignolo, deve essere determinato in modo che, considerato esso siccome posto sulla falda abfe, si trovi elevato sulla linea di gronda ef di una quantità eguale all'elevazione del comignolo rappresentato in gh sul piano orizzontale determinato dalle due linee di gronda lm ed ik. Ora, siccome le quattro falde del tetto hanno egual pendenza, ne deriva che tutti i punti di quella retta della falda abfe, la quale dista orizzontalmente da ef di una quantità eguale alla metà della lunghezza del corpo Y, sono elevati sul piano di base di quanto sullo stesso piano è elevato il comignolo qh, e che quindi il punto h risulta dall'intersezione della qv colla qr, condotta parallelamente ad ef e con distanza pq da questa eguale alla metà di no. Unendo h con k e con m, si hanno le proiezioni orizzontali hk ed hm dei due compluvii secondo cui il tetto del corpo Y incontra quello del corpo X.

Se il corpo di fabbrica Y (fig. 58), il quale viene ad incontrare il corpo di fabbrica X, ha larghezza maggiore di questo, il comignolo orizzontalmente proiettato in gh riesce più elevato del comignolo, la di cui proiezione orizzontale è ab; il punto h, essendo proiezione orizzontale di un punto il quale si trova sulla falda passante per la linea di gronda cd e sulla retta di proiezione gh equidistante dalle altre due linee di gronda ih ed lm, a motivo dell'egual inclinazione di tutte le falde, deve distare dalla cd di una quantità che sia la metà della larghezza no della falda Y; e quindi riesce facile il determinarlo nell'intersezione della retta gh colla

retta qu parallela a cd e distante da questa di $\overline{pq} = \frac{1}{2} \overline{no}$. I tre punti proiettati orizzontalmente in h, s e t si trovano nella falda passante per la linea di gronda cd, e quindi il piano determinato da quei tre punti è quello in cui cade la detta falda. Segue da ciò che le due rette, le di cui proiezioni orizzontali sono hs ed ht, di necessità devono essere intersecate dal comignolo del tetto coprente il corpo X, e questo avviene nei due punti proiettati orizzontalmente in x ed y. Per abbassarsi dal punto la di cui proiezione orizzontale è h a quelli le di cui proiezioni orizzontali sono x ed y, vi sono i due displuvii orizzontalmente proiettati in hx ed hy; e per elevarsi agli stessi punti dai due punti k ed my; il tetto compluvii che orizzontalmente si proiettano in kx ed my; il tetto

intiero presenta cinque falde, le di cui proiezioni orizzontali sono l'ottagono acdbyhx, i due trapezii axke e bymf ed i due penta-

goni ikxh g ed lmygh.

Siano ora tre corpi di fabbrica X, Y e Z (fig. 59); il corpo di fabbrica Y, la cui facciata si trova sul prolungamento di quella del corpo di fabbrica X, abbia minor larghezza di questo; ed il corpo di fabbrica Z, anche meno largo del corpo X, venga ad incontrarlo con una direzione qualunque. Il comignolo appartenente al tetto del corpo X si proietta orizzontalmente sulla rettà av, equidistante dalle due linee di gronda \overline{bc} e \overline{de} , si ottiene la proiezione orizzontale f dell'estremo di questo comignolo nell'intersezione della retta av colla retta lm, condotta parallelamente a gi ed a distanza

 $\overline{k}\,\overline{l} = rac{1}{2}\,\overline{b}\,\overline{d}$. Se ora s'immaginano condotte le due rette le di cui

proiezioni orizzontali sono fi ed fn, queste rette determinano il piano nel quale deve trovarsi la falda del tetto passante per la linea di gronda hq. Questa falda superiormente deve essere limitata: per un tratto dal comignolo del tetto coprente il corpo di fabbrica Z, il qual comignolo orizzontalmente proiettasi nella retta op equidistante dalle due linee di gronda gh e qc; per un secondo tratto dal displuvio proiettato in fp; e per un terzo tratto dal displuvio la di cui proiezione orizzontale è la retta \overline{fr} , limitata dove viene incontrata dalla retta rs, condotta ad egual distanza dalle due linee di gronda de ed ht e rappresentante la proiezione orizzontale del comignolo del tetto del corpo di fabbrica Y. L'intersezione delle falde passanti per le linee di gronde bc e cq determina in compluvio di proiezione orizzontale pc; l'intersezione delle falde passanti per le linee di gronda ht ed hg produce il compluvio proiettato orizzontalmente in \overline{rh} ; e l'intiera superficie del tetto risulta composta di cinque falde, che orizzontalmente si proiettano nell'esagono edafrs, nel pentagono abcpf, nel trapezio cqop, nell'esagono oghrfp e nel trapezio htsr.

Considerando il caso di un tetto che deve coprire tre corpi di fabbrica X, Y e Z (fig. 60), ecco come si può ragionare per giungere a definire le diverse sue falde. Essendo X quello dei tre corpi di fabbrica che ha maggior larghezza, s'incominci dalla determinazione dei comignoli per gli altri due corpi Y e Z. Perciò si conduce la retta av equidistante dalle due linee di gronda bc e de, e questa retta è quella sulla quale orizzontalmente proiettasi il comignolo del tetto coprente il corpo di fabbrica Y; il punto f poi,

rappresentante la proiezione orizzontale dell'estremo del comignolo, si determina osservando che quest'estremo deve trovarsi sulla falda passante per la linea di gronda cg, cosicchè, per l'eguale inclinazione di tutte le falde, il detto punto deve avere dalla direzione gc una distanza eguale alla metà della larghezza $b\overline{d}$ del corpo Y, e quindi risulta esso nell'intersezione della retta av con una retta hu condotta parallelamente a cg ed a distanza $\overline{ih} = \frac{1}{2} \overline{b} \overline{d}$ da questa.

Analogamente, si determina la projezione orizzontale del comignolo appartenente al corpo di fabbrica Z conducendo la retta kx equidistante dalle linee di gronda le ed mn e trovando l'intersezione o di guesta retta colla retta py, parallela alla linea di gronda nq e distante da questa della quantità rp eguale alla metà della larghezza ml del corpo Z. Se ora si considerano le due rette orizzontalmente projettate in eo ed ef e contenute, la prima nella falda passante per la linea di gronda el e la seconda nella falda la di cui linea di gronda è ed, queste due rette determinano un piano il quale, sufficientemente prolungato, deve incontrare il comignolo del tetto coprente il corpo di fabbrica X: ed ecco in qual modo può essere determinata la projezione orizzontale di quest'incontro, nell'ipotesi che il corpo di fabbrica Y sia più largo del corpo di fabbrica Z. In un punto qualunque s di ed si elevi la perpendicolare st lunga come la metà della larghezza lm del corpo Z, e per t conducasi la retta ta parallela ad ed. A motivo dell'egual inclinazione delle falde, i punti orizzontalmente proiettati in o ed a trovansi egualmente alti sul piano orizzontale contenente tutte le linee di gronda; e quindi la retta o a rappresenta la proiezione orizzontale di una generatrice orizzontale del piano determinato dalle due rette proiettate in eo ed ef. Se adunque per e si conduce la retta e perpendicolare alla retta oa, si ha in quella la projezione orizzontale di una linea di massima pendenza contenuta nell'ultimo indicato piano; e, qualora prendasi e B eguale alla metà della larghezza qq del corpo di fabbrica X, conducendo per β la retta βτ parallela ad o α e determinando il suo incontro γ colla δε equidistante dalle due linee di gronda q n e q c, si ha in γδ la proiezione orizzontale del comignolo del tetto che copre il corpo di fabbrica X. Unendo y con f e con o, si ottengono nelle rette yf e yo le proiezioni orizzontali dei displuvii che discendono dall'estremo del comignolo più elevato agli estremi degli altri due comignoli; la retta \overline{fc} è la projezione orizzontale dell'intersezione

della falda passante per la linea di gronda gc con la falda la di cui linea di gronda è cb; e la retta on è l'intersezione della falda avente nq per linea di gronda coll'altra falda, che passa per la linea di gronda nm. L'intiera superficie del tetto poi consta di sette falde le quali si proiettano: nei due pentagoni $gcf\gamma \delta$, e $qno\gamma \delta$; nei due trapezii bafc e dafe; negli altri due trapezii lkoe ed mkon; e nel quadrilatero $ef\gamma o$.

Quanto si è detto in questo numero può servire di guida nello studio della composizione geometrica dei tetti per fabbriche formate di più corpi, ciascuno dei quali abbia larghezza costante. In generale si può ritenere che il problema si riduce alla quistione di geometria descrittiva avente per oggetto di determinare le comuni intersezioni di più piani di egual pendenza, e, per la facile sua risoluzione anche nei casi più complicati, conviene l'impiego delle generatrici orizzontali e delle linee di massima pendenza, che, come chiaramente risulta dal metodo tenuto per la determinazione del punto y nel risolvere l'ultimo problema, in modo semplice e spedito conducono alla determinazione delle proiezioni orizzontali di punti aventi date altezze al di sopra del piano passante per le linee di gronda.

41. Composizione geometrica dei tetti sopra basi qualunque. — La composizione geometrica dei tetti, che riesce semplicissima allorquando devonsi essi stabilire sopra poligoni regolari, giacchè tutte le falde risultano allora tanti triangoli eguali, proiettantisi sul piano della base nei triangoli in cui questa rimane divisa dai raggi condotti a tutti i suoi vertici, ben di frequente pone in imbarazzo gli architetti, allorquando si presenta il caso di poligoni qualunque. Non più si può ottenere l'uniforme pendenza delle falde, e riesce difficile il poter conciliare la semplicità e la regolarità della forma.

Se il poligono sul quale vuolsi stabilire il tetto è tale che si possa trovare nel suo interno un punto O (fig. 64), per cui le perpendicolari OF, OG, OH, OI ed OK abbassate sui lati AB, BC, CD, DE ed EA risultino presso a poco di egual lunghezza, si può assumere il detto punto O siccome proiezione orizzontale del vertice del tetto; allora le sue falde sono eguali in numero a quello dei lati della base; hanno presso a poco uniforme pendenza; ed orizzontalmente si proiettano nei triangoli OAB, OBC, OCD, ODE ed OEA.

Se invece non riesce possibile trovare nell'interno della base del tetto un punto che soddisfi alla condizione di essere presso a poco equidistante da tutti i suoi lati \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} ed \overline{EA} (fig. 62), si può prendere il partito di immaginare nella base stessa un poligono A'B'C'D'E' coi suoi lati paralleli ed equidistanti dal perimetro ABCDE. I trapezii ABB'A', BCC'B', CDD'C', DEE'D' ed EAA'E' si possono coprire mediante altrettante falde di forma trapezia, aventi la stessa inclinazione all'orizzonte; e, per coprire la figura A'B'C'D'E', basta comporre un tetto a facce triangolari proiettantisi nei triangoli OA'B', OB'C', OC'D', OD'E' ed OE'A' ed avente il suo vertice nella verticale del punto O scelto nel mezzo del poligono A'B'C'D'E'. Con tal ripicgo si ottiene che il tetto, quasi per la sua totalità, presenta facce di egual inclinazione; e l'inconveniente della non costante pendenza delle falde, cadendo soltanto su una piccola parte, riesce piccolo, nè può essere causa di dannose conseguenze.

Sopra le basi circolari e sopra quelle aventi forma di settori circolari, si adottano i tetti conici. Il vertice del cono si proietta nel centro del circolo o del settore, e la superficie del tetto si riduce alla superficie di un cono retto o di una porzione di cono

retto.

Le figure, aventi la forma di corone circolari, si coprono mediante quei tetti che si chiamano anulari. Questi tetti hanno una falda solamente, oppure ne hanno due. I tetti anulari ad una falda si adottano quando lo stillicidio può aver luogo da una sola parte; e si possono costrurre quelli a due falde quando lo stillicidio è concesso da due parti. Posto che abbiasi una corona circolare di raggio maggiore \overline{OA} e di raggio minore \overline{OB} (fig. 65), e che vogliasi coprire questa figura mediante un tetto anulare a due falde, s'immaginino in un piano verticale passante pel centro O della corona i due lati di un triangolo isoscele, avente per base la larghezza AB della corona stessa ed avente il suo vertice al disopra del piano della base del tetto di una quantità eguale alla monta. Se questo triangolo si fa rotare mantenendolo sempre in un piano verticale passante pel centro O della corona ed in modo che la sua base sia sempre disposta secondo la larghezza della corona stessa, evidentemente i suoi due lati descrivono due superficie coniche intersecantisi secondo la circonferenza di circolo orizzontalmente proiettata in quella avente per raggio il raggio medio \overline{OC} fra \overline{OA} ed \overline{OB} ; e queste due superficie coniche costituiscono le due falde del tetto. Quando il tetto deve essere ad una sola falda, la sua superficie si può intendere generata dall'ipotenusa di un triangolo rettangolo avente per cateti la larghezza AB e

l'altezza del comignolo sul piano di base, e rotante nel modo già indicato pel triangolo isoscele. Le falde dei tetti coprenti porzioni di corone circolari terminate da due raggi, sono generate come quelle dei tetti anulari, salvo che le rette generatrici vengono solamente a rotare di spazi angolari corrispondenti a quelli dei due raggi che limitano le porzioni di corona che si considerano.

L'impiego delle superficie rigate può talvolta riuscire vantaggioso nello studio della composizione geometrica dei tetti, allorquando si presentano delle falde che, senza essere assolutamente piane, sono però poco lungi dall'esserlo; ed ecco un esempio da cui chiaramente risulta questa circostanza. Sia ABCDEF (fig. 64) la base del tetto, il lato DC sia parallelo ad AB, l'angolo FAB sia retto, e siano qualunque gli angoli in D, E ed F. Immaginando abbassata da D una perpendicolare DG su AB e condotta la GX in modo da dividere per mezzo l'angolo in G, si tiri la retta LH equidistante dalle due linee di gronda AB e DC, e quindi la linea KI parallela ad AB ed in modo da passare pel punto di mezzo K di AF. Le due rette LH e KI si possono assumere siccome rappresentanti le proiezioni orizzontali di due comignoli del tetto, in IH ed IE si hanno le proiezioni orizzontali di due displuvii, in HD si ha la proiezione orizzontale di un compluvio. Le falde proiettate orizzontalmente in ABLHIK e CDHL sono evidentemente superficie piane, ma tali non si possono dire le altre due proiettate nei quadrilateri DEIH ed EFKI; e, tuttochè sia sempre possibile il ricavare da ciascuna di esse due falde piane triangolari, mediante le diagonali orizzontalmente proiettate in ID e KE, pure, quando le dette facce quadrilatere sono poco lungi dall'essere piane, non conviene di scomporle in triangoli, e torna utile d'immaginare generate le loro superficie da una retta, che si mantiene sempre in un piano verticale perpendicolare alle linee di gronda ED ed EF e che si appoggia sui perimetri dei quadrilateri sghembi rispettivamente proiettati in DEIH ed EFKI. La superficie della falda la di cui proiezione orizzontale è DEIH, si può anche immaginare generata da una retta, che si muove conservandosi parallela al piano verticale determinato dalla linea di gronda ED e che si appoggia, prima sulle due rette proiettate orizzontalmente in DH ed EM, e poi sulle rette che ammettono MI ed HI per proiezioni orizzontali, cosicchè, supponendo condotta per H la retta HM parallela a DE, resta piana la parte di falda proiettata nel triangolo HMI. Lo stesso sistema di generazione si può adottare per la falda la cui linea di gronda è EF, e per la quale, essendo la retta IL parallela ad EF, riuscirà sghemba la parte la di cui proiezione orizzontale è EFLI e piana l'altra parte.

42. Inclinazione delle falde dei tetti. - L'angolo delle falde dei tetti coll'orizzonte vuol essere tanto maggiore, quanto più il clima va soggetto alle nevi ed alle pioggie; imperocchè quanto più i tetti sono inclinati tanto più sono adattati a sopportare il carico delle nevi ed a facilitare lo scolo delle acque pluviali. Il Rondelet, in seguito di numerose osservazioni fatte in diverse parti dell'Europa, ha creduto di poter stabilire una regola generale intorno all'inclinazione dei coperti delle fabbriche, e questa regola prescrive che l'inclinazione di ciascuna falda all'orizzonte debba essere di tanti gradi quanti se ne contano nell'arco di meridiano interposto fra il luogo della fabbrica ed il tropico, vale a dire quanti ne risultano sottraendo dalla latitudine geografica del paese la distanza costante del tropico dall'equatore che è di 23° 28'. Così, per esempio, essendo di 44° 51' la latitudine di Torino, l'inclinazione da darsi ai coperti in questa città sarà di 44° 51' - 23° 28' = 21° 23'. Questa regola però appartiene a quei tetti che hanno la copertura di sole tegole curve, e per le altre specie di coperture vengono suggerite dallo stesso Rondelet le seguenti modificazioni. Per le coperture con tegole-canali piane e con tegole di cappello curve, dette anche di tegole maritate, l'inclinazione determinata mediante la surriferita regola deve aumentarsi di un sesto; per quelle d'ardesie l'inclinazione vuol essere accresciuta di un quarto; e finalmente per quelle di tegole piane l'aumento deve portarsi ad un terzo. La tabella che segue, ricavata da una più copiosa inserta nell'opera del citato autore (Traité de l'art de batir - lib. VI, sez. II, art. III) fa conoscere l'inclinazione, che in conformità delle stabilite massime competono ai coperti di varia struttura nelle principali città d'Italia.

NOMI DELLE CITTÀ	LATITUDINI	INCLINAZIONE DEI COPERTI								
NOMI DELLE CITTA	GEOGRAFICHE	di tegole comuni	di tegole maritate	di tegole piatte	di lastre d'ardesia					
Bologna	44° 29′	21°1′	24° 31′	28° 1′	26° 16'					
Firenze	41 46	18 18	21 21	24 24	22 53					
Genova	44 25	20 57	24 27	27 56	26 11					
Milano	45 25	21 57	25 57	29 16	27 26					
Modena	44 34	21 6	24 37	28 8	26 23					
Napoli	40 50	17 22	20 16	23 9	21 42					
Palermo	38 10	14 42	17 9	19 36	18 23					
Piacenza	45 5	21 37	25 13	28 49	27 1					
Roma	41 54	18 26	21 30	24 35	23 1					
Torino	44 51	21 23	24 57	28 31	26 44					
Venezia	45 25	21 57	25 37	29 16	27 26					

In molti luoghi del Piemonte e pei tetti a due falde con copertura di tegole curve suolsi far in modo che la monta, vale a dire l'altezza del comignolo sul piano orizzontale passante per le linee di gronda, sia la media aritmetica fra il terzo ed il quarto della larghezza del corpo di fabbrica che il tetto copre, aumentata delle sporgenze che le linee di gronda devono presentare sulle pareti esterne dei muri. A questa regola corrisponde un'inclinazione di circa 30° 45′, la quale è compresa nei limiti d'inclinazione indicati dal signor generale Celestino Sachero nel commendevole suo lavoro intitolato Studii sulla stabilità delle armature dei tetti, da cui vennero estratti i numeri contenuti nella tavola che segue, destinata a far conoscere i limiti delle inclinazioni convenienti in Italia, a seconda delle varie specie di coperture più in uso.

INDICAZIONE DELLA COPERTURA					LIMITI DELLA INCLINAZIONE				
Tegole curve comuni	*	×				1	5°	a	37°
Tegole piane				2		1	9	a	50
Tegole maritate						1	7	a	42
Lastre di pietra di Barge ed ardesie .			*	100		1	8	a	45
Rame laminato e zinco		×		100		1	8	a	25
Lastre piane e lastre scanalate di ferro	1.					1	8	a	21
Lastre di piombo						1	8	a	21
Lastre di vetro						1	8	a	21

43. Armature dei tetti. — Le armature dei tetti sono costituite dal complesso di quelle travi o di quelle incavallature in legname od in ferro, che generalmente si pongono a distanze eguali nel senso del maggiore pendio delle falde, non che dove esistono gli impluvii ed i compluvii, e sulle quali si posano quei travicelli orizzontali di legno forte od anche di ferro che prendono il nome di arcarecci, di paradossi o di tempiali. Sopra gli arcarecci si mettono in opera quei listelli, generalmente di legno dolce, chiamati piane, palombelli, panconcelli o correnti, compartiti per file ben allineate, paralleli, disposti nel senso del pendio della falda in cui si trovano e convenientemente fermati agli arcarecci. Finalmente sui panconcelli si stabilisce la copertura come si è indicato nell'articolo I del capitolo X del volume sui lavori generali di architettura civile, stradale ed idraulica.

Allorquando devesi costrurre il tetto per una fabbrica nella quale si trovano numerosi muri trasversali, abbastanza vicini che, senza sortire dalle dimensioni usuali della pratica, riesca possibile far sopportare gli arcarecci direttamente dai muri trasversali, è inutile la costruzione di qualsiasi armatura, e si ha il sistema più conveniente e più semplice nel fare direttamente appoggiare gli arcarecci sui detti muri trasversali, come, in proiezione orizzontale ed in sezione secondo il piano verticale determinato dalla retta XY, appare dalla figura 65. Nei casi usuali della pratica, riesce applicabile questa disposizione allorquando si trovano muri trasversali non distanti più di 4 metri.

Si può qualche volta adottare questa disposizione sostituendo archi in muratura ai muri trasversali, come appare dalle figure 66 e 67, le quali rappresentano le sezioni trasversali prodotte da piani verticali in due diverse fabbriche, l'una con soli muri perimetrali e l'altra con muri perimetrali e muri di mezzo. Se però osservasi come questi archi debbano esercitare delle spinte piuttosto considerevoli contro i muri da cui sono sostenuti, e come per conseguenza occorra di assegnare ai detti muri una grossezza maggiore di quella necessaria nel caso che su essi agisca la sola pressione predotta dal loro peso e da quello del tetto, o di distruggere l'azione delle spinte mediante chiavi e legamenti in ferro convenientemente distribuiti, agevolmente si comprende come il sistema degli archi, salvo alcuni casi eccezionali, non possa generalmente riuscire il più utile ed il più economico.

In quelle fabbriche nelle quali vi sono muri perimetrali e muri trasversali, se la distanza fra le due pareti vicine di quelli non eccede metri 7, se la distanza fra i muri trasversali supera 4 metri e se il tetto deve essere ad una sola falda, si può dar appoggio agli arcarecci sui muri trasversali e su travi inclinate o puntoni, interposti ai detti muri. Nella figura 68 trovasi rappresentata questa disposizione di cose in proiezione orizzontale ed in sezione verticale secondo il piano determinato dalla retta XY.

Se poi la fabbrica ha muri perimetrali, muri di mezzo e muri trasversali, il tetto che la copre ha il suo comignolo in corrispondenza del muro di mezzo. I muri trasversali si elevano in guisa da presentare superiormente facce inclinate come le falde del tetto che sovr'essi devono passare, e si fa in modo che gli arcarecci trovino appoggio sui muri trasversali e su puntoni dove la distanza dei primi eccede l'accennato limite di 4 metri. I puntoni sono appoggiati, ad un muro perimetrale in basso, al muro di mezzo in alto; due a due vengono ad incontrarsi sul muro di mezzo nello stesso sito; e generalmente contribuisce alla stabilità della costruzione l'unirli assieme alle loro sommità o con uno dei metodi indicati al numero 299 del citato volume sui lavori generali d'architettura civile, stradale ed idraulica, parlando delle incavallature in legname di piccola portata, o con un altro mezzo qualunque che valga ad impedire ogni loro spostamento. Nella figura 69, in proiezione orizzontale ed in sezione secondo il piano verticale determinato dalla retta XY, trovasi rappresentata una porzione di tetto a due falde, cogli arcarecci sostenuti in parte da muri trasversali ed in parte da puntoni.

Nel caso in cui si deve coprire una fabbrica tripla in profondità (num. 17), avviene generalmente che il comignolo del tetto si trova in corrispondenza dello spazio compreso fra i due muri longitudinali di mezzo, come risulta dalla figura 70. Se occorre di stabilire dei puntoni, ciascuno di essi trova appoggio, su un muro perimetrale in basso, su un muro longitudinale di mezzo in un punto collocato fra i suoi estremi e generalmente non molto lontano dall'estremo superiore. Qualche volta uno dei due muri di mezzo trovasi verticalmente al di sotto del comignolo del tetto, ed allora sono solamente i puntoni, appartenenti alla falda che riesce a passar sopra l'altro muro di mezzo, quelli che sono appoggiati pel loro estremo inferiore e per un dato punto della loro lunghezza. Anche nel caso delle fabbriche triple in profondità è bene che i puntoni due a due vengano riuniti alle loro estremità superiori, onde porsi al sicuro di ogni loro spostamento.

Avviene qualche volta che nel sito in cui è necessario collocare i puntoni manca, per un tratto non eccedente 4 o tutto al più 5 metri, il muro di mezzo sui quali essi devono trovarsi appoggiati. In questo caso si ricorre allo spediente di collocare orizzontalmente una robusta trave T (fig. 74) attraverso lo spazio pel quale manca il muro di mezzo e di far su essa appoggiare i puntoni P. Alla trave T si può anche sostituire un arco murale.

In corrispondenza delle linee di displuvio e di compluvio bisogna generalmente disporre dei puntoni displuviali o compluviali e, venendo il piano verticale passante per le dette linee ad intersecare qualche muro, conviene elevare questo fin sotto il tetto, in modo da poter su esso appoggiare i detti puntoni obliqui. Con ciò si viene a sostenerli in punti intermedii ai loro estremi, si diminuisce la loro portata e notevolmente si accresce la loro resistenza.

Quando, dove esistono puntoni displuviali o puntoni compluviali, alcuni degli arcarecci che su essi vengono a terminare hanno una lunghezza libera troppo grande, si può questa diminuire mediante piccoli puntoni appoggiati ai muri di gronda od a quelli corrispondenti al comignolo ed ai puntoni displuviali o compluviali. Così, considerando il caso del tetto a padiglione rappresentato in projezione orizzontale nella figura 54, ai quattro displuvii projettati in \overrightarrow{EA} , \overrightarrow{EB} , \overrightarrow{FC} ed \overrightarrow{FD} devono corrispondere quattro puntoni displuviali, e, nel caso che per gli arcarecci da porsi presso la base del tetto risulti troppo grande la distanza fra i punti d'appoggio collocati sulle linee di projezione orizzontale \overrightarrow{Fb} ed \overrightarrow{FC} ,

si ricorre allo spediente di un piccolo puntone, la di cui proiezione orizzontale è \overline{dc} , appoggiato da una parte al muro e dall'altra al puntone displuviale F C. Analogamente, se per una falda di proiezione orizzontale ighxk (fig. 58), passante per un compluvio proiettato in \overline{kx} avviene che alcuni arcarecci da porsi presso il suo comignolo risultano troppo lunghi, ponendo semplicemente i loro appoggi sulle linee proiettate orizzontalmente in $\overline{k\gamma}$, \overline{kx} ed \overline{hx} , si diminuisce la loro portata mediante un piccolo puntone col suo asse orizzontalmente proiettato nella retta $\overline{\alpha\beta}$ e posto fra il muro sottostante al comignolo ed il puntone compluviale.

Nel collocamento dei puntoni sopra muri, accuratamente bisogna badare a che essi vi trovino un solido appoggio; giammai devono cadere in corrispondenza delle finestre; e bisogna procurare che, per quanto è possibile, ripartiscano la pressione che il tetto produce sopra una base piuttosto ampia. La disposizione rappresentata nelle figure 63, 69 e 70 riesce generalmente vantaggiosa, e, per ripartire la pressione su una base ampia, si usa talvolta mettere delle larghe pietre sotto gli estremi di ciascun puntone.

Ben di frequente nelle fabbriche civili i sottotetti si destinano all'uso di abitazione e quindi sono necessarie apposite finestre per convenientemente illuminarli. Queste finestre consistono in aperture lasciate nelle falde del tetto, convenientemente coperte. Per sostenere le diverse parti formanti queste coperture, si pongono generalmente due puntoni P per ogni finestra (fig. 72), in modo che la distanza ab fra le loro facce verticali vicine sia poco più della larghezza dell'apertura; sui due puntoni si colloca una trave orizzontale T; e su questa fermasi generalmente un robusto telaio di legno, verticale e foggiato a rettangolo sormontato da un semi-circolo. Collocato in opera il detto telaio, riesce facile, mediante tavole appoggiate da una parte al telaio e dall'altra agli estremi degli arcarecci destinati a sopportare la falda in cui trovasi la copertura che si considera, il formare una copertura cilindrica raccordata a due parti verticali. Questa copertura si ricopre dopo con lamiera metallica ed al telaio si fissano le invetriate, gli scuretti e talvolta anche le persiane.

Allorquando una finestra per soffitta deve trovarsi fra due muri trasversali M (fig. 73), distanti non più di 4 metri, l'impiego dei due puntoni P (fig. 72) non riesce economico, giacchè bastano i detti muri M per sopportare gli arcarecci. In questo caso si pone prima una trave orizzontale A in corrispondenza dell'estremità più

elevata dell'apertura; si collocano i piccoli puntoni P, e così nel sistema delle tre travi A, P e P si ha quanto basta per sostenere la copertura della finestra della soffitta.

Ben di frequente le finestre delle soffitte presentano una luce rettangolare; ed allora questa luce trovasi in un telaio che quasi sempre superiormente termina con un frontone triangolare. Dietro questo frontone esiste un piccolo tetto a due falde, avente il suo comignolo perpendicolare al piano verticale secondo cui trovasi elevato il telaio e sostenuto da due muricci costrutti sui puntoni P (fig. 72 e 73). Nelle fabbriche in cui le finestre delle soffitte riescono visibili dal basso, i telai di legno producono generalmente un brutto effetto, e conviene allora di eseguire in struttura murale la parte in cui trovasi praticata la luce della finestra, procurando a questa parte un solido imbasamento coll'elevarla a dirittura in prosecuzione del muro perimetrale.

Negli edifizii nei quali vi sono solamente i muri di perimetro, come pure in quelli nei quali i muri trasversali non si possono protrarre in alto fino a sopportare gli arcarecci, eccezion fatta del caso in cui (essendo la distanza dei muri perimetrali inferiore a 7 metri) si vuol costrurre un tetto ad una sola falda, è imperiosa necessità di sostenere gli arcarecci mediante quegli ingegnosi sistemi che si chiamano incavallature. Le incavallature possono essere di legno, di legno e ferro, od anche solamente di ferro; esse si pongono a giuste ed eguali distanze l'una dall'altra; e danno gli appoggi per gli arcarecci. A seconda delle portate che devono superare e del materiale che vuolsi far entrare della loro composizione, esse si costruiscono con forme svariatissime, e le principali sono quelle già state descritte nella parte pubblicata di questo lavoro sull'arte di fabbricare, all'articolo II del capitolo VIII del volume sui lavori generali d'architettura civile, stradale ed idraulica.

44. Carichi permanente ed accidentale, gravitanti sulle armature dei tetti. — Il carico permanente, il quale gravita sulle armature dei tetti, è costituito: dal peso della copertura propriamente detta, dal peso delle tavole o dei listelli orizzontali, o dalle tavelle che talvolta si trovano sui panconcelli; dal peso degli arcarecci; e finalmente dal peso proprio delle armature. Il carico accidentale proviene: dal peso degli operai e materiali occorrenti alla riparazione del tetto; dalla pressione esercitata dal vento.

La tavola che segue dà, per ogni metro quadrato, il peso unitario delle principali coperture, sia considerate isolatamente, sia unite ai legnami che le sorreggono, escluse le armature, ossia i puntoni e le incavallature.

	Tourn		ESO quadrato	Composizione dei legnami		
NATURA DELLA COPERTURA	LIMITI della INCLINAZIONE	della sola copertura	della copertura e legnami esclusa la grossa armatura	sorreggenti la copertura, ad esclusione della grossa armatura, per ogni metro quadrato		
Tegole curve comuni	15° a 37°	60	chil.	Metri lineari 5,50 di listell ordinarii di pioppo. Metri lineari 2,00 di arcarecc		
Tegole curve sovrapposte ad uno strato di tavelle grosse 0,028		100	134	d'abete grossi 0,10 per 0,08 Metri lineari 3 di panconcelli Metri lineari 0,50 di arcarecce di 0,15 per 0,18.		
Tegole piane	19° a 50°	85	104	Metri lineari 7,00 di listell ordinarii. Metri lineari 2,50 di arcarece di 0,08 per 0,10.		
Tegole maritate con tavelle sottoposte (Roma)	17° a 42°	137	175	Metri lineari 3 di panconcell Metri lineari 0,75 di arcarece di 0,45 per 0,18.		
Lastre in pietra di Barge grosse 0,026 (Torino)	18° a 45°	95	117	Metri lineari 5 di arcarece di 0,10 per 0,12.		
Ardesie sottili (abbadini) assi- curate con malta di calce (Genova)		54	72	Impaleatura di castagno gros sa 0,01. Metri lineari 2 di arcarecci d castagno di 0,08 di riqua dratura.		
in Genova nelle regioni più esposte ai venti		84	111	Impaleatura grossa 0,015, Metri lineari 2 di arcarece di 0,10 di riquadratura.		
Ardesie grossolane irregolari . Rame laminato (Nº 20) grosso		110	144	Metri lineari 13 di listelli. Metri lineari 2 di arcarecc di 0,10 per 0,12.		
0,00068	18° a 25°	6,11	27	March 1997		
Id. (N° 25) grosso 0,00075.	,	7,63	29			
Zinco (Nº 14) grosso 0,00085 .		6,07	27	S. Prince of the		
Zinco (Nº 16) grosso 0,00103.		7,40	29	To the State of State		
Lastra di ferro grossa 0,0007. Lastra di ferro galvanizzato	18° a 21°	7,50	29	Impalcatura d'abete gross 0,02. Metri lineari 1,50 di arcarece		
grossa 0,00066 Lastra di ferro galvanizzato grossa 0,00075	initialia.	5,14	26 27	di 0,08 per 0,10.		
Lastra di ferro galvanizzato		5,85	1 200	AND THE PERSON		
grossa 0,001	oracio n	7,80	29			
0,0015	ur - 1 1119	20	31	Metri lineari 2 di arcarece di 0,08 per 0,10. Impalcatura d'abete gross		
Piombo grosso 0,0035	10110	40	67	0,02. Metri lineari 2 di arcarece di 0,10 per 0,12. Impalcatura d'abete gross		
Piombo grosso 0,0045	1 344	53	83	0,02, Metri lineari 2,50 di arcareco di 0.10 per 0,12.		
Vetro grosso 0,003		8				

Questa tavola trovasi nel già citato commendevole lavoro del signor generale Celestino Sachero, ed essa suppone: che, per le coperture stabilite su uno strato di tavelle, nel peso della copertura sia anche compreso quello delle tavelle; che le coperture metalliche di lamiera piana siano poste in opera sopra un tavolato stabilito sugli arcarecci; che lo stesso abbia luogo per le coperture di ardesie sottili e di ardesie grosse millimetri 18; e finalmente che le coperture in lastra di ferro scanalata vengano senz'altro messe in opera sugli arcarecci. — I dati che trovansi nella riportata tavola convengono per le ordinarie coperture sostenute da legnami; e, presentandosi il caso di coperture con soli arcarecci, od anche con arcarecci e panconcelli in ferro, sarà necessario di procedere al calcolo dei pesi di questi pezzi, dietro la conoscenza delle loro dimensioni e del peso della loro unità di volume.

Per quanto spetta al peso della neve che può accumularsi sulle coperture, si ammette: che un metro cubo di neve recentemente caduta pesi 100 chilogrammi; che pesi invece 200 chilogrammi quando essa già da qualche tempo sia rassettata; e che le osservazioni locali debbano servire di norma per determinare quale altezza di neve convenga assumere in ogni caso, badando doversi questa prendere eguale alla massima altezza verificatasi in un periodo d'anni abbastanza lungo. Pei coperti da farsi nella maggior parte dei luoghi abitati dell'Italia settentrionale, la massima altezza della neve si può assumere di metri 1,50; quelle di metri 0,60 e di metri 0,30 pei tetti da stabilirsi nell'Italia centrale e nell'Italia meridionale.

Per riguardo agli operai ed ai materiali occorrenti per le riparazioni dei tetti, si può ritenere che nelle ordinarie circostanze si opera in favore della stabilità, ragguagliando l'effetto del loro carico a quello di 50 chilogrammi per ogni metro quadrato di copertura. Conviene però notare, che le riparazioni non si fanno mai quando un tetto è carico di neve, e che perciò converrà tenere conto solamente del maggiore dei due sovraccarichi provenienti dalla neve e degli operai coi materiali per le riparazioni.

La pressione esercitata dal vento su un metro quadrato della superficie di una falda di tetto, nell'ipotesi che venga essa direttamente percossa, ossia nell'ipotesi che la direzione del vento sia normale alla superficie della falda contro la quale soffia, si può ritenere quale risulta dalla seguente tavola:

INDICAZIO	VELOCITÀ per ogni minuto secondo	Pressione per ogni metro quadrato							
Venticello moderato		1						m 3,00	Cg 1,05
Venticello								5,00	2,91
Vento	*					*		8,00	7,44
Vento un po' forte			*					10,85	13,69
Vento forte			,					14,00	22,80
Vento impetuoso .				F+10				20,00	46,52
Uragano								40,00	186,08

Generalmente però il vento soffia con direzione orizzontale, e quindi non agisce normalmente alle falde dei tetti. Ora chiamando

P la pressione del vento su un metro quadrato di superficie piana disposta normalmente alla sua direzione,

α l'angolo B A O che misura l'inclinazione di una falda A B (fig. 74) all'orizzonte e

P' la pressione normale a questa falda riferita al metro quadrato, si ha: che la superficie di un quadrato, avente un metro di lato, posto sulla falda del tetto con due dei suoi lati orizzontali e rappresentato in FG, proiettasi sul piano verticale passante per la orizzontale condotta pel suo centro nella retta \overline{HI} la cui lunghezza, per essere $\overline{FG} = 4^m$ e per essere l'angolo GCI complemento dell'angolo α , vale $4 \operatorname{sen} \alpha$; che la pressione Q su questa superficie, e che quindi la pressione orizzontale su FG, vien data da

$Q = P \operatorname{sen} \alpha$;

e finalmente che, per essere complemento di a l'angolo QCP', la pressione P', diretta normalmente alla falda AB e per ogni metro quadrato, vien data da

$$P' = P \operatorname{sen}^2 \alpha$$
.

Nel valutare adunque la pressione del vento per ogni metro quadrato di copertura, invece di assumere senz'altro i numeri riportati nell'ultima colonna dell'ultima tavola, conviene generalmente moltiplicarli per il quadrato del seno dell'inclinazione della falda all'orizzonte.

Quasi tutti i costruttori sono d'avviso: che, per essere soltanto passeggiera l'azione esercitata dal vento sulle coperture, non sia necessario di tenerne conto: e che debbasi essa considerare siccome una di quelle cause accidentali per cui s'introduce il coefficiente di stabilità nell'instituire le equazioni determinatrici delle dimensioni delle parti resistenti delle coperture.

- 45. Parti di cui importa calcolare le dimensioni nel dare il progetto di un tetto. Nel dare il progetto di un tetto qualunque, convien tener conto delle dimensioni dei tavolati, delle tavole, o dei listelli orizzontali sui quali direttamente trovasi posta in opera la copertura, di quelle dei panconcelli, di quelle degli arcarecci e di quelli delle armature.
- 46. Grossezze dei tavolati per tetti. Allorquando una copertura di ardesie od anche una copertura metallica deve essere posta in opera sopra un tavolato, le tavole sono generalmente d'abete, di pioppo o di castagno, e difficilmente la loro spessezza eccede metri 0,02, finchè il tavolato si deve stabilire su panconcelli od anche direttamente sugli arcarecci posti a distanza non maggiore di metri 0,50. Se però trattasi di eseguire sopra un tavolato una copertura assai pesante o se la distanza fra i punti d'appoggio delle tavole è maggiore dell'indicato limite, può darsi che riesca insufficiente l'indicata grossezza di tavolato, ed è necessario di calcolarla colle norme che vennero date nella parte già pubblicata di questo lavoro sull'arte di fabbricare, al capitolo VI del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni.
- I. Nel caso in cui le tavole trovansi orizzontalmente disposte ed inchiodate sui panconcelli, la parte AB (fig. 75), compresa fra i mezzi di due appoggi successivi, si può considerare siccome un solido prismatico orizzontalmente collocato su due appoggi, incastrato alle sue estremità ed uniformemente caricato per tutta la sua lunghezza. La forza riferita all'unità di lunghezza, la quale tende ad infletterlo, consta evidentemente della somma del peso della parte di copertura insistente ad un rettangolo, avente un lato lungo l'unità ed avente l'altro lato eguale alla larghezza della tavola, col massimo sovraccarico che si può accumulare sul detto rettangolo (num. 44). Ora, essendo ELFK (fig. 77) una sezione retta della tavola, G il centro di superficie dell'indicata sezione retta,

UU l'asse neutro ad essa corrispondente, F ed E i suoi due punti maggiormente distanti dall'asse neutro, siccome le due distanze FI ed EH di questi da quello sono eguali fra di loro, e siccome nei solidi prismatici di legno è generalmente più facile la rottura per compressione anzichè per estensione e per scorrimento trasversale, l'equazione di stabilità determinatrice della grossezza domandata, è (Resistenza dei materiali e stabilità delle costruzioni, num. 109)

$$n R_{\rm p} = v' \mu_{\rm m} \sqrt{\frac{\cos^2 \varphi}{I'^2} + \frac{\sin^2 \varphi}{I''^2}}$$
 (1).

A seconda dell'essenza del legname costituente le tavole, per valore del coefficiente di rottura Ro, espresso in chilogrammi e da riferirsi al metro quadrato, si può assumere quello di R", pure espresso in chilogrammi e da riferirsi al metro quadrato, quale risulta dalla tabella del numero 22. Il coefficiente di stabilità n si può generalmente assumere eguale alla frazione 1/10.

Se pel centro di superficie G della sezione retta ELFK s'immaginano condotti i due assi principali centrali d'inerzia xx' ed yy', il primo parallelo alla grossezza EL ed il secondo parallelo alla

larghezza EK della tavola che si considera, e se chiamansi

b la detta larghezza EK e

x la cercata grossezza EL, espresse in metri,

I' ed I" i momenti d'inerzia dello stesso rettangolo rispetto agli assi xx' ed yy',

α l'angolo DCO' misurante l'inclinazione coll'orizzonte della falda del tetto, sul quale la tavola deve essere posta in opera,

φ l'angolo y'GV che la verticale GV, rappresentante la traccia del piano di sollecitazione con quello dell'indicata sezione, fa coll'asse yy',

\$\psi\$ l'angolo x GU dell'asse neutro UU coll'asse xx',

$$I' = \frac{1}{12}b^3x$$
 (2),

$$I'' = \frac{1}{12} b x^3 (3),$$

$$\varphi = 90^{\circ} - \alpha$$
 (4);

e, per essere tang $\psi = \frac{I'}{I''} \tan \varphi$,

$$\tan \psi = \frac{b^2}{x^2} \cot \alpha \tag{5}.$$

Determinato l'angolo ψ , riesce facile trovare il valore di v', ossia le distanze \overline{FI} ed \overline{EH} dei due punti F ed E dall'asse neutro UU. Conducendo perciò dal punto O le rette OM ed ON rispettivamente perpendicolare e parallela ad UU, si ha

$$\overline{GO} = \frac{1}{2}b, \qquad \overline{OF} = \frac{1}{2}x,$$

$$IFK = yGU = 90^{\circ} - \psi,$$

$$\overline{FN} = \frac{1}{2}x \operatorname{sen}\psi, \qquad \overline{OM} = \frac{1}{2}b \cos\psi,$$

cosicchè risulta

$$v'=\frac{1}{2}(x \sin \psi + b \cos \psi).$$

Se ora osservasi che per la (5) si ha

$$\operatorname{sen} \psi = \frac{b^2 \cot \alpha}{\sqrt{b^4 \cot^2 \alpha + x^4}}$$

$$\cos\psi = \frac{x^2}{\sqrt{b^4 \cot^2 \alpha + x^4}},$$

il valore di v', in funzione dei dati del problema e dell'incognita x, si riduce a

$$v' = \frac{1}{2} \frac{b x (b \cot \alpha + x)}{\sqrt{b^4 \cot^2 \alpha + x^4}}$$
 (6).

Venendo alla determinazione del valore assoluto \(\mu_m\) del massimo

momento inflettente, il quale si verifica tanto nella sezione A (fig. 75), quanto nella sezione B (Resistenza dei materiali e stabilità delle costruzioni, num. 408, probl. VII), se chiamansi

2a la lunghezza AB espressa in metri,

p il peso che trovasi uniformemente distribuito su ogni metro di lunghezza dell'intervallo \overline{AB} , espresso in chilogrammi, si ha

$$\mu_{\rm m} = \frac{4}{3} p \, a^2 \tag{7}.$$

Sostituendo ora i valori di I', I'', φ , v' e μ_m dati dalle formole (2), (5), (4), (6) e (7) nella equazione (4) e convenientemente riducendo, essa diventa

$$n R_{p} = 2 \frac{p \alpha^{2} (b \cos \alpha + x \sin \alpha)}{b^{2} x^{2}}$$
 (8).

Quest'equazione, essendo del secondo grado in x, conduce a due valori dell'incognita, uno positivo e l'altro negativo, il qual ultimo evidentemente non può rispondere alla soluzione del problema.

Generalmente nella pratica si considera la parte AB (fig. 75) di tavola, compresa fra i mezzi di due appoggi successivi, siccome un solido non incastrato, ma semplicemente appoggiato alle sue due estremità; e quest'ipotesi, quantunque non sia conforme alla verità, pure può essere accettata, giacchè conduce essa a risultamenti che riescono in favore anzichè in svantaggio della stabilità. Il valore assoluto del massimo momento inflettente $\mu_{\rm m}$ ha allora luogo per la sezione posta nel mezzo dell'intervallo $\overline{\rm AB}$, e vien esso dato dalla formola

$$\mu_{\rm m} = \frac{1}{2} p a^2$$
(9);

cosicchè, invece dell'equazione (8), conviene adottare l'equazione analoga

$$n R_{p} = 3 \frac{p \alpha^{2} (b \cos \alpha + x \sin \alpha)}{b^{2} x^{2}}$$
 (10),

che si deduce dalla equazione (1), ponendo in essa, per I', I", \u03c9 e

v' i loro valori dati dalle equazioni (2), (3), (4) e (6), per μ_m il suo valore dato dalla (9).

II. Se le tavole sono sopportate dagli arcarecci, se sono ad essi inchiodate e se trovansi disposte colla loro lunghezza nel senso del pendio della falda per la quale vengono impiegate, la parte AB (fig. 76) di ciascuna di esse, compresa fra i mezzi di due appoggi successivi, si può considerare siccome un solido prismatico, posto su due appoggi non collocati allo stesso livello, incastrato agli estremi e sollecitato d'un peso uniformemente distribuito sulla sua proiezione orizzontale. Questo peso, riferito all'unità di lunghezza di proiezione orizzontale della tavola, consta: del peso della parte di copertura insistente ad un rettangolo, avente per lato orizzontale la larghezza della tavola e per lato, secondo il pendio del tetto, quella lunghezza la cui proiezione orizzontale è l'unità; del peso del massimo sovraccarico che si può trovare sul definito rettangolo. Ora, passando il piano di sollecitazione per l'asse del solido e tagliando ciascuna sezione secondo un asse principale centrale d'inerzia, essendo le forze sollecitanti oblique al detto asse del solido, trovandosi ciascuna sezione simmetrica rispetto alla parallela all'asse neutro condotta pel suo centro di superficie, ammettendo i legnami che generalmente s'impiegano nella formazione dei tavolati un coefficiente di rottura per pressione minore del corrispondente coefficiente di rottura per estensione, e di più nel caso in quistione risultando comprimente le componenti tangenziali delle forze sollecitanti, l'equazione di stabilità da applicarsi è (Resistenza dei materiali e stabilità delle costruzioni, num. 151)

$$n''R'' = Q_{om} \tag{11}.$$

Per valori di n'' ed R'' si assumeranno quelli di n e di R_p già stati indicati nel considerare il caso di una tavola orizzontalmente collocata sui panconcelli.

La sezione pericolosa sotto il rapporto della resistenza alla rottura per pressione è quella corrispondente al punto B (fig. 78), e chiamando

l la lunghezza \overline{BC} della proiezione orizzontale di \overline{AB} , espressa in metri,

α l'angolo ABC,

p il peso in chilogrammi che trovasi uniformemente distribuito su ogni metro di lunghezza di \overline{BC} ,

si ha: che il peso sopportato dalla parte di tavola compresa fra i due appoggi A e B vale

che il peso riferito all'unità di lunghezza di AB vien dato da

$$pl: \frac{l}{\cos \alpha} = p\cos \alpha;$$

che la forza diretta normalmente alla retta AB, e sollecitante la sua unità di lunghezza, risulta

$$p\cos^2\alpha$$
;

che, per essere la parte di tavola compresa fra A e B un solido prismatico incastrato ai suoi due estremi e sollecitato da una forza normale ed uniformemente distribuita sulla sua lunghezza, si può assumere per espressione dal momento inflettente relativo alla sezione corrispondente al punto B

$$\frac{1}{3}p\cos^{2}\alpha \times \frac{1}{4}\frac{l^{2}}{\cos^{2}\alpha} = \frac{1}{12}p l^{2};$$

e finalmente che la forza comprimente per la stessa sezione si può intendere siccome rappresentata da

$$pl \operatorname{sen} \alpha$$
.

Se adunque si ritengono le denominazioni già stabilite per indicare la larghezza e la spessezza della tavola, se osservasi che la superficie della sezione retta della tavola vien data dal prodotto bx, che il momento d'inerzia rispetto ad una retta condotta pel centro di superficie dell'accennata sezione parallelamente all'asse neutro è $\frac{1}{12}bx^3$ e che vale $\frac{x}{2}$ la distanza di quel punto, per cui in ogni sezione si verifica la massima pressione riferita all'unità di superficie, dalla detta parallela all'asse neutro, si ha che il valore di Q_{2m} vien dato dalla formola

$$Q_{2m} = \frac{pl}{bx} \left(\frac{l}{2x} + \operatorname{sen} \alpha \right).$$

Sostituendo ora i valori di Q_{9m} nella equazione (11), essa diventa

$$n''R'' = \frac{pl}{bx} \left(\frac{l}{2x} + \operatorname{sen}\alpha\right)$$
 (12).

Quest'equazione dà due diversi valori, uno positivo e l'altro negativo di x, ed il positivo è quello che rappresenta la domandata grossezza.

Qualora vogliasi considerare la parte AB di tavola (fig. 76), compresa fra i mezzi di due appoggi successivi, non come un solido prismatico incastrato, ma sibbene come appoggiato in A e B, si ha: che le due reazioni degli appoggi in A e B dirette normalmente al suo asse AB sono espresse da

$$\frac{1}{2}pl\cos\alpha;$$

che il valore assoluto del momento inflettente per una sezione retta qualunque a distanza z dall'estremo B (fig. 78) vien dato da

$$\frac{1}{2}plz\cos\alpha-\frac{1}{2}pz^2\cos^2\alpha;$$

e che la forza premente per la stessa sezione vale

$$p \operatorname{sen} \alpha (l - z \cos \alpha).$$

Ora, per quanto si è detto nel numero 151 del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, pei significati già attribuiti alle lettere b ed x, si ha: che la massima pressione Q_2 riferita all'unita di superficie, nella sezione retta di ascissa z per rapporto all'origine B, risulta dalla formola

$$Q_2 = \frac{3p(lz - z^2\cos\alpha)\cos\alpha}{bx^2} + \frac{p\sin\alpha(l - z\cos\alpha)}{bx};$$

che l'ascissa z', determinante la sezione pericolosa, si ottiene facendo la prima derivata di \mathbf{Q}_2 per rapporto a z, eguagliandola a zero e risolvendo l'equazione che ne risulta; e che l'equazione determinatrice dell'indicato valore particolare z' di z è

$$z' = \frac{1}{2} \left(\frac{l}{\cos \alpha} - \frac{1}{3} x \tan \alpha \right).$$

Sostituendo questo valore di z' nell'equazione che dà il valore di Q_{\circ} , si ha il seguente valore di $Q_{\circ m}$

$$Q_{2m} = \frac{p}{2b} \left(\frac{3l^2}{2x^2} + \frac{l \sec \alpha}{x} + \frac{\sec^2 \alpha}{6} \right),$$

il quale, posto nell'equazione (11), conduce alla seguente equazione determinatrice di x

$$n''R'' = \frac{p}{2b} \left(\frac{3l^2}{2x^2} + \frac{l \sec \alpha}{x} + \frac{\sec^2 \alpha}{6} \right)$$
 (13).

Quest'equazione del secondo grado ammette una sola radice positiva, la quale corrisponde alla domandata grossezza del tavolato.

Avviene ben di frequente che, deducendo l'incognita x dall'equazione (8) o dalla (10) o dalla (12) o dalla (13), si ottengono spessezze inferiori a quelle che presentano gli asserelli che trovansi in commercio per la costruzione dei tavolati per coperture; ed in questo caso i risultamenti del calcolo unicamente servono per assicurare il costruttore che, impiegando gli ordinarii asserelli di commercio, si ottengono tavolati che presentano un eccesso anzichè un difetto di stabilità.

47. Dimensioni dei listelli orizzontali. — Per molte coperture si pongono sui panconcelli dei listelli orizzontali di legno dolce ad una determinata distanza l'uno dall'altro, oppure invece dei listelli si adoperano delle tavole orizzontali d'abete, di pioppo o di castagno. Nelle ordinarie circostanze della pratica, in cui i panconcelli non distano più di metri 0,33 da asse ad asse, bastano i listelli aventi per lati della loro sezione retta metri 0,04 e metri 0,065, purchè siano questi spaziati non più di metri 0,33 da mezzo a mezzo. Se poi invece di listelli si impiegano tavole, difficilmente la loro grossezza eccede metri 0,02, e si spaziano esse in modo che la larghezza degli interposti intervalli risulti eguale alla larghezza delle tavole medesime.

Nel caso poi che non credasi conveniente di attenersi alle indicate dimensioni, riesce facile il calcolo di una delle dimensioni della sezione retta dei listelli o delle tavole, giacchè ogni loro parte, come AB (iig. 79), compresa fra i mezzi di due panconcelli successivi P, trovandosi inchiodata in A e B, si può considerare siccome un solido parallelepipedo, orizzontalmente collocato su due appoggi, incastrato nelle due estremità e sollecitato da un peso uniformemente distribuito sulla sua lunghezza. Se lm rappresenta l'unità di lunghezza presa sull'asse del listello o della tavola, e se lm0 è la distanza fra i mezzi degli intervalli fra cui trovasi il listello o la tavola considerata, il peso lm0, corrispondente all'unità di lunghezza di solido, è rappresentato dal peso della parte di copertura insistente al rettangolo lm0 di lati lm1 lm2 lm3 ed lm0, aumentato del massimo sovraccarico che sul detto rettangolo si può trovare.

Conoscendosi il peso riferito all'unità di lunghezza gravitante sul solido AB, facilmente si comprende come la quistione non sia diversa da quella già trattata pel caso di un tavolato costituito di tavole orizzontali; e come per conseguenza, conoscendosi la distanza $\overline{AB} = 2a$, l'angolo α della falda del tetto coll'orizzonte, il prodotto nR_p del coefficiente di stabilità pel coefficiente di rottura ed il peso p, si possa ricavare o dall'equazione (8) o dall'equazione (40) del precedente numero, uno dei due lati b ed α della sezione retta di un listello quando si conosca l'altro. Il lato α è quello parallelo ed il lato α è quello perpendicolare alla falda del tetto, cui il listello appartiene.

48. Dimensioni dei panconcelli. — In quei casi in cui gli arcarecci distano da asse ad asse non più di metri 0,50, i panconcelli, che generalmente sono di castagno, di pioppo o di abete, si spaziano da mezzo a mezzo di circa metri 0,20 ed i lati della loro sezione trasversale prossimamente si assumono di metri 0,04 e 0,065. Se poi la distanza fra asse ed asse degli arcarecci si approssima ad essere di metri 1,53, e se i panconcelli si pongono distanti da mezzo a mezzo di circa metri 0,55, si aumentano i lati della sezione trasversale di questi, e prossimamente si portano a metri 0,06 e 0,09. Se finalmente la distanza degli arcarecci non si scosta molto da 2 metri, e se quella dei panconcelli si conserva sempre di circa metri 0,35, i due lati della loro sezione retta si assumono ordinariamente di metri 0,10 e 0,12.

In ogni caso poi riesce facile la determinazione di una delle dimensioni della sezione retta dei panconcelli, giacchè, trovandosi essi inchiodati sugli arcarecci, la parte AB (fig. 80), compresa fra i mezzi di due arcarecci successivi, può essere considerata siccome un solido prismatico collocato su due appoggi non situati allo stesso livello, incastrato agli estremi e sollecitato per ogni unità di lunghezza della sua proiezione orizzontale: del peso p_4 del tavolato o dei listelli orizzontali o delle tavole orizzontali esistenti su un rettangolo lmno, avente per lunghezza del suo lato orizzontale \overline{lm} la distanza che esiste fra mezzo e mezzo di due panconcelli successivi, ed avente per lato, secondo il pendio del tetto, quella lunghezza \overline{mn} la cui proiezione orizzontale è l'unità; del peso p' della copertura insistente al detto rettangolo; e del peso p'' del massimo sovraccarico che sullo stesso rettangolo si può trovare. Nel caso in cui tra i panconcelli e la copertura esistono dei listelli o delle tavole orizzontali discoste l'una dall'altra, si ottiene generalmente il peso p_4 calcolando il peso di tutti i listelli o di tutte le tavole poste sul rettangolo CDEF e dividendo questo peso totale per la lungezza della proiezione orizzontale della retta \overline{AB} .

Trovati i tre pesi p_4 , p' e p'', il problema di determinare una delle dimensioni della sezione retta di un panconcello diventa identico a quello già trattato nel precedente numero pel caso di un tavolato costituito da tavole disposte secondo il pendio del tetto, giacchè per ogni unità di lunghezza di proiezione orizzontale dell'asse del panconcello si ha un peso unico p costituitito dalla somma dei tre pesi p_4 , p' e p''. Segue da ciò che, essendo l la proiezione orizzontale

di AB,

a l'inclinazione della falda del tetto orizzontale,

n"R" il prodotto del coefficiente di stabilità pel coefficiente di rottura,

serve una delle equazioni (12) e (13) del precedente numero a trovare una delle due dimensioni b ed x della sezione retta di un panconcello quando si conosca l'altra. Il lato b trovasi disposto parallelamente ed il lato x perpendicolarmente alla falda del tetto a cui

il panconcello appartiene.

Quando fra la copertura ed i panconcelli esistono dei listelli orizzontali o delle tavole non poste a contatto, a tutto rigore non si può dire che le forze sollecitanti i panconcelli siano uniformemente distribuite sulle loro lunghezze e quindi sulle loro proiezioni orizzontali. I panconcelli trovansi sottoposti alle pressioni che su essi esercitano i listelli o gli asserelli orizzontali nei siti in cui sono quelli attraversati da questi, e quindi queste pressioni trovansi concentrate in dati punti dei panconcelli. Se però osservasi che esse sono applicate in punti egualmente distanti e non molto lontani, agevolmente si comprende come esista una certa uniformità di

ripartizione, e come il supporle uniformemente distribuite non debba condurre molto lungi dal vero. Questo modo di procedere è d'altronde ammesso da tutti i pratici, ed una lunga esperienza ha ormai confermato essere sempre accettabili e buoni i risultamenti a cui esso conduce.

49. Dimensioni degli arcarecci. — Per le ordinarie coperture ed in tutti quei casi in cui gli arcarecci devono essere collocati su puntoni o su muri non distanti da mezzo a mezzo più di metri 5,25, se la distanza fra asse ed asse degli arcarecci medesimi non supera metri 0,50, e se sono essi in legname di essenza forte, le dimensioni della loro sezione retta sono generalmente di metri 0,08 per 0,40. Queste dimensioni si portano a metri 0,45 per 0,48, allorquando gli arcarecci distano da asse ad asse da 4,33 a 2 metri. Se la distanza dei punti d'appoggio degli arcarecci è di circa 4 metri, s'impiegano generalmente arcarecci per cui le dimensioni della sezione retta sono di metri 0,40 per 0,42 o di metri 0,48 per 0,22, secondo che distano essi da asse ad asse di metri 0,50 o di metri 4,53 a 2.

In tutti i casi in cui i punti d'appoggio degli arcarecci distano più di 4 metri, e quando il carico permanente ed accidentale del tetto escono dai limiti ordinarii, fissata una delle due dimensioni della loro sezione traversale, si può determinare l'altra, convenientemente applicando le teorie sulla resistenza dei corpi prismatici alla flessione. Quando un arcareccio trova appoggio su diversi puntoni e quando con questi è ben inchiodato, si può considerare la sola parte AB (fig. 79) di esso che resta compresa fra i mezzi di due appoggi successivi. Questa parte figura come un solido prismatico orizzontalmente collocato su due appoggi, incastrato alle sue due estremità e sollecitato per ogni unità della sua lunghezza, del peso p insistente ad un rettangolo notu, avente per suo lato orizzontale la retta Im eguale all'unità e per altro lato, disposto secondo la linea di maggior pendio del tetto, la retta no lunga come la distanza che esiste fra mezzo e mezzo di due arcarecci successivi. Il peso p consta generalmente di quattro pesi distinti che sono: quello po dei panconcelli; quello po del tavolato, dei listelli o delle tavole non a contatto su cui la copertura deve trovarsi in opera; quello p' della copertura propriamente detta; e quello p" del massimo sovraccarico che su essa si può verificare. Il peso po dei panconcelli per ogni unita di lunghezza degli arcarecci si ottiene generalmente calcolando il peso di tutti i panconcelli distribuiti sul rettangolo CDEF, il cui lato CF sia eguale ad no, e dividendo

questo peso totale per la distanza \overline{AB} fra i mezzi di due puntoni successivi. Analogamente si procede pel calcolo del peso p_4 del tavolato, dei listelli o delle tavole non a contatto, riferito pure all'unità di lunghezza. Alcune coperture, come ben sovente avviene per quelle di tegole curve, si fanno a dirittura sui panconcelli, ed allora p_4 =0. Altre si stabiliscono su un tavolato, che senz'altro appoggia sugli arcarecci, e quindi p_2 =0.

Ottenuto il peso p, se indicasi con 2a la distanza \overline{AB} , con α l'inclinazione del tetto all'orizzonte e con nR_p il prodotto del coefficiente di stabilità pel coefficiente di rottura per pressione, si può applicare l'equazione (8) del numero 46 per determinare o il lato b o il lato x perpendicolare alla superficie della falda del tetto.

Gli arcarecci non sempre sono inchiodati dove attraversano i loro sostegni, e ben di frequente sono semplicemente appoggiati. In questo caso, se la lunghezza di un arcareccio sia tale da trovarsi esso orizzontalmente collocato su più di due punti fissi, converrebbe considerarlo siccome un solido disposto su più appoggi situati ad uno stesso livello e simultaneamente sottoposto per ogni unità di lunghezza all'azione del peso p. In pratica però si suppone generalmente che gli arcarecci abbiano tale lunghezza da estendersi solamente dal mezzo di un appoggio al mezzo dell'appoggio successivo, si considerano così soltanto come solidi prismatici appoggiati per le loro due estremità, e quindi si ricava il valore del lato b0 o quello del lato b2 dalla formola (10) del numero 46. Così operando, evidentemente si arriva a risultati che sono in favore della stabilità e che contribuiscono a scemare l'errore derivante dalla trascuranza del peso proprio degli arcarecci.

L'ipotesi della ripartizione uniforme delle forze che agiscono sugli arcarecci non è rigorosamente soddisfatta, giacchè trovansi essi sottoposti alle azioni delle pressioni che loro vengono trasmesse dai panconcelli nei punti in cui da questi sono attraversati. Osservando però che queste pressioni si verificano in punti equidistanti non molto lontani, facilmente si comprende come l'accennata ipotesi possa essere accettata, e come sarà sempre per condurre a quei risultamenti che una lunga esperienza ha ormai confermati accettabili e buoni.

50. Dimensioni dei puntoni. — I puntoni per le ordinarie coperture sono generalmente in legno di essenza forte, e le dimensioni della loro sezione trasversale variano coll'essenza del legname di cui sono formati, colla distanza a cui essi si trovano, colla loro lunghezza, coll'angolo che essi fanno coll'orizzonte, colla lavoratura che hanno ricevuto e colla natura della copertura che sostengono. Per distanze fra mezzo e mezzo di due puntoni successivi, comprese fra 5 e 4 metri e per tetti aventi le ordinarie inclinazioni usate in Italia, si possono mediamente assumere, la dimensione b parallela e la dimensione x normale alla falda del tetto, quali risultano dalla seguente tavola.

NTALE	DIMENSION	NI DELLA SEZIO	ONE RETTA DEI	PUNTONI ALL	O STATO	
Distanza orizzontale degli appoggi	di legname greggio	di leg grossamente b=0	squadrato	di legname a spigoli vivi $b = 0.75x$		
DIST	b=x	x	b	x	b	
m 2,50	m 0,153	m 0,152	m 0,137	m 0,149	m 0,112	
3,00	0,173	0,171	0,154	0,168	0,126	
4,00	0,209	0,207	0,186	0,204	0,153	
5,00	0,243	0,240	0,216	0,237	0,178	
6,00	0,274	0,270	0,243	0,261	0,200	
7,00	0,303	0,300	0,270	0,296	0,222	
8.00	0,332	0,328	0,295	0,324	0,243	

Per le coperture leggiere, come sono quelle in lamiera di rame ed in lamiera di zinco, i valori di x, che trovansi nella tavola, si possono ancora diminuire di metri 0.04, ed assumere i corrispondenti valori di b in modo che il rapporto $\frac{b}{x}$ sia 1, 0.9 o 0.75, secondochè i puntoni sono in legname greggio, in legname grossamente squadrato od in legname a spigoli vivi. Per le coperture di ardesie sottili e per quelle di piombo si possono pure diminuire i valori di x riportati nella tavola; la diminuzione però non deve

Le riferite dimensioni, che è facile riscontrare in parecchie costruzioni già esistenti, convengono pei puntoni di legno forte che si impiegano nelle ordinarie circostanze della pratica, finchè essi non devono distare più di 4 metri da asse ad asse, e finchè la distanza orizzontale dei loro appoggi non eccede 8 metri. Nei molti altri

eccedere metri 0,02.

svariatissimi casi che si possono presentare, è necessario dedurre col calcolo una delle dimensioni della sezione retta dei puntoni, e si arriva allo scopo applicando le teorie sulla flessione dei solidi rettilinei sollecitati da forze riducibili ad una risultante unica incontrante i loro assi con una direzione qualunque. Considerando un puntone di tetto, si può esso ritenere siccome un solido AB (fig. 81), posto su due appoggi non situati allo stesso livello e sollecitato da forze applicate nei siti in cui dà appoggio agli arcarecci. Queste forze poi provengono dal peso degli arcarecci, da quello dei panconcelli, da quello del tavolato, dei listelli o delle tavole orizzontali che trovansi fra i panconcelli e la copertura propriamente detta e dal peso di quest'ultima. Osservando però che gli arcarecci si pongono a distanze eguali, si ammette generalmente che le indicate forze siano uniformemente ripartite sulla projezione orizzontale della lunghezza del puntone. Se adunque nel piano determinato dagli assi dei puntoni s'immaginano condotte le due rette orizzontalmente proiettate in ab e de (fig. 82), la prima equidistante dai due puntoni P e P', la seconda equidistante dai due puntoni P e P"; se considerasi il rettangolo abcd; se si calcolano, per la parte di tetto insistente al detto rettangolo, i pesi degli arcarecci, dei panconcelli, del tavolato o dei listelli o delle tavole orizzontali, della copertura propriamente detta e del massimo sovraccarico che su essa si può trovare; e finalmente se la somma di questi cinque pesi si divide per la lunghezza ef della proiezione orizzontale del puntone considerato, si ha in questo quoziente il peso q, riferito all'unità di lunghezza della sua proiezione orizzontale, ossia quel peso che si può supporre insistente al rettangolo qhik avente per un suo lato la retta $\overline{qh} = \overline{lm}$ eguale all'unità e per altro lato la retta hi = ab.

Accennando ai metodi per calcolare una delle dimensioni della sezione retta delle tavole, dei listelli, dei panconcelli e degli arcarecci che s'impiegano nella costruzione dei tetti, venne trascurato il peso di questi membri, siccome piuttosto piccolo, e perchè generalmente ritiensi dai pratici che l'applicazione del calcolo alla sola parte compresa fra la metà di due appoggi successivi col supporla semplicemente appoggiata, e quindi coll'applicarvi le formole (10) e (13) del numero 46, conduca a risultamenti tanto favorevoli alla stabilità, che non sia il caso di tener conto dell'indicato pese. Questo procedimento però non si può applicare per la determinazione delle sezioni rette dei puntoni, sia perchè i loro pesi sono

sempre considerevoli, sia perchè, costituendo essi i membri più importanti delle coperture, è necessario rendersi ragione del vero grado di stabilità in cui si pongono. Il metodo di falsa posizione è quello generalmente seguito dai pratici per approssimativamente introdurre nei calcoli il peso proprio dei puntoni; e questo metodo consiste nel supporre che il puntone abbia una data sezione trasversale con dimensioni desunte dall'osservazione di tetti già esistenti, od anche semplicemente fissate con quel certo criterio intuitivo che non manca mai a coloro che hanno famigliari le quistioni relative allo studio sulla resistenza dei materiali e sulla stabilità delle costruzioni; con questa sezione trasversale ipotetica si calcola il peso q di una porzione di puntone la cui lunghezza abbia per proiezione orizzontale l'unità; un tal peso si porta in aumento al valore di q, e quindi si procede a calcolo di una delle dimensioni della sezione retta del vero puntone da adottarsi, supponendolo caricato per ogni unità di lunghezza della proiezione orizzontale del suo asse del peso $p = q + q_1$. Essendo

l la proiezione orizzontale \overline{AC} (fig. 84) della parte di asse del puntone, la quale resta compresa fra l'estremità inferiore A ed il punto in cui il detto asse viene tagliato dal piano verticale determinato dalla faccia interna BC dell'appoggio più alto,

α l'angolo BAC misurante l'inclinazione dell'asse del puntone all'orizzonte.

b quel lato della sua sezione retta che trovasi disposto parallelamente alla falda del tetto ed

x l'altro lato il quale è normale alla detta falda,

R" il coefficiente di rottura per pressione, relativo al legname costituente il puntone, facile a desumersi dalla tavola che venne data nel numero 22,

n'' il coefficiente di stabilità da assumersi non maggiore di 4/10, siccome trattasi d'un solido prismatico semplicemente appoggiato alle sue due estremità e caricato d'un peso p per ogni unità di lunghezza della proiezione orizzontale del suo asse, riesce ad esso applicabile l'equazione (15) del numero 46, la quale prestasi alla determinazione di uno dei due lati b od x. Trovato così il lato incognito della sezione retta del puntone, si paragona col suo valore assunto per falsa posizione e si osserva se questo è maggiore, eguale o minore di quello ottenuto col risolvere la citata equazione (15) del numero 46. Nel primo caso vi è eccesso di stabilità, giacchè per ogni unità di lunghezza di proiezione orizzontale dell'asse del puntone si è supposto esservi un peso maggiore di quello che cor-

risponde alla dimensione somministrata dal calcolo; nel secondo caso esiste la necessaria stabilità; e nel terzo caso vi è difetto di stabilità, perchè nell'applicare la regola di falsa posizione si è assunto un peso minore di quello corrispondente alla dimensione ottenuta col calcolo. Se la dimensione calcolata differisce assai poco dalla dimensione stabilita per falsa posizione, senz'altro si accetta la prima; ma se fra l'una e l'altra esiste una notevole discrepanza, è necessario procedere a nuovi calcoli e cercare di accostarsi al vero per approssimazioni successive, facendo il peso della porzione di puntone avente l'unità per projezione orizzontale della sua lunghezza e supponendolo di sezione eguale a quella risultante dall'ultimo calcolo fatto. Quando la discrepanza fra la dimensione adottata per ottenere l'or indicato peso a quella conseguentemente dedotta dal calcolo è minore di 1/20 di quest'ultima. si può accettare come buona quella, fra le due, che assegna al pontone la sezione trasversale di maggiore superficie.

Invece di procedere per falsa posizione nel calcolo di una delle dimensioni della sezione retta di un puntone, si può anche procedere con un metodo diretto. Infatti, essendo II il peso del metro cubo del legname costituente il puntone, si ha che il peso di quella parte il cui asse è AB vien dato da

$$\frac{\prod bx \, l}{\cos x}$$
,

e che per conseguenza il peso q, riferito all'unità di lunghezza della proiezione orizzontale dell'indicato asse, risulta dalla formola

$$q = \frac{\prod b x}{\cos x}$$
.

Ora, essendo

$$p = q + q_4 = \frac{\prod bx}{\cos x} + q_4,$$

se ponesi questo valore di p nell'equazione (13) del numero 46, essa diventa

$$n''R'' = \frac{\Pi bx + q_1 \cos \alpha}{2b \cos \alpha} \left(\frac{3l^2}{2x^2} + \frac{l \sin \alpha}{x} + \frac{\sin^2 \alpha}{6} \right),$$

e così si ha un'equazione che serve a determinare x quando si co-

nosce b, o viceversa a trovare b quando si conosce x, od ancora a trovare b ed x quando è data una relazione che deve passare fra queste lunghezze, per esempio, il loro rapporto.

51. Dimensioni delle incavallature. - Allorquando l'armatura di un tetto è costituita da incavallature, di cui vennero dati parecchi importanti tipi nell'articolo II del capitolo VIII della prima parte del volume sui lavori generali di architettura civile, stradale ed idraulica, riesce possibile di procedere al calcolo delle dimensioni da assegnarsi ai diversi pezzi che le compongono. Queste ricerche si conducono a compimento colle norme che vennero svolte nel capitolo XIII del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, previa la determinazione del peso riferito all'unità di lunghezza della proiezione orizzontale dell'asse dei puntoni, la qual determinazione si fa come si è indicato nel precedente numero. Se poi nelle incavallature trovansi dei pezzi il cui peso non si reputi trascurabile, se ne tien conto con metodi analoghi a quelli seguiti nel precedente numero per introdurre nei calcoli il peso proprio dei puntoni, ed è il metodo di falsa posizione quello che generalmente si segue nella pratica.

Prendendo ad esame l'incavallatura rappresentata nella figura 85, assumendo il metro per unità di lunghezza ed il chilogramma per unità di peso, conviene procurarsi: il peso q_4 riferito all'unità di lunghezza della proiezione orizzontale dell'asse del puntone, facile a desumersi in seguito a quanto si è detto nel precedente numero, e dipendente dai pesi degli arcarecci, dei panconcelli, del tavolato o dei listelli o delle tavole orizzontali, della copertura propriamente detta e del massimo sovraccarico che su essa si può trovare; il peso proprio q di una parte di puntone avente l'unità di lunghezza per proiezione orizzontale del suo asse ed avente una sezione retta fissata per falsa posizione: il peso q_4 ' riferito all'unità di lunghezza dell'asse della catena, e dipendente da un'impalcatura con un sovrappostovi sovraccarico permanente od accidentale che essa deve sopportare; il peso proprio q' di una parte di catena lunga l'unità da desumersi per falsa posizione.

Dopo di ciò, se chiamansi

2 a la distanza fra i punti in cui l'asse della catena AC è incontrato dagli assi dei due puntoni AB e CB,

 α l'angolo misurante l'inclinazione dell'asse di ciascun puntone all'orizzonte,

β l'angolo FEB=FDB che determina l'inclinazione dell'asse di ciascuna razza coll'asse del corrispondente puntone,

R' ed R" i coefficienti di rottura per estensione e per compressione, relativi al legname costituente i diversi pezzi dell'incavallatura e riferiti al metro quadrato, ed

n' ed n" i corrispondenti coefficienti di stabilità,

 $R_i^{\ \prime}$ il coefficiente di rottura per estensione, relativo al ferro costituente la staffa che sopporta la catena nel suo mezzo H_i , ed

n,' il corrispondente coefficiente di stabilità,

p il total peso sopportato dalla parte di puntone avente l'unità per lunghezza della proiezione orizzontale del suo asse,

p' il total peso sopportato dalla parte di catena pure lunga l'unità,

si ha: che il peso p vien dato da

$$p = q + q_4 \tag{1};$$

che analogamente il peso p' risulta dalla formola

$$p' = q' + q_i' \tag{2};$$

che l'equazione determinatrice della superficie Ω_4 della sezione retta di ciascuna razza, nell'ipotesi generalmente ammessa dai pratici che si possa trascurare il suo peso, è (Resistenza dei materiali e stabilità delle costruzioni, numero 203)

$$n'' R'' \Omega_4 = \frac{5}{8} p a \frac{\cos \alpha}{\sin \beta}$$
 (3);

che l'equazione la quale prestasi a trovare la superficie Ω_2 della totale sezione orizzontale da darsi alla staffa che sostiene la catena nel suo ponte di mezzo H, risulta

$$n_i' R_i' \Omega_2 = \frac{5}{4} p' a$$
 (4);

che, indicando con x_3 e con y_3 il lato orizzontale ed il lato verticale della sezione retta della catena, le distanze u'_3 ed u''_3 dei punti, in cui si verificano la massima tensione e la massima pressione riferite all'unità di superficie, dallo strato delle fibre invariabili, la superficie Ω_3 ed il momento d'inerzia I'_3 per la sezione retta in cui hanno luogo gli indicati sforzi massimi, sono rispettivamente espressi da

$$u'_3 = u''_3 = \frac{1}{2}y_3, \quad \Omega_3 = x_3y_3, \quad \Gamma_3 = \frac{1}{12}x_3y_3^3;$$

che le due equazioni

$$n' R' = \frac{a}{8x_3 y_3} \left(\frac{6 a p'}{y_3} + \frac{13 p + 10 p'}{2} \cot \alpha \right)$$

$$n'' R'' = \frac{a}{8x_3 y_3} \left(\frac{6 a p'}{y_3} - \frac{13 p + 10 p'}{2} \cot \alpha \right)$$
(5)

servono per ottenere due distinti valori di x_5 quando si prestabilisce quello di y_5 , o viceversa per dedurre due distinti valori di y_5 quando preventivamente viene fissato quello di x_5 , e che il maggiore dei due valori di x_5 o di y_5 è quello da adottarsi; che l'equazione determinatrice della superficie Ω_4 della sezione retta del monaco, quando si trascuri il suo peso è

$$n' R' \Omega_4 = \frac{5}{4} a \left[p' + \frac{p \cos \alpha \sec (\beta - \alpha)}{\sec \beta} \right]$$
 (6);

e finalmente che, indicando con x_5 ed y_5 i due latí della sezione retta di un puntone (il primo parallelo ed il secondo normale alla superficie della falda del tetto), la distanza u''_5 dei punti in cui si verifica la massima pressione riferita all'unità di superficie dallo strato delle fibre invariabili, la superficie Ω_5 ed il momento d'inerzia I'_5 per la sezione retta in cui si verifica l'indicata pressione massima, sono rispettivamente

$$u_5'' = \frac{1}{2} y_5, \qquad \Omega_5 = x_5 y_5, \qquad \Gamma_5 = \frac{1}{12} x_5 y_5^3,$$

cosicchè l'equazione

$$n'' R'' = \frac{a}{16 x_5 y_5} \left[\frac{3 a p}{y_5} + \frac{(8 + 5 \cos^2 \alpha) p + 10 p'}{\sin \alpha} \right]$$
 (7),

serve alla determinazione di una delle due dimensioni x_s ed y_s allorquando si conosca l'altra.

Qualora non vogliasi procedere col metodo di falsa posizione,

basta osservare che i pesi q e q' si possono rispettivamente esprimere in funzione delle dimensioni delle sezioni rette di un puntone e della catena e che, essendo Π il peso del metro cubo del legno costituente si quello che questa, si ha

$$q = \frac{\prod x_5 y_5}{\cos \alpha},$$
$$q' = \prod x_5 y_5,$$

Ponendo questi valori di q e di q' nelle equazioni (1) e (2) ottiensi

$$p = \frac{\prod x_5 y_5}{\cos \alpha} + q_4 \tag{8}$$

$$p' = \prod x_3 y_3 + q'_4$$
 (9),

e questi valori di p e di p', posti nelle equazioni (5) e (7), conducono a tre equazioni, le quali servono alla determinazione di una delle dimensioni della sezione retta della catena e di una delle dimensioni della sezione retta del puntone. Per giungere allo scopo, si considera l'equazione che risulta dalla prima delle equazioni (5) non che quella proveniente dall'equazione (7), e da queste equazioni si ricavano i valori delle due dimensioni incognite. Dopo si considera l'equazione proveniente dalla seconda delle equazioni (5) e quella derivante dall'equazione (7), per dedurre altri valori delle due dimensioni incognite. Si ottengono così due valori della stessa dimensione della sezione retta della catena e della stessa dimensione della sezione retta del puntone; ed il maggiore dei due valori trovati per ciascuna dimensione è quello da adottarsi. Fatto questo, mediante le equazioni (8) e (9) si calcolano i pesi p e p', e quindi s'impiegano le formole (3), (4) e (6) per la deduzione delle superficie Q, Qo ed Q.

I valori dei coefficienti di stabilità n' ed n", relativi al legno, si assumono ordinariamente eguali ad 4/10; e suolsi fissare ad 1/6, il valore del coefficiente di stabilità n'₄ relativo al ferro. Il coefficiente di rottura per pressione R" pel legname costituente l'incavallatura può essere desunto dalla tavola del numero 22, coll'avvertenza di riferirlo al metro quadrato; e dalla stessa tavola si può pure dedurre il valore di II. Per quanto si riferisce al valore di R' ossia al valore del coefficiente di rottura per trazione con-

veniente ai legnami, che può avvenire di dover impiegare nella composizione delle incavallature, può servire la tavola che segue, nella quale, oltre il peso del decimetro cubo di legname, si ha la resistenza, o coefficiente di rottura per trazione, riferita al millimetro quadrato:

INDICAZIONE DEI LEGNAMI												del decimetro cubo	valore di R' ossia resistenza alla rottura per trazione riferita al millimº quadro			
Abete			191			*			1111				(4)		Cg 0,500	Cg 4,10
Larice rosso	*											.5			0,700	8,50
Olmo			¥												0,730	6,99
Pino					52	1.5			Res.	100					0,580	2,48
Quercia .															0,850	7,00

52. Tettoie formate colle ordinarie incavallature di legno. — Allorquando avviene di dover costrurre qualche tettoia di portata non tanto grande, può convenire di adottare semplici incavallature di legno o per la massima parte di legno, del tipo di quelle che vennero descritte nei numeri 299, 300, 301, 302, 303 e 304 del volume sui lavori generali d'architettura civile, stradale ed idraulica. Queste incavallature raramente si impiegano per portate eccedenti 20 metri, giacchè per le tettoie che devono presentare una larghezza libera maggiore di 20 metri vantaggiosamente si adoperano le incavallature metalliche.

Le ordinarie incavallature per tettoie difficilmente si pongono a distanza maggiore di metri 5,50; e talvolta, nell'intento di schivare le eccessive dimensioni nelle sezioni rette degli arcarecci, si suddivide la campata fra due armature successive con un falso cavalletto intermedio, costituito da due puntoni, i quali all'estremità superiore sono sostenuti dal colmareccio.

A seconda dell'uso al quale deve venir destinata la tettoia, le incavallature appoggiano su muri continui presentanti alcune aperture, sopra pilastri in muratura, oppure sopra sostegni di legno o di metallo. Quando le incavallature sono sopportate da muri continui, può convenire di collocare su essi travi orizzontali o longarine, sulle quali trovano appoggio le incavallature stesse; e

qualora si reputi troppo dispendiosa questa disposizione, è necessario avere almeno l'avvertenza di collocare una robusta e larga nietra piatta in ciascuno di quei siti nei quali le incavallature devono trovar appoggio sul muro; e questo nell'intento di ripartire su basi, per quanto si può estese, le pressioni che le incavallature trasmettono alla muratura sottostante. In quei casi in cui le incavallature devono essere stabilite sopra pilastri murali, si usa porre su ciascuno di questi una pietra di coronamento, estendentesi a tutta la loro sezione orizzontale; e, quando i sostegni delle incavallature sono somministrati da pilastri di legno, si procura di ottenere che quelle premano sull'intiera o su una gran parte della sezione orizzontale di questi, e che siavi di più un tanto solido collegamento da essere impossibili i benchè minimi spostamenti laterali. Avvenendo di dover porre delle incavallature sopra sostegni metallici, usasi generalmente di lasciare alle sommità di questi degli orecchioni, fra i quali si serrano e si inchiavardano le estremità delle incavallature. Finalmente, per l'impostatura e pel solido appoggio delle incavallature senza catena sopra muri, sopra pilastri, sopra sostegni di legno e sopra sostegni metallici, riescono assai vantaggiose le scatole di ghisa, fatte in modo da potersi facilmente e stabilmente fissare sopra i detti sostegni.

Le coperture per tettoie con ordinarie incavallature di legname, si fanno con tegole curve o con tegole piane, con lastre di pietra e talvolta anche con lamiere metalliche; e per la costruzione di queste coperture valgono le norme che vennero date nell'articolo I del capitolo X della prima parte del volume sui lavori generali d'architettura civile, stradale ed idraulica,

55. Tettoie con incavallature metalliche. — L'importanza, ognor crescente, delle tettoie nelle moderne costruzioni esige che si parli di quelle sostenute da incavallature metalliche, i cui tipi vennero descritti nei numeri 306, 507 e 308 del volume sui lavori generali d'architettura civile, stradale ed idraulica, e per le quali si insegnò a determinare le dimensioni delle sezioni rette dei diversi pezzi nei numeri 205, 206 e 207 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni.

Le tettoie con incavallature metalliche, come tutte le altre tettoie, constano essenzialmente: della copertura; dei membri longitudinali; delle incavallature; e dei pezzi di collegamento. Le coperture che s'impiegano per questo genere di tettoie sono generalmente quelle riconosciute più leggiere, e ciò nell'intento di diminuire il peso gravitante sulle incavallature ende ottenere che queste, per

quanto è possibile, risultino leggiere e di costo meno elevato di quelle in legno. Lo zinco e la lamiera di ferro si utilizzano nelle tettoie con incavallature metalliche sotto diverse forme: allo stato di fogli piani, lunghi o corti, di spessezza assai piccola; allo stato di fogli scanalati od ondulati. I fogli di zinco detti del numero 14 sono quelli che generalmente si pongono in opera per coperture leggiere; per le tettoie poi di grande importanza, si possono impiegare i fogli chiamati del numero 16. La lamiera di ferro, se pure vuolsi preservare dall'ossidazione e da un pronto deterioramento, deve essere galvanizzata. Il vetro è anche un materiale che frequentemente impiegasi nelle coperture per tettoie allorquando è necessario di rischiarare i locali ad esse sottostanti; e quasi sempre s'impiega esso allo stato di lastre che trovansi in commercio con spessezza variabile fra metri 0,002 e 0,006. Gli altri materiali che si possono impiegare per coperture non si utilizzano che ben di rado nelle tettoie con incavallature metalliche, quantunque nelle tettoie per quelle officine che esigono una ventilazione costante, come sono gli alti forni, i forni da calce, ecc., possa riescire assai vantaggioso l'impiego delle coperture mediante tegole.

I membri longitudinali, ossia gli arcarecci ed i colmarecci, servono a sopportare la copertura e contemporaneamente a ben collegare le incavallature sulle quali appoggiano od alle quali sono inchiodate. Le distanze poi alle quali generalmente si pongono questi membri variano da metri 1,25 a 3.

Le incavallature, che sono generalmente del genere di quelle già descritte e per le quali già si insegnò a calcolare le dimensioni dei diversi pezzi componenti, nei volumi di questo lavoro sull'arte di fabbricare che già vennero indicati fin dal principio di questo numero, in tal guisa sono combinate da esercitare semplici pressioni verticali sui piedritti che le sopportano. La distanza fra mezzo e mezzo di due incavallature successive si deve determinare in modo che, senza aumentare eccessivamente il loro numero, risultino di portata discreta i pezzi longitudinali per non aumentare troppo le loro dimensioni ed il loro peso. Conviene ancora tenere presente che le piccole distanze nelle incavallature aumentano le unioni e quindi il prezzo di mano d'opera; per guisa che, nel dare un progetto di tettoia, convengono gli studii comparativi diretti ad accertarsi qual è la distanza che conduce alla minima spesa. Le costruzioni esistenti portano a conchiudere che la distanza più conveniente varia fra metri 3,50 e 4. Nelle grandi tettoie però si adottano distanze anche maggiori di 4 metri, e talvolta, essendo travi composte o travi armate i pezzi longitudinali, si arriva fino a 7 o più metri.

Nelle tettoie di piccola portata, i puntoni si costruiscono sovente con sezione rettangolare; si impiegano allora ferri piatti quali si trovano in commercio, in cui la dimensione minore della sezione retta suol essere circa 1/5 della dimensione maggiore; e si ha l'avvertenza di collocare orizzontalmente l'indicata dimensione minore, giacchè, come si sa dalle teorie sulla resistenza alla flessione, questo modo d'impiego è quello che maggiormente favorisce la stabilità e l'economia. - Per le tettoie di media portata s'impiegano generalmente come puntoni le travi semplici in ferro con sezione a doppio T, e si utilizzano quelle che trovansi in comune commercio, per risparmiare il comando e la spesa di nuovi modelli. Questa forma di sezione è preferibile a quella rettangolare per resistere agli sforzi ai quali trovansi sottoposti i puntoni delle incavallature, e per realizzare una notevole economia di materiale. Per le tettoie di considerevole portata, i puntoni delle incavallature consistono generalmente in travi composte con sezione a doppio T, aventi il loro gambo a parete piena oppure a parete reticolata. La parete piena riesce in generale più economica di quella reticolata, pel precipuo motivo della maggior mano d'opera e della maggior difficoltà di costruzione che questa presenta; ma quasi sempre impiegasi il traliccio quando è necessario che l'economia sia sacrificata all'ornamentazione.

I puntoni si riuniscono alle loro estremità, talvolta con pezzi di lamiera ad essi inchiodati o inchiavardati, tal'altra con piastre di ghisa inchiavardate, in modo da riempire esattamente il vuoto o una parte del vuoto che separa le tavole nel caso di ferri con sezione a doppio T. Le estremità inferiori dei puntoni, nell'intento di facilitare il loro appoggio sui sostegni, si pongono entro una base o zoccolo di ghisa o di ferro; e talvolta, mediante mensole, a cui sono unite le dette basi o zoccoli, e saldamente fermate sui sostegni, si aumenta la superficie d'appoggio dei puntoni e si diminuisce la loro portata.

Per ottenere che le incavallature esercitino solamente pressioni verticali sui piedritti servono i tiranti, i quali per conseguenza trovansi sottoposti a sforzi di trazione sovente assai considerevoli. La loro sezione retta quasi sempre è circolare. Talvolta alcuni tiranti orizzontali devono essere capaci di sopportare un peso uniformemente distribuito sulla loro lunghezza, qual può essere quello di un tavolato, di un soffitto, ed in questi casi è preferibile

di farli con sezione rettangolare per facilitare l'esecuzione del tavolato o del soffitto. Nelle grandi tettoie e quando i tiranti devono sopportare dei grandi carichi, può convenire di farli con lamina od anche con ferri a doppio T, che talora si rinforzano con ferri piatti inchiodati contro i loro gambi. È importante che i tiranti un po' lunghi vengano sostenuti nel loro mezzo o in diversi punti della loro lunghezza, nell'intento di diminuire la loro portata e di porli in buone condizioni di stabilità per rapporto alla flessione che possono subire sotto l'azione del proprio peso e di quanto devono sopportare. Quando questi punti di sospensione sono sufficientemente vicini, si trascura l'effetto della flessione dei tiranti, siecome poco influente sulla loro resistenza e sulla loro stabilità.

I tiranti si uniscono ai puntoni mediante staffe in ferro capaci di abbracciare questi da una parte e dall'altra; le estremità dei tiranti si fissano nei ferri a cavallo costituiti dalle dette staffe, e mercè apposite chiocciole riesce possibile di aumentare o di diminuire le loro tensioni. Talvolta, per fissare i tiranti ai puntoni si fa uso di ferri piatti inchiodati a quelli ed a questi. Questo sistema però, che non di rado vedesi impiegato nelle tettoie di piccola portata, non permette di far variare le tensioni dei tiranti. Dove poi concorrono più tiranti, l'unione si fa mediante doppie piastre di ferro, a cui quelli si uniscono con chiavarde.

Per dare ai tiranti, e principalmente a quelli orizzontali, la conveniente tensione, si può stabilire in un punto della loro lunghezza un manicotto o una chiocciola, con viti in senso inverso (num. 55).

Nelle incavallature del sistema di Polonceau, le colonnette o saette, che fanno parte dell'armamento dei puntoni, si costruiscono di ferro con sezione circolare o cruciforme, impiegando in quest'ultimo caso ferri d'angolo e ferri piatti assieme inchiodati. In alcune incavallature, le saette vennero anche costrutte con due pezzi di lamiera o con ferri piatti disposti l'uno sull'altro, riuniti alle loro estremità ed allontanati verso il loro mezzo mediante appositi puntelli. La ghisa, che resiste assai bene alla compressione, frequentemente con vantaggio s'impiega nella formazione delle colonnette, le quali in questo caso presentano una sezione cruciforme per la massima parte della loro lunghezza ed un rigonfiamento verso il mezzo onde allontanare il pericolo di flessione sotto l'azione della forza premente da cui sono sollecitate. Una dimensione riconosciuta dai pratici siccome assai utile per la larghezza delle colonnette in ghisa nel loro mezzo, è quella che corrisponde a circa 4/48 della loro lunghezza.

Le colonnette si fissano ai puntoni mediante piastre di ferro o di ghisa. Nei casi di incavallature per superare grandi portate, i giunti che inevitabilmente devono presentare i puntoni si fanno in corrispondenza dei mezzi degli appoggi somministrati dalle dette colonnette. Gli arcarecci si uniscono ai puntoni mediante squadre inchiodate o inchiavardate a questi ed a quelli; si fanno con semplici ferri piatti, con semplici ferri d'angolo o con ferri a T nelle niccole tettoie colle incavallature vicine; e si impiegano i ferri a doppio T e le travi a parete continua od a parete reticolata nelle grandi tettoie colle incavallature molto lontane. Gli arcarecci si dispongono generalmente in modo che l'altezza della loro sezione retta risulti perpendicolare al pendio della copertura; questa disposizione, però non è la più razionale, e sembra miglior partito il disporli coll'indicata altezza verticale, in conformità di quanto vedesi praticato in alcune moderne tettoie. Adottando quest'ultima disposizione, ottiensi che, per le forme le quali generalmente si assegnano agli arcarecci, trovansi essi nelle migliori condizioni di resistenza e di stabilità.

Per ottenere che si mantengano in uno stesso piano verticale i diversi pezzi di ciascuna delle incavallature componenti la parte resistente di una tettoia, si impiegano legamenti in ferro di sezione circolare o quadrata, disposti fra due incavallature successive fra due punti corrispondenti nell'una e nell'altra. Nelle tettoie con incavallature Polonceau, questi legamenti vengono quasi sempre stabiliti fra le placche di congiunzione del tirante orizzontale colla colonnetta principale e coi tiranti inclinati. Mediante doppie viti analoghe a quelle delle chiavi in ferro (num. 35), od anche mediante biette cuneiformi colle quali si può operare l'unione dei detti legamenti alle incavallature, riesce possibile di ottenere che si trovino in uno stesso piano verticale gli assi dei diversi pezzi di ciascuna di esse. - Quando le incavallature sono molto distanti le une dalle altre, conviene di vieppiù assicurarle nella loro posizione mediante legamenti disposti a croce coi loro assi in piani paralleli al pendio del tetto ed estendentisi da un puntone al puntone corrispondente dell'incavallatura successiva.

Le dimensioni dei varii membri che trovansi fra gli arcarecci e la copertura propriamente detta si determinano colle norme già date nei numeri 46, 47 e 48, parlando dei tetti ordinarii, e soltanto si crede conveniente di aggiungere qualche cenno relativamente al calcolo della sezione retta degli arcarecci e dei diversi membri d'una incavallatura.

54. Dimensioni degli arcarecci per tettoie con incavallature metalliche. - Gli arcarecci per tettoie con incavallature metalliche sono generalmente prismatici, e due casi essenzialmente diversi conviene distinguere nel calcolo di una delle dimensioni della loro sezione retta. Il primo caso si presenta allorquando il piano verticale, passante per l'asse dell'arcareccio che si considera, taglia ciascuna sezione secondo un asse principale centrale d'inerzia (Resistenza dei materiali e stabilità delle costruzioni, num. 106); il secondo caso ha invece luogo tuttavolta che l'accennato piano verticale taglia ciascuna sezione secondo una retta diversa da un suo asse principale centrale d'inerzia. Gli arcarecci con sezione rettangolare, quelli con sezione a semplice T ed a doppio T si trovano nella condizione espressa nel primo caso, allorquando sono disposti in modo da essere verticale quel lato della loro sezione retta il quale ne costituisce l'altezza; gli stessi arcarecci invece sono nella condizione espressa nel secondo caso, tuttavolta che l'altezza della loro sezione retta risulta perpendicolare al pendio della copertura. Nell'uno e dell'altro caso poi, usano i pratici di considerare gli arcarecci per tettoie con incavallature metalliche siccome solidi prismatici orizzontalmente collocati su due appoggi alle loro estremità e caricati d'un peso uniformemente distribuito sulla loro lunghezza; e così facendo si arriva a risultati che sono in favore della stabilità, giacchè i metodi generalmente impiegati per fermare gli arcarecci ai puntoni producono una specie d'incastramento e non un semplice appoggio. In quanto alla determinazione del peso uniformemente distribuito sull'unità di lunghezza di un arcareccio, la qual'unità generalmente suol essere il metro, servono le norme che già vennero date nel numero 49, parlando della determinazione di una delle dimensioni della sezione retta degli arcarecci per tetti ordinarii.

I. Si consideri, per fissare le idee, un arcareccio costituito da una trave semplice in ferro con sezione a doppio T simmetrico, (fig. 84), il quale deve essere posto in opera in modo da risultare verticale il suo gambo AB; e s'immagini trasformata la sua sezione retta, il cui profilo presenta generalmente delle parti arrotondate in A, B, C, D, E ed F, in un'altra composta unicamente di parti rettangolari C'C"E"E', D'D"F"F' e A'B'B"A" coll'altezza C'D'=CD, colla larghezza C'E'=CE e colle grossezze C'C" ed A'A" rispettivamente eguali alle grossezze GH ed IK che si verificano verso il mezzo della sporgenza di ciascuna tavola e nel mezzo del gambo. I calcoli s'instituiscano sulla sezione trasformata anzichè sulla se-

zione reale, giacchè altrimente riuscirebbero troppo lunghi senza utilità per le pratiche applicazioni; ed osservisi che è qui il caso di applicare le equazioni di stabilità (Resistenza dei materiali e stabilità delle costruzioni, num. 106 e 109),

$$n R_{p} = \frac{v' \mu_{m}}{I'}$$

$$n^{rv} R^{rv} = \frac{N_{m}}{\Omega}$$
(1),

nelle quali i valori dei coefficienti di stabilità n ed $n^{\rm ev}$ si possono assumere eguali fra di loro e variabili fra 1/6 ed 1/5, mentre i coefficienti di rottura $R_{\rm p}$ ed $R^{\rm ev}$, il primo relativo all'estensione od alla compressione, ed il secondo relativo allo scorrimento trasversale, si possono prendere siccome variabili, quello fra 50 e 56 chilogrammi per millimetro quadrato e questo fra 24 e 29 chilogrammi pure per millimetro quadrato.

Ciò premesso, prendasi il metro per unità di lunghezza, il chilogramma per unità di forza, si riferiscano al metro quadrato i va-

lori di R, e di R", e si chiamino

2a la lunghezza di quella parte di arcareccio che trovasi compresa fra i due appoggi,

b l'altezza C'D' della sua sezione retta,

b' l'altezza C"D" del gambo,

e la larghezza E'C'=F'D',

c' la somma $\overline{A'C''} + \overline{A''E''} = \overline{B'D''} + \overline{B''F''}$,

p il peso che trovasi uniformemente distribuito su ogni unità di lunghezza dell'arcareccio, compreso anche il peso proprio.

Per quanto risulta dai numeri 97 e 108 dal volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, si ha

$$v' = \frac{1}{2}b$$

$$\Omega = b c - b' c'$$

$$1' = \frac{1}{12} (c b^3 - c' b'^3)$$

$$\mu_{\rm m} = \frac{1}{2} p a^2$$

$$N_m = pa$$
,

e quindi le equazioni (1) diventano

$$n R_{p} = \frac{3 p b a^{2}}{c b^{3} - c' b'^{3}}$$
 (2),

$$n^{\text{\tiny IV}} \mathbf{R}^{\text{\tiny IV}} = \frac{p \, a}{b \, c - b' \, c'} \tag{3}.$$

Lasciando incognita una sola delle quattro dimensioni b, b', c e c', riesce facile il calcolarla, sia risolvendo l'equazione (2), come risolvendo l'equazione (5), e dei due valori della stessa incognita che così si ottengono devesi adottare quello che assegna all'arcareccio la sezione retta di maggiore superficie (e).

Se l'incognita è una delle due dimensioni orizzontali c e c', l'equazione (2) riesce del primo grado; la stessa equazione risulta un'equazione binomia del terzo grado quando l'incognita è b'; e devesi invece risolvere un'equazione trinomia del terzo grado, tuttavolta che si lascia incognita l'altezza b. Ora, siccome nelle pratiche applicazioni difficilmente si può adottare la trave colle dimensioni

(e) Alcuni costruttori, dubitando se un solido il quale già resiste alla flessione sia ancora capace di resistere allo scorrimento trasversale, nell'intento di tenersi dalla parte della sicurezza, usano distinguere due parti nelle sezioni rette delle travi: una, che nelle travi con sezione a doppio T suol essere quella corrispondente alle due tavole superiore ed inferiore, calcolata colla condizione che il solido resista alla flessione; l'altra, che nelle stesse travi suol essere quella corrispondente al gambo. determinata colla condizione che il solido resista allo scorrimento. Se però osservasi: che, in ogni sezione retta di un solido sottoposto a flessione, la massima tensione e la massima pressione riferite all'unità di superficie si verificano soltanto, l'una da una parte e l'altra dall'altra parte dell'asse neutro, nei punti maggiormente distanti da quest'asse; che nei solidi prismatici al limite di stabilità, questo limite si verifica solo nelle sezioni pericolose, mentre nelle altre sezioni sempre trovasi eccesso di stabilità: e che un solido non ancora snervato per estensione o per compressione deve ancora presentare una notevole resistenza allo scorrimento trasversale, agevolmente si comprende come sia inutile l'indicata distinzione in due parti della sezione retta dei solidi prismatici, e come questo metodo, che sempre contribuisce a facilitare i calcoli, tutto al più possa tornare vantaggioso per le grandi travi composte e principalmente per quelle a traliccio in cui, atteso le numerose unioni e le possibili imperfezioni di alcune di esse, è necessario di operare in favore della stabilità.

risultanti dal calcolo, giacchè è necessario attenersi ai ferri che trovansi in commercio per soddisfare alle esigenze delle costruzioni, invece di far servire le equazioni (2) e (3) alla determinazione di una delle dimensioni della sezione retta, conviene generalmente munirsi di un catalogo, in cui sianvi le dimensioni dei diversi ferri a doppio T che può fornire l'officina dalla quale si vogliono trarre i ferri per la costruzione della tettoia, osservare in questo catalogo qual sezione sembra presso a poco convenire al caso particolare, sostituire nelle equazioni (2) e (5) invece di a, b, b', c, c', p, R' ed R" i numeri loro corrispondenti e ricavare i coefficienti di stabilità n' ed n'y. Se il valore di n' si trova fra 1/6 ed 1/5 e se quello di n' è minore di 1/5, si adotta senz'altro quel ferro con sezione a doppio T che, risolvendo le equazioni (2) e (5), servi alle deduzioni di n' e di n"; se il valore di n' è maggiore di 1/5, è segno che il ferro considerato non presenta la voluta stabilità e si ripete il calcolo per ferri capaci di maggior resistenza, se invece il valore di n'è minore di 1/6, il ferro considerato presenta un eccesso di stabilità e conviene rifare il calcolo per ferri di minor resistenza e di minor peso; e questo nell'intento di approssimarsi a quella ben intesa economia che, senza compromettere la sicurezza delle opere, sempre si può raggiungere nelle costruzioni metalliche. L'indicato procedimento per tentivi riesce assai conveniente nella pratica, toglie il calcolatore dall'imbarazzo della risoluzione di equazioni di grado superiore, e colla massima facilità permette di tener conto del peso proprio della trave.

II. Suppongasi ora che ciascun arcareccio debba essere costituito da una trave semplice in ferro con sezione a T (fig. 85), e che debba essere posto in opera in modo da riescire perpendicolare al pendio del tetto il suo gambo AB. Analogamente a quanto già si disse doversi fare per l'arcareccio con sezione a doppio T simmetrico, anche per l'arcareccio con sezione a T è necessario: di trasformare la sezione retta, il cui profilo sovente presenta delle parti arrotondate in A, B, C e D, in un'altra unicamente composta di parti rettangolari B'A'A''B'' e C'C''D''D', coll'altezza A'B'=AB, colla larghezza C'D''=CD e colle grossezze B'B'' e C'C'' rispettivamente eguali alle grossezze EF e GH, che si verificano verso il mezzo del gambo AB e verso il mezzo della sporgenza della tavola CD; e d'instituire i calcoli sulla sezione trasformata, anzichè sulla sezione reale.

Se poi consideransi tre arcarecci successivi, aventi i centri delle

L'ARTE DI FABBRICARE.

Costruzioni civili, ecc. - 10

loro sezioni rette nei punti I, K ed L (fig. 86), si può ritenere che il peso sopportato dall'arcareccio di mezzo, uniformemente distribuito sulla sua lunghezza, sia quello corrispondente alla parte di copertura rappresentata nella retta MN, definita in lunghezza col prendere il punto M nel mezzo di OP ed il punto N nel mezzo di OP. Questo peso dà luogo a due componenti: una contenuta nel piano perpendicolare al pendio del tetto che divide per mezzo il gambo dell'arcareccio K, normale all'asse dell'arcareccio medesimo, ed uniformemente distribuita sulla sua lunghezza; l'altra contenuta nella faccia superiore dell'arcareccio, normale al detto piano passante pel mezzo del suo gambo, ed anche uniformemente distribuita sulla sua lunghezza. La prima delle definite componenti produce flessione, la seconda produce torsione; e generalmente negli arcarecci, aventi le altezze delle loro sezioni rette normali ai pendii dei tetti in cui trovansi in opera, oltre la resistenza alla flessione ed allo scorrimento trasversale, riesce anche provocata la resistenza alla torsione. Nè di questa torsione è difficile il tener conto; essa ha per effetto di provocare la resistenza dell'arcareccio nel senso trasversale, e quindi, aggiungendo algebricamente le azioni producenti scorrimento trasversale e torsione, e cercando il massimo di questa somma, si ottiene la massima resistenza trasversalmente provocata. Insomma, quando un solido elastico trovasi simultaneamente sottoposto a sforzi di torsione e di taglio, si ottiene la massima resistenza provocata nel senso trasversale con un metodo affatto analogo a quello che, per un solido contemporaneamente sottoposto a flessione ed a tensione, si segue nel valutare la massima resistenza nel senso longitudinale. Siccome però la forza che tende a produrre torsione è generalmente non molto grande, e siccome l'attrito fra la superficie superiore dell'arcareccio e le superficie inferiori di quei membri della copertura, che su esso trovano appoggio, contribuisce a diminuirne l'azione. usasi generalmente dai pratici: di non tener conto della torsione; di supporre che il peso uniformemente distribuito su ciascun arcareccio produca solamente flessione e scorrimento trasversale; e di ammettere, come già si è fatto nei numeri 46, 47 e 49 parlando delle dimensioni dei tavolati, dei listelli orizzontali e degli arcarecci pei tetti ordinarii, che la traccia verticale del piano di sollecitazione per un arcareccio qualunque K, invece di passare pel punto P, passi pel centro di superficie K di ciascuna sua sezione retta. Così facendo, si viene a supporre che il peso sopportato dall'arcareccio K non sia quello corrispondente alla parte di copertura rappresentata nella retta MN, ma sibbene quello che si riferisce alla parte di copertura rappresentata nella retta M'N' di lunghezza eguale a quella della retta MN, determinata col condurre, pei centri di superficie I, K ed L dei tre arcarecci consecutivi che si considerano, le verticali 10', KP' ed LQ', e col prendere i punti M' ed N', il primo sul mezzo di $\overline{O'P'}$ ed il secondo sul mezzo di $\overline{Q'P'}$.

Assumendo per verso dei momenti inflettenti positivi quello che tende a far rotare l'asse dell'arcareccio dall'alto al basso, ed osservando che tutti i momenti inflettenti risultano allora negativi, le equazioni di stabilità da applicarsi nel caso particolare (Resistenza dei materiali e stabilità delle costruzioni, num. 109) sono

$$n' R' = u'' \mu''_{m} \sqrt{\frac{\cos^{2} \varphi}{I'^{2}} + \frac{\sin^{2} \varphi}{I''^{2}}}$$

$$n'' R'' = u' \mu''_{m} \sqrt{\frac{\cos^{2} \varphi}{I'^{2}} + \frac{\sin^{2} \varphi}{I''^{2}}}$$

$$n'' R'' = \frac{N_{m}}{\Omega}$$
(4).

I coefficienti di stabilità n', n" ed n' si assumono generalmente eguali fra di loro e variabili fra 4/6 ed 4/5. I coefficienti R' ed R", quasi per generale consentimento dei pratici si assumono eguali fra di loro quando trattasi di arcarecci in ferro, ed ai medesimi si assegna un valore oscillante fra 30 e 56 chilogrammi per millimetro quadrato. Finalmente il valore del coefficiente R" si assume variabile da 24 a 29 chilogrammi, pure per millimetro quadrato.

Se ora si conservano alle lettere a e p i significati che già loro vennero dati nella risoluzione del primo problema esposto in questo numero, e se chiamansi

b l'altezza \overline{PQ} (fig. 85) dell'intiera sezione retta dell'arcareccio, b' l'altezza $\overline{C'C''}$,

c la larghezza D"C",

c' la grossezza B'B" del gambo,

x la distanza $\overline{Q0}$ del centro di superficie 0 dell'indicata sezione retta dalla retta D''C'',

per quanto risulta dal problema X del numero 97 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, si ha

$$x = \frac{1}{2} \frac{(c - c') b'^2 + c' b^2}{(c - c') b' + c' b}$$
 (5),

La superficie Ω della sezione retta dell'arcareccio vien data da

$$\Omega = (c - c') b' + c' b \tag{6},$$

ed i momenti d'inerzia I' ed I'' della stessa sezione retta, per rapporto ai suoi assi principali centrali d'inerzia xx' ed yy', ammettono i valori

$$I' = \frac{1}{3} \left[c x^3 - (c - c') (x - b')^3 + c' (b - x)^3 \right]$$
 (7),

$$I'' = \frac{1}{12} \left[b'c^3 + (b - b')c'^3 \right]$$
 (8).

Essendo α l'inclinazione del tetto all'orizzonte, è pure α l'angolo della verticale OV colla retta yy', e quindi si ha

$$\varphi \equiv \alpha$$
 (9);

cosicchè l'angolo $x \circ U = \psi$ che l'asse neutro UU fa coll'asse x x' vien dato (Resistenza dei materiali e stabilità delle costruzioni, num. 89) da

$$\tan \varphi = \frac{1'}{1''} \tan \varphi \alpha \tag{10}.$$

Le lunghezze u'' ed u' da porsi nelle prime due delle equazioni (4) sono rispettivamente quelle delle due perpendicolari $\overline{B''}R$ e $\overline{C''}S_{r}$ abbassate dai punti B'' e C'' sulla UU, ed è necessario di trovare i loro valori espressi in funzione delle dimensioni della sezione retta dell'arcareccio. Perciò dal punto T (fig. 87), in cui la retta A''B'' è incontrata dall'asse principale d'inerzia xx', si conducano le due rette TX e TV, la prima parallela e la seconda perpendicolare all'asse neutro UU. Analogamente dal punto Y, in cui il detto asse principale incontra il prolungamento di C''C', si tirino le due rette YZ ed YW, l'una parallela e l'altra perpendicolare ad UU. Evidentemente si ha:

$$\overline{OT} = \frac{1}{2}c', \qquad \overline{TB''} = b - x,$$

$$TB''X = TOV = \psi,$$

$$T\overline{V} = \frac{1}{2}c' \operatorname{sen} \psi, \qquad \overline{B''X} = (b - x) \cos \psi,$$

$$u'' = \frac{1}{2}c' \operatorname{sen} \psi + (b - x) \cos \psi \qquad (11);$$

$$OY = \frac{1}{2}c, \qquad \overline{YC''} = x,$$

$$YC''Z = YOW = \psi,$$

$$\overline{YW} = \frac{1}{2}c \operatorname{sen} \psi, \qquad \overline{C''Z} = x \cos \psi$$

$$u' = \frac{1}{2}c \operatorname{sen} \psi + x \cos \psi \qquad (12).$$

In quanto ai valori di μ_m e di N_m ossia ai valori assoluti del più grande momento inflettente e del più grande sforzo di taglio (Resistenza dei materiali e stabilità delle costruzioni, num. 108, probl. III), essi sono

$$\mu''_{m} = \frac{1}{2} p a^{2}$$
 (13),

$$N_{m} = p a \tag{14}.$$

Se ora si pone nelle equazioni (7), (11) e (12) il valore di x dato dall'equazione (5), e se dopo i valori u'', u', ρ_m , φ , I', I'', N_m ed Ω , rispettivamente dati dalle equazioni (11), (12), (13), (9), (7), (8), (14) e (6) si pongono nelle equazioni (4), si hanno tre equazioni le quali si prestano alla determinazione di una stessa dimensione della sezione retta dell'arcareccio, quando sono note tre delle quattro quantità b, b', c e c'; si possono adunque ricavare tre distinti valori della stessa dimensione lasciata incognita, ed il maggiore dei tre, siccome assegnante all'arcareccio la maggior superficie resistente, è quello da adottarsi in pratica.

L'esposto metodo, per calcolare una delle dimensioni della sezione retta d'un arcareccio con sezione a T. non può a meno che condurre a calcoli complicati e lunghi, e quindi nelle pratiche applicazioni, per le quali conviene generalmente attenersi ai ferri a T che si trovano nel comune commercio, conviene procedere per tentativi, o meglio per prove successive, come già si è indicato sul finire della risoluzione del problema I di questo numero. Allora, per ogni sezione a T che si sottopone a prova, si possono successivamente calcolare mediante le equazioni (5), (6), (7), (8), (40), (11) e (12) i valori di x, Ω , I', I'', ψ , u'' ed u'. Dalle equazioni di stabilità (4) si possono ricavare i tre coefficienti n', n" ed n' quando in esse si pongano i valori di u", u', I', I" ed Ω, quelli di R', R" ed R" e quelli di \(\varphi \), \(\mu''_m \) ed \(N_m \) dati dalle equazioni (9), (13) e (14). Quando uno dei tre coefficienti di stabilità n', n" ed n" trovasi compreso fra 1/6 ed 1/5 e che contemporaneamente gli altri due sono minori di 1/5, è segno che i calcoli vennero instituiti su quel ferro con sezione a T che presenta la conveniente stabilità ed il cui impiego riesce per conseguenza vantaggioso sotto il duplice aspetto di sufficiente resistenza e di ben intesa economia.

Una volta determinata la posizione dell'asse neutro UU (fig. 85) mediante la distanza $\overline{QO} = x$ e mediante l'angolo $xOU = \psi$, si può accelerare l'operazione della scelta di quel ferro con sezione a T che può convenire in un dato caso particolare, disegnando le sezioni dei diversi ferri che si sottopongono a prova in iscala piuttosto grande e determinando graficamente le due lunghezze $\overline{B''R} = u''$ e $\overline{C''S} = u'$

55. Dimensioni delle incavallature metalliche. — Le dimensioni dei diversi pezzi componenti le incavallature metalliche si determinano colle norme e coi procedimenti risultanti dalle risoluzioni dei problemi che vennero trattati nei numeri 205, 206 e 207 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, e, nell'intento di far vedere come dalla teoria si passa alla pratica, si prende ad esame un'incavallatura Polonceau completamente in ferro, rappresentata nella figura 88, avente i suoi puntoni di altezza piuttosto considerevole, con sezione a doppio T simmetrico e con parete reticolata. La figura 89 fa vedere: in prospetto, in qual modo sono disposti i diversi pezzi componenti ciascun puntone; qual'è la sua sezione retta secondo il piano determinato dalla retta XY; e come ha luogo l'unione di ciascun arcareccio coi puntoni che devono sopportarlo, la qual unione si vede abbastanza chiaramente in A.

Per calcolare le dimensioni dei diversi pezzi componenti l'incavallatura, la cui forma con sufficiente chiarezza risulta dalle citate figure 88 ed 89, è necessario procurarsi: il peso q_4 riferito all'unità di lunghezza della proiezione orizzontale dell'asse di un puntone, il qual peso assai facilmente si può ottenere operando come già si disse nei numeri 50 e 51; il peso proprio q di una parte di puntone avente l'unità di lunghezza per proiezione orizzontale del suo asse ed avente una sezione retta fissata per falsa posizione. Le equazioni da applicarsi nel presente caso particolare sono quelle che vennero dedotte nel numero 205 del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni.

Determinati i valori di q e di q_4 coll'esprimerli in chilogrammi e col riferirli al metro assunto come unità per valutare le lunghezze, si chiamino:

2a la distanza fra le estremità inferiori A e B (fig. 88) degli assi dei due puntoni;

α l'angolo misurante l'inclinazione dell'asse di ciascun puntone all'orizzonte;

β gli angoli eguali che gli assi dei tiranti A C, D C, B E e D E fanno cogli assi dei puntoni ai quali trovansi uniti;

R' ed R" i coefficienti di rottura per estensione e per compressione, relativi al ferro costituente i diversi pezzi dell'incavallatura e riferiti al metro quadrato;

n' ed n" i corrispondenti coefficienti di stabilità;

p il total peso sopportato dalla parte di puntone avente l'unità per lunghezza della proiezione orizzontale del suo asse;

h l'altezza del punto D, in cui s'incontrano gli assi dei due puntoni, sulla orizzontale passante per le due estremità inferiori A e B;

h' l'altezza dello stesso punto D al di sopra della orizzontale rappresentante l'asse della catena CE.

Evidentemente si ha

$$p = q + q_4 \tag{1},$$

e, per essersi trovato nel citato numero 205 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni

$$a = \frac{h}{\tan g \alpha}$$

$$\tan \beta = \frac{2h'-h}{h} \tan \alpha$$

riesce facile il dedurre

$$h = a \tan \alpha$$

e quindi

$$h' = \frac{1}{2} a \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$
 (2).

Trovate le quantità p ed h' mediante le equazioni (1) e (2), bisogna porre le equazioni di stabilità convenienti ai diversi pezzi dell'incavallatura, e riesce agevole il conchiudere: che l'equazione atta a determinare la superficie Ω_4 della sezione retta della catena CE è

$$n' R' \Omega_i = \frac{1}{2} \frac{p a^2}{h'} \tag{3};$$

che l'equazione, la quale prestasi a trovare la superficie Ω_2 della minima sezione trasversale di ciascuna delle due colonnette C F ed E G, risulta

$$n'' R'' \Omega_2 = \frac{5}{8} p a \cos \alpha \qquad (4);$$

che l'equazione determinatrice della superficie Ω_3 della sezione retta di ciascuno dei due tiranti AC e BE è

$$n' R' \Omega_3 = \frac{13}{16} p \alpha \frac{\cos \alpha}{\sin \beta}$$
 (5);

e che l'equazione da impiegarsi per calcolare la superficie Ω_4 di ciascuno degli altri due tiranti DC e DE è

$$n' R' \Omega_4 = \frac{1}{2} \frac{p a}{\sin \beta} \left(\frac{a}{h'} \sin \alpha - \frac{3}{8} \cos \alpha \right)$$
 (6).

Per quanto si riferisce al puntone, suppongasi che i soli ferri d'angolo e le due tavole superiore ed inferiore debbano essere capaci di resistere alla flessione, e si dicano

d la lunghezza $\overline{\mathrm{BC}}$ (fig. 90) di ciascuno dei lati dei quattro ferri d'angolo,

e la loro grossezza, o loro grossezza media quando sono arrotondati alle estremità e nel vertice dell'angolo, b l'altezza CC' dell'intera sezione del puntone, supposto formato dai soli ferri d'angolo. Evidentemente si ha

$$\overline{\text{CF}} = e,$$
 $\overline{\text{DF}} = d - e,$
 $\overline{\text{DD'}} = b - 2e,$
 $\overline{\text{EE'}} = b - 2d;$

ed il momento d'inerzia I', della sezione fatta nei quattro ferri d'angolo rispetto alla orizzontale $x\,x'$ passante pel centro di superficie G della stessa sezione, vien dato da

$$I' = \frac{1}{6} \left[db^3 - (d-e)(b-2e)^3 - e(b-2d)^3 \right]$$
 (7).

Calcolato questo momento d'inerzia I', si dicano rispettivamente x_5 ed y_5 i due lati $\overline{\rm IL}$ ed $\overline{\rm IM}$ della sezione retta di ciascuna delle due tavole; e si esprimano in funzione dei dati del problema e di questi lati, la distanza u''_5 dei punti in cui si verifica la massima pressione riferita all'unità di superficie dallo strato delle fibre invariabili, la superficie Ω_5 ed il momento d'inerzia I'_5 per la sezione in cui si verifica l'indicata pressione massima. Nell'intento poi di ottenere un'equazione determinatrice di una delle dimensioni della sezione retta del puntone, la quale non sia di uso troppo difficile nella pratica, suppongasi che gli infiniti elementi superficiali delle due aree rettangolari MILN ed M'I'L'N' abbiano dalla retta x x' la

$$rac{1}{2}x_5y_5b^2$$

distanza $\frac{1}{2}b$, e quindi assumasi il prodotto

siccome approssimativamente rappresentante il momento d'inerzia della superficie costituita dalle indicate aree rettangolari. Evidentemente si ha

$$u''_{5} = \frac{1}{2}b + y_{5}$$

$$\Omega_{5} = 2[x_{5}y_{5} + 2e(2d - e)]$$

$$\Gamma_{5} = \Gamma + \frac{1}{2}x_{5}y_{5}b^{2}$$
(8),

e quindi ottiensi l'equazione

$$n'' R'' = \frac{p a^{2} (b + 2 y_{5})}{32 (2 \Gamma + b^{2} x_{5} y_{5})} + \frac{p a}{4 [x_{5} y_{5} + 2 e (2 d - e)]} \left(\sec \alpha + \frac{13 \cos \alpha \cos \beta}{8 \sec \beta} \right)$$
(9),

la quale serve a determinare una delle dimensioni della sezione retta del puntone, e generalmente o x_5 o y_5 , allorquando sono note tutte le altre, e quando già si conosce il valore I' da calcolarsi mediante la formola (7).

Convien osservare che, per essere il valore di I'₅ dato dalla formola (8) minore del vero momento d'inerzia della sezione piana rappresentata nella figura 90, si è supposta la massima pressione riferita all'unità di superficie, rappresentata dal secondo membro della (9), maggiore della vera; cosicchè l'incognita che si ricava dall'ultima indicata equazione corrisponde ad un risultato il quale è in favore anzichè a danno della stabilità.

Se si indica con II il peso del metro cubo di ferro e se osservasi che

$$q = \frac{\Pi \Omega_5}{\cos \alpha} = \frac{2 \Pi [x_5 y_5 + 2 e(2d - e)]}{\cos \alpha},$$

ponendo questo valore di q nell'equazione (4) e quindi il risultante valore di p nell'equazione (9), si ha mezzo di calcolare immediatamente una delle dimensioni della sezione retta del puntone, senza far uso del metodo di falsa posizione. Quando l'incognita da calcolarsi è la y_5 , si deve risolvere un'equazione del terzo grado, se pure non credesi conveniente di assumere $u''_5 = \frac{1}{2}b$, e di porre quindi nell'equazione (9) b invece del fattore binomio $b+2\,y_5$. Così facendo, si viene a supporre che la massima pressione riferita all'unità di superficie, rappresentata dal secondo membro della citata equazione (9), sia minore della vera e si compensa in parte il maggior valore che alla medesima attribuisce l'assunto valore di l'_5 .

Resta ancora la determinazione della superficie ω_6 da assegnarsi ai diversi pezzi componenti la parete reticolata dei puntoni. Perciò è necessario determinare il valore di N_m ossia il valore assoluto nel massimo sforzo di taglio che si verifica per un puntone, il quale

massimo sforzo di taglio ha luogo nella sua sezione di mezzo e vien dato dalla formola (f)

$$N_m = \frac{5}{16} p a \cos \alpha$$
.

Trovato il valore di Nm, si ottiene quello di 06 mediante la sempli-

(f) Il valore di N_m si deduce osservando che ciascun puntone, come B D (fig. 91), può essere considerato come un solido prismatico, caricato d'un peso uniformemente distribuito sulla sua proiezione orizzontale e sollecitato: in D dalla forza orizzontale Q e dalla forza T' facente coll'asse del puntone l'angolo T'' BB=β; in G dalla forza Q' diretta normalmente al detto asse; in B dalla forza verticale Z e dalla forza T', la quale coll'asse del puntone fa l'angolo T' BD=β. Tutte queste forze si possono ritenere come note, giacchè basta procedere come venne indicato nel numero 205 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, per arrivare ai loro valori e per ottenere

$$Z = p a$$

$$Q' = \frac{5}{8} p a \cos \alpha$$

$$T' = \frac{15}{16} p a \frac{\cos \alpha}{\sin \beta}.$$

Se ora chiamasi N lo sforzo di taglio per una sezione qualunque del puntone, la quale abbia il suo centro in un punto M del tratto \overline{BG} , distante di $\overline{BM} = z$ da B, ed N' lo sforzo di taglio per una sezione qualunque del tratto \overline{GD} col suo centro nel punto M' distante da B di $\overline{BM'} = z'$, si ha: che il valore di N, somma algebrica delle componenti normali a BD delle forze applicate da B in M, vien dato da

$$N = -Z\cos\alpha + T'\sin\beta + pz\cos^2\alpha$$
;

e che il valore di N', somma algebrica delle componenti normali a BD delle forze applicate da B in M' risulta

$$N' = -Z\cos\alpha + T'\sin\beta + pz'\cos^2\alpha - Q'.$$

Ponendo in queste equazioni i noti valori di Z, Q' e T', si ha

$$N = -\frac{3}{16} p a \cos \alpha + p z \cos^2 \alpha,$$

$$N' = -\frac{13}{16} p a \cos \alpha + p z' \cos^2 \alpha,$$

e quindi gli sforzi di taglio variano in ciascuno dei due tratti $\overline{B}\,\overline{G}$ e $\overline{G}\,\overline{D}$ come le ordinate di una linea retta.

Se nella penultima equazione si fa z=0 e $z=\frac{1}{2}\frac{a}{\cos \alpha}$ si hanno gli sforzi di taglio N_1 ed N_2 per le sezioni corrispondenti ai due punti B e G; e, se nell'ultima equa-

cissima formola (Resistenza dei materiali e stabilità delle costruzioni, num. 200)

$$\omega_6 = \frac{5 p a \cos \alpha}{32 n'' R'' \operatorname{sen} \gamma},$$

dove γ rappresenta l'angolo acuto misurante l'inclinazione degli assi dei diversi pezzi componenti il traliccio coll'asse del puntone, il qual angolo suol generalmente essere di 45°.

I valori di n' ed n", come pure quelli di R' ed R", si assumono come già si è indicato nel precedente numero parlando degli arcarecci in ferro.

La grossezza dei pezzi B (fig. 89), diretti normalmente all'asse del puntone, suolsi generalmente assumere non minore di quella dei pezzi C componenti le croci.

56. Influenza delle variazioni di temperatura sui diversi pezzi delle incavallature e conseguenze che da essa derivano. — Un'incavallatura metallica qualunque è un sistema di spranghe in equilibrio, e se in un tale sistema, supposto collocato in opera in modo che le estremità dei puntoni abbiano perfetta libertà di muoversi, avviene un sensibile abbassamento di temperatura, tutte le spranghe

zione si pone $z'=\frac{1}{2}\frac{a}{\cos\alpha}$ e $z'=\frac{a}{\cos\alpha}$, si ottengono gli sforzi di taglio N_2 ed N_2 per le sezioni corrispondenti ai due punti G e D; e questi valori di N_1 , N_1 , N_2 ed N_2 risultano

$$\begin{aligned} \mathbf{N}_1 &= -\frac{3}{16} \, p \, a \cos \alpha \\ \mathbf{N'}_1 &= \frac{5}{16} \, p \, a \cos \alpha \\ \mathbf{N}_2 &= -\frac{5}{16} \, p \, a \cos \alpha \\ \mathbf{N'}_2 &= \frac{3}{16} \, p \, a \cos \alpha , \end{aligned}$$

Se adunque pei punti B, G e D si elevano altrettante perpendicolari a BD, se determinansi su esse le lunghezze $\overline{BN_1}$, $\overline{GN_1}$, $\overline{GN_2}$ e $\overline{DN_2}$ proporzionali ai numeri 3, 5, 5 e 3 e se tiransi le due rette N_1 N_1' ed N_2N_2' , le ordinate di queste rette, valutate perpendicolarmente a BD, risultano proporzionali agli sforzi di taglio; e siccome la massima di queste ordinate è $\overline{GN_1'}$ pel tratto \overline{BG} e $\overline{GN_2}$ pel tratto \overline{GD} , agevolmente si viene a conchiudere che lo sforzo di taglio massimo si verifica per la sezione corrispondente al punto G, e che per conseguenza è rappresentato sia dal valore di N_1' , sia dal valore assoluto di N_2 , cioè dai $\frac{5}{4G}$ p a $\cos \alpha$.

si accorciano proporzionalmente alla loro lunghezza, il poligono da esse formato si mantiene simile al primitivo, e quindi le tensioni e le pressioni delle varie parti del sistema non vengono sensibilmente modificate a motivo della tenuità delle variazioni lineari, le quali per il ferro in spranghe sono appena di metri 0,0000122 per ogni metro e per l'abbassamento di un grado centigrado nella temperatura.

Se però trattasi d'incavallature in cui sono fissi gli estremi dei puntoni, è necessario fare in modo che i tiranti di ferro abbiano tale sezione retta da poter resistere all'aumento di tensione risultante da un determinato abbassamento di temperatura, aumento che per un dato tirante sarà sempre più grande di quello che realmente si può verificare, quando suppongasi che la sua lunghezza sia invariabile per l'assoluta immobilità dei suoi estremi. Se chiamansi

T' la tensione che dovrà sopportare un tirante, determinata coi metodi svolti nel capitolo XIII del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, parlando delle incavallature, ed espressa in chilogrammi,

R' il coefficiente di rottura pel ferro, che nelle ordinarie circostanze si può assumere variabile fra 30000000 e 36000000 chilogrammi per metro quadrato,

n' il corrispondente coefficiente di stabilità, cui si può assegnare il valore 1/5, giacchè la massima tensione alla quale un tirante sarà per trovarsi esposto a motivo di un abbassamento di temperatura non può essere che temporaria,

E' il coefficiente d'elasticità longitudinale del ferro, il cui valore si può prendere di 20000000000 chilogrammi per metro quadrato,

∂ il coefficiente di dilatazione del ferro per un grado centigrado, il qual coefficiente può essere assunto di metri 0,0000122 per ogni metro,

t la temperatura per l'epoca in cui l'incavallatura si pone in opera e

t' la minima temperatura a cui sarà per trovarsi esposta, espresse in gradi centigradi,

 $\boldsymbol{\Omega}$ la superficie della sezione retta del tirante, espressa in metri quadrati,

si ha: che, abbassandosi la temperatura di t-t', tende a verificarsi nel tirante l'accorciamento proporzionale

che, non potendo avvenire quest'accorciamento, ne deriva un aumento di tensione che si può esprimere con

$$E'\Omega\delta(t-t');$$

che la totale tensione, la quale si verifica quando il tirante trovasi alla temperatura l' è

$$T' + E'\Omega \delta(t - t');$$

che l'equazione di stabilità, determinatrice della superficie della sezione retta del tirante, risulta

$$T' + E'\Omega \delta(t - t') = n' R' \Omega;$$

e che il valore di Ω vien dato dalla formola

$$\Omega = \frac{\Gamma'}{n'R' - E' \, \delta(t - \ell')}.$$

Il valore di Ω , dato dall'ultima formola, cresce col crescere della differenza t-t'. Segue da ciò che, esprimendo t' la minima temperatura annuale dipendente dalla località, pare conveniente, nell'intento di diminuire la differenza t-t', di porre in opera le armature in un'epoca dell'anno in cui la temperatura sia bassa. Se però osservasi che così facendo si viene a cadere nell'altro inconveniente di vedere i tiranti soverchiamente allentati nell'estate, riesce miglior partito di porle in opera ad una temperatura media, e generalmente ad una temperatura di 10 a 12 gradi centigradi.

Allorquando un'armatura deve essere posta in opera in un luogo riparato, ove cioè le variazioni di temperatura sono minori che all'aria libera, riesce generalmente inutile il tener conto dell'aumento di tensione che le variazioni di temperatura possono apportare, e si può ritenere che questo generalmente ha luogo in tutti quei casi in cui la differenza t-t' è minore di 15° .

Finalmente a dispensare che si tenga conto dell'aumento di tensione prodotto nei tiranti da un abbassamento di temperatura contribuiscono quelle disposizioni, mediante le quali alle estremità dei puntoni si lascia la libertà di scorrere e quindi di avvicinarsi o di allontanarsi, a seconda degli abbassamenti o degli accrescimenti di temperatura. Alcuni costruttori però, osservando che i tiranti di un'incavallatura non possono accorciarsi senza vincere la considerevole resistenza d'attrito, prodotta dalla pressione che essa esercita sugli appoggi, hanno manifestato l'avviso che queste disposizioni possano risultare insufficienti allo scopo, e che per conseguenza sia prudente consiglio di tener conto delle considerevoli variazioni di temperatura.

57. Tettoie con centine. — Nelle moderne costruzioni ed in quei casi nei quali è necessario superare grandi portate e conservare una considerevole altezza libera, ben di frequente si impiegano le coperture sostenute da centine, e quindi le tettoie con centine. Queste coperture riescono di grande vantaggio in molte circostanze, per sostituire la muratura nella costruzione di vôlte poste in condizioni eccezionali; ed assai bene si possono con esse imitare le vôlte a botte, e quelle anulari, le vôlte a bacino, quelle a padiglione e quelle a crociera.

Le centine, che possono essere di legno allorquando non devono superare grandi portate, si costruiscono di ferro in quei casi nei quali devono presentare grandi aperture e simultaneamente una leggerezza apparente maggiore di quella che si può attendere dall'impiego del legname. Si fanno anche centine di ghisa; il loro impiego però è assai limitato; non convengono pei grandi coperti; e dalla maggior parte dei costruttori si preferisce il ferro.

Le superficie superiori delle coperture sostenute da centine sono generalmente analoghe a quelle d'intrados delle vôlte murali che si potrebbero immaginare in sostituzione delle coperture medesime; le disposizioni, che si darebbero alle armature necessarie alla costruzione di queste vôlte (Lavori generali d'architettura civile, stradale ed idraulica, parte prima, capitolo VII, articolo III), sono pure quelle che convengono per le centine delle coperture. Nella parte superiore di queste coperture ben sovente esiste un lucernario coperto a vetri disposti su una o su più falde piane. Si costruiscono anche coperture a facce piane, sostenute da centine con timpani pieni od a traliccio, oppure armate di saette e di puntelli che servono di sostegno a puntoni rettilinei come quelli delle incavallature.

Molti sono i sistemi di centine per tettoie, ed i più comuni sono quelli che già vennero descritti nel citato volume sui lavori generali d'architettura civile, stradale ed idraulica, all'articolo III del capitolo VIII della prima parte. La curva direttrice di queste centine suol essere una mezza circonferenza di circolo, un arco di circolo, un arco a sesto acuto, e talvolta anche un arco parabolico o un arco ellittico; le loro estremità o sono fissate sugli appoggi, o pos-

sono prendere dei leggieri spostamenti; talvolta trovansi sottese da tiranti destinati a neutralizzare gli effetti della loro spinta orizzontale, tal'altra invece non vi sono tiranti e si assegnano ai piedritti tali dimensioni da poter essi resistere alle pressioni cui trovansi sottoposti, non che alle azioni delle spinte orizzontali. Quando le centine sono munite di tiranti destinati ad equilibrare le loro spinte orizzontali, si collocano esse su scorritoi o su rulli; ma quando non esistono tiranti e la loro ampiezza è abbastanza grande, si possono far riposare le loro estremità sopra imposte a ginocchio, affinchè le centine, libere di obbedire ai diversi sforzi che le sollecitano, non vengano a produrre dei nocivi effetti sui piedritti. Questo sistema d'impostare le centine riesce eminentemente utile, per lasciare che liberamente avvengano le deformazioni causate dai cangiamenti di temperatura.

Le coperture per tettoie con centine sono generalmente di quelle riconosciute più leggiere, di cui già si parlò nel numero 53; i pezzi longitudinali ed i pezzi di collegamento sono portati e sono uniti alle centine con disposizioni affatto analoghe a quelle che si adottano nelle tettoie con incavallature; e, per il calcolo di una delle dimensioni della sezione retta degli arcarecci, conviene procedere colle norme che vennero date nel numero 54.

58. Determinazione approssimativa della sezione retta e del peso di una centina - I calcoli per lo stabilimento delle centine suppongono noto il loro peso, mentre questo peso non può essere determinato con esattezza se non quando si è fissata la loro sezione retta. Dopo d'aver preso arbitrariamente un primo valore della sezione e d'averne dedotto il peso della centina, si fa questo entrare nei calcoli, si procede alla determinazione della sezione retta, e si riconosce se questa deve essere aumentata o diminuita. Qualora risulti una notevole differenza fra la sezione arbitrariamente assunta e quella dedotta dal calcolo, è necessario ripetere l'operazione e così continuare per tentativi, finchè l'indicata differenza risulta trascurabile. Per schivare, od almeno per abbreviare, questi tentativi, basta partire da un valore della sezione che sia assai prossimo a quello che definitivamente verrà adottato; ed ecco in qual modo suggerisce di procedere il signor ingegnere Edoardo Collignon nel suo ultimo pregevole lavoro, intitolato Cours de mécanique appliquée aux constructions.

Essendo

 Ω la superficie, supposta costante, della sezione retta della centina,

Φ l'angolo BOD (fig. 92) che la sezione retta dell'imposta fa colla sezione retta della chiave,

Q e V le reazioni orizzontale e verticale che l'appoggio esercita sulla sezione d'imposta A B, se nel punto E, in cui l'asse EF della centina incontra la detta sezione d'imposta, immaginasi condotta la normale EN a questa sezione, si ha: che gli angoli NEQ ed NEV sono rispettivamente Φ e 90° — Φ ; che la pressione la quale si verifica sulla sezione AB vien data da

$$Q\cos\Phi + V \sin\Phi$$
;

e che la pressione media sull'unità di superficie si esprime con

$$\frac{Q\cos\Phi + V\sin\Phi}{\Omega} \tag{1}.$$

Ora, rammentando quanto si è detto nel numero 168 del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni, la massima pressione riferita all'unità di superficie in una sezione qualunque di un solido inizialmente curvo risulta coll'aggiungere algebricamente due termini della forma $\frac{v_{\,\mu}}{\Gamma}$ e $\frac{\mathrm{T}}{\Omega}$, nei quali le lettere Ω ed I rappresentano rispettivamente la superficie della sezione retta che si considera ed il momento d'inerzia della stessa sezione, rispetto ad una parallela all'asse neutro, condotta pel suo centro di superficie; T e u la forza tangenziale comprimente ed il momento inflettente per l'indicata sezione retta; v la distanza della fibra maggiormente compressa dall'accennata parallela all'asse neutro. Osservando che l'influenza del termine $\frac{v\,\mu}{1}$ può essere ridotta quanto piccola si vuole col disporre convenientemente della forma e della sezione e lasciando inalterata la superficie Ω, si può, almeno provvisoriamente, ammettere che la centina sarà in buone condizioni di stabilità, facendo in modo che la pressione media data dall'espressione (1) sia una data frazione, i 2/3, per esempio, della pressione n'R' che si può far sopportare al materiale costituente la centina medesima, e quindi si può instituire l'equazione

$$\frac{2}{3}n''R'' = \frac{Q\cos\Phi + V\sin\Phi}{\Omega}$$
 (2)

in cui R" è il coefficiente di rottura per pressione ed n" il relativo coefficiente di stabilità.

Onde poter ricavare il valore di Ω dall'ultima equazione, è necessario conoscere la spinta orizzontale Q e la reazione verticale V. In quanto alla spinta Q si può essa approssimativamente dedurre dalla semplicissima formola (Resistenza dei materiali e stabilità delle costruzioni, num. 175).

$$Q = \frac{p c^2}{2m} \tag{3},$$

conveniente al caso d'un arco equilibrato di corda 2c e di monta m rispettivamente eguali alla corda ed alla monta dell'arco pel quale vuolsi trovare il valore di Ω , e caricato del peso p per ogni unità di lunghezza della sua corda.

Per quanto si riferisce al valore di V, esso consta: 1° del peso di mezzo arco che, indicando con

S la metà dello sviluppo dell'arco e con

II il peso dell'unità di volume del materiale di cui esso è formato, vale

$\Pi S\Omega$;

2° del peso di tutto ciò che la mezza centina permanentemente deve sopportare come arcarecci, tavolato o panconcelli, copertura, pezzi di collegamento ecc.; 5° del peso del sovraccarico massimo che sulla copertura si può verificare, per la parte che deve essere sopportata da mezza centina. Indicando con U la somma degli ultimi indicati due pesi, si ha che il valore di V vien dato da

$$V = \Pi S \Omega + U \tag{4};$$

e, rammentando che per l'arco equilibrato di corda 2c, di monta m e caricato del peso V uniformemente distribuito sulla sua semicorda si ha

$$pc = V = \Pi S \Omega + U$$
 (5),

l'equazione (2) diventa, quando in essa si pongano i valori di Q, di V e di pc dati dalle equazioni (3), (4) e (5),

$$\frac{2}{3}n''R'' = (\Pi S \Omega + \Pi) \frac{c \cos \Phi + 2m \sin \Phi}{2m \Omega}$$

Ricavando Ω da quest'equazione, risulta la formola

$$\Omega = U \frac{\frac{c\cos\Phi + 2m\sin\Phi}{2m}}{\frac{2}{3}n^{3}R^{3} - \Pi S \frac{c\cos\Phi + 2m\sin\Phi}{2m}}$$
(6),

la quale serve alla provvisoria determinazione della sezione retta Ω di una centina, e quindi del suo peso totale quando si moltiplichi il valore di Ω per il prodotto 2 S Π .

Un elemento che può contribuire ad aumentare la superficie Ω della sezione di una centina per copertura è la pressione esercitata dal vento. Se però osservasi che quest'azione è passaggiera, facilmente si comprende perchè viene essa trascurata da molti costruttori, i quali la considerano siccome una di quelle cause accidentali per cui s'introduce il coefficiente di stabilità nell'instituire le equazioni che servono a calcolare le dimensioni delle centine. Se poi se ne volesse tener conto, si potrebbe questo fare mediante i dati del numero 44; e per giungere allo scopo bisognerebbe fissarsi prima la direzione e la velocità del vento, ricavare dalla seconda tavola del citato numero la pressione corrispondente per ogni unità di superficie direttamente percossa, e quindi calcolare le reazioni orizzontale e verticale all'imposta della centina, supponendola solo sollecitata dall'azione del vento. Queste reazioni si dovrebbero aggiungere ai valori di Q e di V dati dalle equazioni (5) e (4) per avere due altri valori di queste reazioni, i quali sarebbero poi quelli da porsi nell'equazione (2) per dedurre l'equazione analoga alla (6).

59. Dimensioni delle centine il cui asse è un arco circolare.

— Queste centine si costruiscono generalmente con sezione retta costante e simmetrica rispetto alla orizzontale passante pel suo centro di superficie. Talvolta i loro estremi si fissano sopra solide ed immobili imposte; tal'altra invece si rilegano con un tirante orizzontale e si appoggiano sopra rulli o sopra scorritoi, affinchè non si trovino contrastati gli spostamenti orizzontali degli estremi stessi, a motivo delle dilatazioni e delle contrazioni causate dai cangiamenti di temperatura.

Il peso della copertura e di quanto accidentalmente su essa si può trovare, vien trasmesso alle centine mediante gli arcarecci, i quali trovansi generalmente a distanze eguali, misurate sulla superficie superiore di una centina. Segue da ciò, che non si va lungi dalla verità considerando le varie centine di una tettoia su pianta rettangolare siccome solidi caricati d'un peso uniformemente distribuito sui loro assi curvilinei. Questo peso, da esprimersi in chilogrammi e da riferirsi alla lunghezza di un metro, si ottiene: procurandosi in chilogrammi quel peso che nel precedente numero venne indicato colla lettera U; calcolando in metri lo sviluppo S della metà dell'asse di una centina; assumendo per Π il peso in chilogrammi del metro cubo del materiale costituente la centina; determinando in metri quadrati la superficie Ω colla formola (6) del precedente numero; trovando il valore del peso V mediante la formola (4) dello stesso numero; e finalmente facendo il quoziente $\frac{V}{S}$, il quale rappresenta evidentemente il peso q riferito all'unità di lunghezza dell'asse della centina che si considera. Trovato

l'unità di lunghezza dell'asse della centina che si considera. Trovato il peso q, prima d'incominciare i calcoli conviene distinguere se vuolsi costrurre una centina cogli estremi fissi, oppure una centina cogli estremi rilegati da un tirante.

Centina cogli estremi fissi. Essendo

r il raggio OD (fig. 92) dell'asse EDF della centina,

Φ l'arco di raggio eguale all'unità chiudente l'angolo EOD, corrispondente alla metà dell'asse della centina,

Q la reazione orizzontale dell'appoggio contro la sezione d'imposta AB, la qual reazione è eguale e contraria alla spinta che la centina esercita su ciascuno dei due appoggi,

per quanto si è dedotto nel numero 170 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, si ottiene il valore di Q mediante la formola

$$Q = q r \frac{9\Phi - 10\Phi \operatorname{sen}^{2}\Phi + 4\Phi^{2} \operatorname{sen}\Phi \cos\Phi - 9\operatorname{sen}\Phi \cos\Phi}{-2\Phi - 4\Phi \cos^{2}\Phi + b\operatorname{sen}\Phi \cos\Phi}$$
(1).

Trovato il valore di Q, se chiamansi

φ l'arco di raggio eguale all'unità, chiudente l'angolo MOD determinante una sezione retta qualunque GMH della centina e

 μ il momento inflettente per la detta sezione qualunque, si ha

$$\mu = q r^2 (\varphi \operatorname{sen} \varphi - \Phi \operatorname{sen} \Phi) + r (q r + Q) (\cos \varphi - \cos \Phi) \quad (2)$$

Questo valore di μ per la chiave dell'arco, ossia per ϕ = 0, prende il valore particolare μ_o dato da

$$\mu_o = -q r^2 \Phi \operatorname{sen} \Phi + r(q r + Q)(1 - \cos \Phi);$$

si annulla per l'imposta, ossia per $\phi = \Phi$; e si annulla pure per quel valore particolare ϕ' di ϕ il quale vien dato dall'equazione

$$q r^2 (\varphi' \operatorname{sen} \varphi' - \Phi \operatorname{sen} \Phi) + r (q r + Q) (\cos \varphi' - \cos \Phi) = 0.$$

La tensione T, che ha luogo in una sezione retta qualunque della centina, viene data dalla formola

$$T = -(q r \varphi \operatorname{sen} \varphi + Q \cos \varphi) \tag{3}.$$

Qualunque sia il valore dell'angolo φ compreso fra 0° e 90°, essa si conserva sempre negativa, e quindi in tutte le sezioni della centina le forze tangenziali producono una tensione negativa, ossia una pressione. Per la chiave, ossia per $\varphi = 0$, il valore di T ha il valore particolare T_o dato da

$$T_0 = -0$$
;

e per l'imposta, ossia per φ=Φ, risulta il valore particolare T, di T data da

$$T_i = -(q r \Phi \operatorname{sen} \Phi + Q \cos \Phi).$$

Lo sforzo di taglio N, per una sezione retta qualunque della centina, vien dato da

$$N = q r \varphi \cos \varphi - Q \sin \varphi \tag{4}.$$

Per $\varphi = 0$, ossia per la chiave, questo sforzo di taglio è nullo, e per l'imposta, ossia per $\varphi = \Phi$, acquista il valore particolare N_i dato da

$$N_i = q r \Phi \cos \Phi - Q \sin \Phi$$
.

In quanto alle equazioni di stabilità, da applicarsi per convenientemente determinare la sezione retta della centina, esse sono le due relative alla pressione ed allo scorrimento trasversale. La prima, per essere una quantità essenzialmente positiva, il prodotto n"R" del coefficiente di rottura per pressione R" pel relativo coefficiente di stabilità n", e per essere sempre negativo il valore di T, è

$$n''R'' = \pm \left(\frac{v'\mu}{\Gamma} \mp \frac{T}{\Omega}\right)$$
 (5),

dove si devono prendere i segni superiori per quelle sezioni per

cui il momento inflettente μ è positivo ed i segni inferiori per quelle altre per cui il detto momento inflettente è negativo. La seconda equazione di stabilità è

$$n^{\text{rv}} \mathbf{R}^{\text{rv}} = \pm \frac{\mathbf{N}}{\mathbf{O}'}$$
 (6),

dove, per essere essenzialmente positivo il prodotto del coefficiente di rottura per scorrimento trasversale R^{iv} pel relativo coefficiente di stabilità n^{iv} , il segno + vale per quelle sezioni per cui il valore di N è positivo ed il segno - per quelle altre per cui il valore di N è negativo.

Quando però la centina è di quelle a parete reticolata, l'equazione (6) non serve alla determinazione della superficie della sezione retta dei pezzi del traliccio, e con sufficiente approssimazione per la pratica si può applicare l'equazione

$$n R = \pm \frac{N}{m \omega \operatorname{sen} \alpha}$$
 (6 bis),

analoga a quella che si adotta per le travi rettilinee (Resistenza dei materiali e stabilità delle costruzioni, num. 200). Nell'ultima equazione R rappresenta il più piccolo dei due coefficienti di rottura per tensione e per pressione della materia di cui è formato il traliccio, ed n il relativo coefficiente di stabilità; m è il numero dei pezzi del traliccio tagliati da una sezione retta qualunque della centina, ω la superficie della sezione retta di un pezzo del traliccio, ed α l'angolo acuto misurante l'inclinazione dei diversi pezzi del traliccio coll'asse della centina. Per il doppio segno che trovasi nell'equazione (6^{bis}) vale quanto si è detto parlando dell'equazione (6).

Le formole (4), (2), (5) e (4), non che le equazioni (5) e (6) o (5) e (6^{bis}), sono quelle che servono a ben definire la superficie della sezione retta della centina. In quello che segue si ha l'applicazione al caso particolare di un arco in ferro con sezione a doppio T simmetrico, con parete reticolata, e composto (fig. 93) delle lamiere superiore ed inferiore L ed L', dei ferri d'angolo f ed f', delle due lamiere P e P' che trovansi strette fra i ferri d'angolo, dei pezzi D disposti a croce, e dei ferri R diretti normalmente all'asse dell'arco.

Supponendo che le tavole L ed L', che i ferri d'angolo f ed f' e che le lamiere P e P', indipendentemente dai pezzi D ed R, debbano

essere capaci di resistere alla flessione, la sezione retta della centina alla quale devesi applicare l'equazione di stabilità (5) si riduce a quella rappresentata nella figura 94. Fissata la larghezza AB che devesi assegnare a ciascuna delle due tavole, immediatamente risulta di quali dimensioni devono essere i ferri d'angolo, giacchè ciascuna delle due sporgenze di quelle su questi generalmente non può essere maggiore di metri 0,10. In quanto poi ai due pezzi di lamiera P e P', di tanto devono essi sortire dai ferri d'angolo, da riuscire facile e sicuro l'inchiodarvi i ferri R (fig. 93) non che i pezzi in croce D; ed il limite superiore della loro grossezza è dato dalla somma delle grossezze dei bracci dei ferri d'angolo fra i quali devono trovarsi serrati. Fissate le dimensioni delle sezioni rette dei ferri d'angolo f ed f' non che quelle delle lamiere P e P' e di più conoscendosi l'altezza $\overline{CD} = b$ (fig. 94) che la centina deve presentare fra una tavola e l'altra, riesce facile determinare la superficie Ω, quando suppongasi la centina costituita dai soli ferri d'angolo e dalle lamiere P e P', e trovare il momento d'inerzia I, della stessa superficie, per rapporto alla orizzontale x x' condotta pel punto O posto alla metà dell'altezza CD. Ottenute le due quantità Ω, ed I,, se chiamasi

a la larghezza AB di ciascuna tavola ed

y la grossezza BE,

la distanza v' e la superficie Ω da porsi nell'equazione (5) sono date dalle formole

$$v' = \frac{1}{2}b + y \tag{7}$$

$$\Omega = \Omega_1 + 2ay \tag{8},$$

e, per essere BE una lunghezza assai piccola in confronto dell'altezza DC, con sufficiente approssimazione per la pratica si ha

$$I' = I_4 + \frac{1}{2} a y b^2$$
 (9).

Trovati i valori di v', Ω ed I', impiegando i dati q, r e Φ , e ritenendo che sen Φ e cos Φ rappresentano rispettivamente il seno ed il coseno di quell'angolo la cui ampiezza è quella corrispondente al mezzo asse della centina, si calcola il valore di Q mediante la formola (1) e, attribuendo successivamente a φ i valori particolari

0, φ_4 , φ_2 , φ_3 , compresi fra 0° e Φ , in modo che le ampiezze degli archi corrispondenti crescano di 2 in 2 gradi o di 5 in 5 gradi, si calcolano colle formole (2) e (3) i corrispondenti valori μ_0 , μ_4 , μ_2 , μ_3 , di μ e μ e per ciascuno dei valori particolari μ e μ e μ e μ e μ e per ciascuno dei valori particolari μ e μ e μ e μ e μ e μ e spressioni μ e μ

y, ==	y2==	y3==	dotte sain sain sain sain sain sain sain sain
e de la companya de l			
UNITED BY	and in	desirate any	
Ţ.	T ₂	T _s	e Hi
$=\frac{1}{\ln a/a}$	= 1 1 = = = = = = = = = = = = = = = = =	" " " = = = = = = = = = = = = = = = = =	07
$T_1 =$	T ₂ =	T ₃ =	
M1=	/42	/43==	The same
=16	9-	P3=	
	$\mu_1 = T_1 = \frac{v' \mu_1}{l'} = \frac{v' \mu_1}{l'}$	$\mu_1 = T_1 = \frac{v' \mu_1}{l'} = \frac{v' \mu_2}{l'} = $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

I valori y_0 , y_1 , y_2 , y_3 , di y, che trovansi nell'ultima colonna del casellario e che si deducono dalla risoluzione delle equazioni di stabilità scritte nella penultima, sono generalmente differenti l'uno dall'altro, e bisogna adottare il maggiore, ossia quello che assegna maggiore superficie resistente alla sezione retta della centina.

Per determinare la superficie ω, da assegnarsi ai pezzi componenti

le croci ed indicati colle lettere D nella figura 93, conviene calcolare, mediante l'equazione (4), diversi valori particolari No, No, No, N₂, di N corrispondenti ai valori particolari 0, φ₁, φ₂, φ₂, di φ, e ricorrere quindi all'equazione (6bis) per ricavare altrettanti valori $\omega_0, \ \omega_4, \ \omega_9, \ \omega_3, \ \dots$ di ω . Trattandosi del caso particolare in cui il traliccio è unicamente costituito da croci, si ha m=2. Supponendo che AD e BC (fig. 95) siano gli assi dei due pezzi di una stessa croce, si può assumere per valore dell'angolo a l'angolo acuto AEF che la AD fa colla retta FG condotta per E perpendicolarmente ad OE, il qual angolo facilmente si trova come segue. Dal triangolo COB, in cui sono noti i due lati OC ed OB e l'angolo COB, si deduce l'angolo OBC; allora, per essere OAD=OBC, si conoscono nel quadrilatero OAEB tre angoli e quindi riesce facile calcolare il quarto AEB, togliendo da 360° la somma degli altri tre; sottraendo poi da 180° l'angolo AEB e prendendo la metà della differenza, si ottiene l'angolo AEF, da prendersi siccome rappresentante l'angolo α da porsi nella formola (6bis). I principali risultamenti del calcolo generalmente s'inscrivono in un casellario a quattro colonne, come quello di cui vien dato il modello.

ANGOLI P	SFORZI di taglio N	EQUAZIONI DI STABILITÀ	VALORI dell'incognita
90=0	N ₀ =	the second participation of the second	ω ₀ =
φ ₁ =	N ₁ =	de comprese de la com	$\omega_1 =$
92 =	N ₂ =	THE RESIDENCE OF THE	ω ₂ =
93 =	N ₃ =	red with anyther an	ω ₃ =
rollib: wan	perometrinis	na administration of the	per estimate

I valori particolari ω_0 , ω_4 , ω_2 , ω_3 , di ω , che si pongono nell'ultima colonna del casellario, dopo averli dedotti dalle equazioni

di stabilità scritte nella penultima, sono generalmente differenti l'uno dall'altro; ed il maggiore è quello che devesi adottare.

I valori particolari da darsi a φ , per trovare altrettanti valori particolari di μ , di T e di N, ben di frequente si assumono in modo da determinare essi le sezioni corrispondenti agli incontri degli assi dei pezzi D (fig. 93), formanti le croci o quelle corrispondenti agli assi dei ferri R diretti normalmente all'intrados della centina. I valori di n'' ed n'', come pure quelli di n'' ed n'' si assumono come già si è indicato nel numero 54 parlando degli arcarecci in ferro.

Dividendo il doppio della superficie della sezione fatta in uno dei pezzi componenti le croci da un piano normale all'asse della centina per l'altezza FG (fig. 94) della centina stessa misurata fra le due lamiere P e P', ottiensi il limite inferiore della grossezza che suolsi assegnare ai ferri R; e si può ritenere che il limite superiore di questa grossezza corrisponda a quella assegnata ai pezzi componenti le croci.

Quasi sempre nelle centine di portata un po' considerevole i pezzi D (fig. 93) ed i pezzi R hanno sezione a T, e questo si fa nell'intento di rendere più rigido e di aumentare la resistenza del sistema.

Alcuni costruttori usano servirsi dei diversi valori dell'incognita y ed o, per ripartire la materia in modo che la centina si trovi quasi nelle condizioni di un solido di eguale resistenza. Se però osservasi (Resistenza dei materiali e stabilità delle costruzioni, num. 470) che l'equazione (1) determinatrice della spinta orizzontale Q venne dedotta eguagliando a zero l'espressione dello spostamento orizzontale del punto d'imposta dell'asse della centina, la quale espressione si trovò supponendo costante il momento di flessibilità e, ossia il prodotto del coefficiente di elasticità E pel momento d'inerzia I', agevolmente si comprende non potersi teoricamente giustificare l'indicato metodo di ottenere una centina posta nelle condizioni di un solido d'eguale resistenza, e tutto al più potersi esso accettare siccome un metodo pratico, i limiti della cui approssimazione sono ancora incogniti.

Centina cogli estremi riuniti da un tirante orizzontale. Le centine fissate ai loro estremi esercitano sugli appoggi, e quindi sui piedritti che le sopportano, potenti spinte orizzontali, le quali tendono a compromettere la loro stabilità ed a romperli per scorrimento o per rovesciamento. Per impedire che questo avvenga, senza assegnare dimensioni troppo grandi ai piedritti, usasi generalmente di riunire le estremità delle centine mediante tiranti orizzontali. Ottiensi così, che la spinta orizzontale che ciascuna centina esercite-

rebbe sui piedritti si risolve in una tensione che si verifica nel corrispondente tirante, e che gli appoggi non hanno più da sopportare che azioni verticali. Oltre alla tensione provocata nel tirante in quanto esso contribuisce ad impedire l'azione della spinta sui piedritti, può il medesimo trovarsi esposto ad una tensione assai maggiore, dipendentemente dagli abbassamenti di temperatura.

Segue da ciò, che la formola determinatrice della superficie A della sezione retta del tirante orizzontale di una centina, quando questo tirante è destinato ad impedire l'azione della spinta orizzontale sui piedritti, è

$$\mathbf{A} = \frac{\mathbf{Q}}{\mathbf{n}'\mathbf{R}' - \mathbf{E}'\delta(t - t')},$$

nella quale n', R', E', δ , t e t' hanno i significati che a queste lettere già vennero dati nel numero 56, e dove Q è la spinta orizzontale della centina da determinarsi colla formola (1) del presente numero.

Se osservasi che il tirante sotto l'azione della tensione Q indubitatamente subisce un certo allungamento, riesce agevole il comprendere come la citata formola (1), dedotta nell'ipotesi che sia nullo lo spostamento orizzontale dell'estremo inferiore della centina (Resistenza dei materiali e stabilità delle costruzioni, num. 170), dovrebbe subire una lieve modificazione, e come dovrebbe essere dedotta nell'ipotesi che il detto spostamento sia eguale all'allungamento corrispondente alla metà della lunghezza del tirante. Questa modificazione però, a motivo del piccolo allungamento che subisce il tirante, non può produrre apprezzabili variazioni nei risultamenti finali, per cui nella pratica conviene attenersi al metodo indicato per la deduzione di Q e di A, il qual metodo conduce generalmente ad operare in favore anzichè in danno della stabilità.

Una volta determinata la spinta orizzontale Q e la superficie A della sezione retta del tirante, si procede alla determinazione delle dimensioni dei diversi pezzi della centina, precisamente come se essa avesse i suoi estremi fissi.

Essendo 2c la distanza fra centro e centro delle due sezioni d'imposta, nell'ipotesi che il tirante non subisca allungamento sotto l'azione della tensione Q, appena la centina viene posta in opera questa distanza aumenta della quantità l, data da

$$l = \frac{2Qc}{E'A}$$
,

e quindi la distanza 2C, fra centro e centro delle due sezioni d'imposta, appena la centina trovasi in opera ad una media temperatura t, risulta dalla formola

$$2C = 2c + l$$
.

Verificandosi la minima temperatura t', il valore di 2C si riduce ad un valore minore 2C', dato da

$$2C' = (2c+l)[1-\delta(t-t')];$$

e, verificandosi la massima temperatura t", la lunghezza 2 C s'accresce e diventa 2 C", la quale si può ottenere colla formola

$$2C'' = (2c+l)[1+\delta(t''-t)].$$

Se ora si indica con i la lunghezza di ciascuna delle due imposte della centina, la distanza $\overline{AA'}$ (fig.~96) fra i due estremi vicini A ed A' degli scorritoi d'imposta non deve essere maggiore di

$$2C'-i;$$

la distanza BB' fra i due estremi più lontani B e B' non deve essere minore di

$$2C'' + i;$$

la lunghezza complessiva dei due scorritoi deve essere maggiore di

$$2(C''-C'+i);$$

e la lunghezza L di ciascun scorritoio non può essere minore di quella data dalla formola

$$L=C''-C'+i$$
.

Il metodo tenuto per dedurre la minima lunghezza da darsi a ciascuno degli scorritoi d'imposta, per essersi trascurati gli effetti della temperatura sulla centina e l'influenza delle variazioni di lunghezza del tirante sul valore della sua tensione Q, conduce a risultamenti che, se non si possono ritenere come perfettamente esatti, sono però abbastanza approssimati per le pratiche applicazioni alle quali si riferiscono.

60. Tavola numerica per la determinazione della spinta orizzontale di una centina con asse circolare e caricata d'un peso uniformemente distribuito sulla sua lunghezza. — Se chiamasi V il peso sopportato da mezza centina e se alle lettere $q, r, \Phi \in \mathbb{Q}$ si conservano i significati che loro vennero dati nel precedente numero, si ha

$$\mathbf{V} = q \, r \, \Phi \tag{1};$$

e, ponendo

$$\frac{9 - 10 \operatorname{sen}^{2} \Phi + 4 \Phi \operatorname{sen} \Phi \cos \Phi - \frac{9 \operatorname{sen} \Phi \cos \Phi}{\Phi}}{-2 \Phi - 4 \Phi \cos^{2} \Phi + 6 \operatorname{sen} \Phi \cos \Phi} = K \quad (2),$$

risulta

$$Q = V K \tag{3}.$$

Se adunque si danno all'angolo Φ diversi valori compresi fra 0° e 90°, se trovansi i valori corrispondenti di K mediante la formola (2), e se in una tavola si marcano le ampiezze considerate, le lunghezze degli archi di raggio eguale all'unità che ad esse si riferiscono ed i trovati valori di K, si ha in questa tavola un mezzo facile per il calcolo della spinta Q, applicando le semplicissime formole (1) e (3).

Nell'intento di far comprendere l'uso e l'utilità delle tavole di questo genere, se ne riporta una, tratta da un lavoro sulle tettoie con centine metalliche, che l'ingegnere E. Mathieu fece pubblicare in uno dei giornali dell'ingegnere C. A. Oppermann (Nouvelles Annales de la construction, anno 1864, pag. 155), e calcolata per angoli Φ con ampiezze variabili di 5° in 5° da 10° fino a 90°.

AMPIEZZA	LUNGHEZZA	
dell'arco	Φ	VALORE
Φ	dell'arco di raggio eguale all'unità	del coefficiente
corrispondente	chiudente l'angolo	
alla metà dell'asse della centina	che corrisponde alla metà dell'asse della centina	K
10-	0.4545	F C F 7
100	0,17453	5,657
15	0,26180	3,772
20	0,34907	2,798
25	0,43633	2,208
30	0,52360	1,809
35	0,61087	1,518
40	0,69813	1,298
45	0,78540	1,126
50	0,87266	0,976
55	0,95993	0,893
60	1,04719	0,751
65	1,13446	0,658
70	1,22173	0,577
75	1,30899	0,504
80	1,39626	0,437
85	1,48353	0,376
90	1,57079	0,319

Supponendo ora che debbasi costrurre una centina, col suo asse circolare di raggio 10 metri e di ampiezza 100°, destinata a sopportare un peso di 600 chilogrammi per ogni metro del detto asse, osservasi: che l'ampiezza corrispondente all'arco Φ è di 50°; che, cercando nella prima colonna della tavola l'angolo di 50°, trovasi nella seconda colonna e sulla stessa linea orizzontale la lunghezza dell'arco Φ di raggio eguale all'unità, la qual lunghezza è di metri 0,87266; che il peso V, da calcolarsi colla formola (1), vien dato da

$$V = 600 \times 10 \times 0.87266 = 5235^{cg}, 96$$
;

che il coefficiente K è il numero che trovasi nella terza colonna della tavola sulla linea orizzontale corrispondente a 50°, ossia 0,976; e finalmente che la domandata spinta orizzontale, da ottenersi col porre nell'equazione (3) i trovati valori di V e di K, viene data da

$$Q = 5235,96 \times 0,976 = 5110^{c_g},29.$$

Quando l'ampiezza dell'arco Φ non è una di quelle registrate nella tavola, basta nella pratica di trovare il valore del coefficiente K mediante una semplice interpolazione. Così, se supponesi che l'ampiezza dell'arco Φ sia di 48° 51', o applicando il teorema della proporzionalità delle lunghezze degli archi alle loro ampiezze, o coll'uso delle tavole che danno la lunghezza degli archi circolari di raggio eguale all'unità (Geometria pratica applicata all'arte del costruttore, num. 20), s'incomincia dall'ottenere la lunghezza in metri dell'arco Φ, la quale lunghezza viene data da

$$\Phi = 0^{m},84648.$$

Fatto questo, si osservi: che l'angolo di 48° 31' è compreso fra i due angoli di 45° e di 50°, i quali trovansi nella tavola ed a cui corrispondono le lunghezze Φ' e Φ'' date rispettivamente da

$$\Phi' = 0,78540$$

$$\Phi'' = 0,87266$$
;

che pei detti angoli di 45° e di 50° il coefficiente K ha i valori particolari K' e K" dati rispettivamente da

$$K' = 1,126$$

$$K''=0,976;$$

che il coefficiente K per l'angolo di 48° 31' deve essere minore di quello che corrisponde all'angolo di 45°; e che finalmente, con sufficiente approssimazione per la pratica, si può assumere

$$K = 1,126 - \frac{(0.84648 - 0.78540)(1.126 - 0.976)}{0.87266 - 0.78540} = 1,021.$$

Trovati i valori di Φ e di K, si ottiene quello di V, mediante la formola (1), e quindi si calcola quello di Q colla formola (3).

61. Cenno di altri metodi che si possono seguire nella determinazione delle dimensioni delle centine. — Una volta determinate le reazioni verticale ed orizzontale che si verificano in ciascun estremo di una centina, la prima delle quali vale il peso sopportato da mezza centina, mentre la seconda si può ottenere colla formola (1) del numero 59, oppure col metodo che venne indicato nel precedente numero, finchè trattasi d'una centina caricata d'un peso uniformemente distribuito sulla lunghezza del suo asse, si può trarre partito di procedimenti pratici per dedurre i valori delle forze T ed N, i quali corrispondono a sezioni rette qualunque. Ottenuti i valori di

T e di N, conviene procedere al calcolo dei momenti inflettenti u, i quali vengono dati dalla formola (2) del citato numero 59, se trattasi d'una centina caricata d'un peso uniformemente distribuito sul suo asse. Finalmente, descrivendo l'asse dell'arco con sopra indicati i punti determinanti le varie sezioni per cui si trovarono i valori di T. N e u, riesce facile la costruzione di tre curve tali che le parti di normali all'indicato asse, limitate da questo e da quelle, rappresentino rispettivamente le tensioni T, gli sforzi di taglio N ed i momenti inflettenti µ per quelle sezioni rette, alle quali esse parti delle accennate normali si riferiscono. Nel costrurre queste curve, importa tener conto dei segni dei valori di T, di N e di u che servono a determinarle, e per questo può convenire di portare al di sopra dell'asse della centina i valori positivi delle accennate tre quantità ed al disotto i valori negativi. Queste curve si prestano a dare una rappresentazione espressiva del modo con cui variano, passando da una sezione all'altra della centina, i valori delle tensioni T, degli sforzi di taglio N e dei momenti inflettenti u; pongono sott'occhio per quali sezioni questi valori sono positivi, per quali sono negativi, per quali sono nulli, e per quali sono massimi; e finalmente rivelano quali sono le parti del sistema che più conviene rinforzare e quale può essere la ripartizione più giudiziosa e più utile della materia.

Un metodo pratico, il quale serve principalmente a verificare se le dimensioni di una centina, della quale si ha il progetto, sono sufficienti per resistere ai diversi sforzi che su essa operano, è quello della curva delle pressioni. Questo metodo si applica trovando prima le reazioni verticale ed orizzontale di ciascun appoggio, che si suppongono applicate al centro dell'imposta; cercando i punti d'applicazione delle pressioni in diverse sezioni rette della centina; determinando per queste sezioni la massima tensione e la massima pressione riferite all'unità di superficie; e verificando se queste sono minori o tutto al più eguali ai corrispondenti coefficienti di rottura, moltiplicati pei relativi coefficienti di stabilità.

Gli assi delle centine per tettoie sono generalmente archi circolari. Queste curve però non sono le sole che il costruttore può impiegare nel dare il progetto delle indicate centine, e può anche imporsi la condizione che esse si trovino nelle condizioni di archi equilibrati. In questo caso si devono applicare le teorie che vennero svolte nel capitolo X del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni per dedurre la spinta orizzontale, la curva secondo la quale deve essere foggiato l'asse di una centina e le pressioni T che si verificano in diverse sue sezioni rette, le quali pressioni, ripartendosi uniformemente sulle sezioni a cui si riferiscono, servono a calcolare le aree che a queste conviene assegnare.

62. Piedritti delle tettoie. — I piedritti delle tettoie con incavallature, non che quelli delle tettoie con centine, aventi i loro estremi rilegati da tiranti orizzontali, si considerano generalmente siccome sottoposti ad un unico sforzo di pressione, la quale per ciascun appoggio viene data dal peso insistente a mezza incavallatura o a mezza centina.

Per le incavallature metalliche però e per le centine alle loro estremità rilegate da tiranti orizzontali, conviene osservare: che il dilatarsi dei tiranti rende liberi gli estremi da essi rilegati di spostarsi; che questi spostamenti possono solo avvenire quando già trovansi vinte certe resistenze d'attrito provenienti dalle pressioni verticali esercitate dagli estremi delle incavallature o delle centine sugli appoggi. Segue da ciò che, chiamando

P la pressione, in chilogrammi, esercitata sugli appoggi da un incavallatura o da una centina cogli estremi rilegati da un tirante orizzontale.

f un coefficiente d'attrito,

Q il valore in chilogrammi della spinta orizzontale prodotta contro ciascun piedritto, si ha

$$Q=fP$$
,

dove il coefficiente d'attrito f si deve assumere di circa 0,50 o di circa 0,05, secondo che l'incavallatura o la centina trovasi posta in opera sopra scorritoi o sopra rulli.

Quando trattasi di piedritti sopportanti centine, aventi le loro estremità fisse, trovansi essi non solo sotto l'azione di una pressione verticale, ma anche sotto l'azione di una considerevole spinta orizzontale, che nei casi ordinarii della pratica facilmente si determina, come si è detto nei numeri 170, 171, 172 e 175 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni.

Avendosi l'altezza e conoscendosi le azioni orizzontale e verticale sotto cui trovasi il piedritto di una tettoia, il quale può essere di pietra, di muratura, di legno, di ghisa o di ferro, riesce facile la determinazione della sua sezione orizzontale, affinchè trovisi in buone condizioni di stabilità per rapporto alla resistenza alla pressione, allo scorrimento ed al rovesciamento.

65. Collocamento in opera delle incavallature e delle centine

per tettoie. — Queste armature per intiero si costruiscono nelle officine, ed i diversi ferri coi loro accessorii si presentano nel sito che devono occupare per accertarsi della buona loro esecuzione. Dopo si trasportano tutti i pezzi al cantiere della tettoia per la quale devono essere posti in opera.

Le incavallature e le centine di piccola portata si compongono per intiero sul suolo, e si pongono in opera l'una dopo l'altra, mediante apposite macchine destinate a sollevare pesi. Per impedire qualsiasi deformazione, si serra ciascuna di esse fra due tavoloni posti a circa i due terzi della sua altezza; e l'operazione dell'innalzamento incomincia generalmente per una estremità della tettoia, dove sovente esiste un muro il quale permette di fissare quegli arcarecci che devono dar principio al collegamento delle diverse armature.

Le incavallature e le centine per tettoie di grande portata generalmente si pongono in opera mediante un ponte di servizio scorrevole su più binarii di rotaie. In questo caso è inutile di comporre per intiero le armature. Per ogni armatura da porsi in opera si fa venire il ponte di servizio nel sito conveniente ad ottenere che il solo sollevamento delle diverse parti dell'armatura stessa, accompagnato da qualche semplice manovra, permetta di averle in tali posizioni che gli operai, stando su appositi tavolati stabiliti a convenienti altezze, facilmente possano operare le loro unioni, e quindi il definitivo collocamento dell'armatura al suo posto. Le macchine, che generalmente s'impiegano per innalzare le diverse parti delle incavallature o delle centine, non che gli arcarecci ed i pezzi di collegamento, sono generalmente verricelli stabiliti su un palco il quale fa parte del ponte di servizio scorrevole, e le funi che servono ad operare l'innalzamento vanno a passare su puleggie fisse, che trovansi alla sommità di ritti sorgenti su una delle fronti del ponte scorrevole. Questa fronte, considerata per rapporto al moto d'avanzamento che si deve dare al ponte di servizio per farlo venire nelle successive posizioni che ad esso conviene dare, può essere quella anteriore o quella posteriore. Nel primo caso i detti ritti devono essere mobili, onde poterli abbassare o togliere quando, trovandosi a posto un'incavallatura, si deve far andar innanzi il ponte affinchè possa servire al posamento dell'incavallatura successiva; nel secondo caso invece può convenire un ponte di servizio coi ritti fissi.

The state of the s

ARTICOLO II.

Solai.

64. Nozioni generali sui solai. — I solai si impiegano sovente nelle costruzioni civili per dividerle orizzontalmente a diverse altezze, e le travi che entrano nella loro composizione possono essere di legno o di ferro. I solai con travi di ghisa, che vennero usati quando era ancora difficile il lavoro dei grossi ferri al laminatoio, sono al giorno d'oggi quasi totalmente in disuso; e, la poca economia in confronto a quelli con travi di ferro, congiunta a minori guarentigie di stabilità, sono le principali cause della quasi totale loro proscrizione nelle costruzioni civili.

L'abbondanza del legno e del ferro, ed il costo di questi materiali, determinano generalmente in ogni località se convengano i solai con travi di legno o quelli con travi di ferro. Se però si vogliono solai incombustibili, di piccola altezza, e molto resistenti, senza apportare sensibile indebolimento ai muri che li sopportano, è necessario ricorrere ai solai con travi di ferro.

Nella costruzione dei solai, per quanto si può, bisogna diminuire la mano d'opera, adottando nelle unioni disposizioni semplici e di facile esecuzione. La materia deve essere impiegata nelle migliori condizioni di resistenza col minor peso possibile, la qual cosa assai bene si ottiene nei solai con travi di ferro, aventi sezione a doppio T, o sezione ad U capovolto, allargantesi in basso, quale venne proposta dal signor Zorès. Nelle abitazioni bisogna procurare di ridurre il minimo possibile l'inconveniente della sonorità e delle vibrazioni; ed il collocamento in opera delle travi nei muri deve essere fatto in modo da contribuire a mantenerli uniti ed a ben concatenarli.

Per quanto spetta alla struttura dei solai, possono valere le nozioni che vennero date nell'articolo II del capitolo IX del volume sui lavori generali d'architettura civile, stradale ed idraulica; e quanto si è detto nei numeri 287 e 297 dello stesso volume è sufficiente a far comprendere come si devono porre in opera le diverse travi che entrano nella loro composizione.

65. Carichi permanente ed accidentale gravitanti sui solai.

— Il carico permanente di un solaio consta del peso di tutte le travi formanti la sua parte resistente, del peso del tavolato che su queste travi generalmente si trova, del peso di quello strato di

materia che costituisce il pavimento, del peso del riempimento che sovente si pone nell'altezza del solaio per diminuire l'inconveniente della sonorità, e finalmente del peso del soffitto col quale ben di frequente si ricoprono le parti inferiori del solaio, onde togliere la vista dei diversi membri di cui esso si compone. Conoscendosi i materiali costituenti le diverse travi, l'essenza dei legnami formanti il tavolato, la natura del pavimento sovrastante al solaio, le sostanze di cui constano il riempimento ed il soffitto, pei numerosi dati che già vennero riportati in quest'opera sull'arte di fabbricare sui pesi dell'unità di volume dei legnami, del ferro, delle malte, dei laterizii e delle murature, riesce facile ottenere il peso delle diverse parti che concorrono a formare il carico permanente di un solaio qualunque e tenerne conto nel calcolo delle dimensioni delle sue parti principali.

Per quanto spetta al carico accidentale, si deve esso desumere dalla particolare destinazione del solaio a cui questo carico si riferisce. Per le camere delle ordinarie fabbriche d'abitazione il massimo carico accidentale si può ragguagliare a 520 chilogrammi per ogni metro quadrato del loro pavimento; per le sale in cui possono aver luogo numerose adunanze è prudente il portarlo a 480 chilogrammi; e pei magazzini importa aver riguardo al peso massimo di cui possono essere caricati i loro pavimenti. Nei granai si può ritenere che la massima altezza del grano possa essere di metri 1,50, e si può fissare di circa 1150 chilogrammi il carico corrispondente ad un metro quadrato di pavimento.

66. Dimensioni delle principali parti di un solaio. — Le tavole costituenti i tavolati, che generalmente trovansi sulle travature dei solai, i travicelli e le travi costituenti le travature, sono le parti delle quali conviene calcolare le dimensioni nel dare il progetto di un solaio qualunque.

Tanto le tavole quanto i travicelli e le travi ora indicate sono solidi prismatici orizzontalmente disposti, aventi sezioni rette simmetriche rispetto alle verticali passanti pei loro centri di superficie e caricati di pesi che, nella generalità dei casi, si possono considerare come uniformemente distribuiti sulla loro lunghezza. Segue da ciò che, per essere il coefficiente di rottura per pressione minore del coefficiente di rottura per tensione nei legnami che generalmente si impiegano nella formazione di tavolati e di travature per solai, e per potersi assumere di egual valore i detti coefficienti di rottura pel ferro, le equazioni di stabilità atte al calcolo delle dimensioni delle principali parti dei solai sono

$$n'' R'' = \frac{v' \mu_{\rm m}}{\Gamma}$$

$$n^{\rm rv} R^{\rm rv} = \frac{N_{\rm m}}{\Omega}$$
(1).

In quest'equazione

 $\mu_{\rm m}$ rappresenta il valore assoluto del massimo momento inflettente pel solido che si considera,

N_m il valore assoluto del massimo sforzo di taglio,

I' il momento d'inerzia della sua sezione retta, rispetto alla orizzontale che passa pel suo centro di superficie,

v' la distanza della detta orizzontale dal punto del perimetro della sezione retta che maggiormente si scosta dalla stessa orizzontale ed

n"R" il prodotto del coefficiente di rottura per pressione R" pel relativo coefficiente di stabilità,

nº Rº il prodotto del coefficiente di rottura per scorrimento trasversale Rº pel relativo coefficiente di stabilità.

Trattandosi di legnami il valore di n" si prende non maggiore di 1/10 ed il valore di R" si assume come risulta dalla tabella che venne data nel numero 22. Per quanto si riferisce al valore di R", non si hanno dati sicuri, per cui, quando è quistione di legnami, usano i costruttori tralasciare l'applicazione della seconda della formola (1), siccome quella che non può condurre che a risultamenti incerti e quasi sempre inutili, giacchè nei solidi prismatici di legno sottoposti a flessione è generalmente più facile la rottura per compressione anzichè quella per scorrimento trasversale. Trattandosi poi di ferro, si dà generalmente ad n" e ad n" un valore compreso fra 1/6 ed 1/5, ad R" un valore compreso fra 50 e 36 chilogrammi per millimetro quadrato, e ad R" un valore variabile fra 24 e 29 chilogrammi per millimetro quadrato.

Nell'intento di ben far comprendere quale sia il procedimento da tenersi nel calcolo delle dimensioni delle principali parti di un solaio, suppongasi di doverne costrurre uno sopra un'area rettangolare, il quale sia essenzialmente costituito delle travi principali in ferro T (fig. 97) e delle traverse t aggrappate alle loro tavole inferiori. Normalmente alle travi principali T vi siano i travicelli di legno A sui quali trovasi posto in opera il tavolato t'; il riempimento, a sostenere il quale concorrono le spranghe s, sia fatto

mediante gesso e mediante calcinacci; e le travi principali T, disposte nel senso della minore dimensione dell'area rettangolare alla quale il solaio insiste, si trovino ben incastrate alle loro estre-

mità nelle muraglie che le sopportano.

Incominciando dalle tavole costituenti il tavolato t', si opera in favore della stabilità supponendo che ciascuna di esse sia tagliata in corrispondenza del mezzo di due travicelli successivi A ed A' (fig. 98) e considerandola siccome un solido prismatico orizzontalmente collocato su due appoggi C e D, distanti fra loro come gli assi dei due travicelli A ed A'. Se adunque chiamansi

2a la distanza orizzontale CD espressa in metri,

p il peso in chilogrammi insistente al tavolato su un metro quadrato della sua superficie,

b la spessezza del tavolato espressa in metri, e se considerasi la parte di questo tavolato lunga \overline{CD} colla larghezza di 1 metro nel senso parallelo agli assi dei due travicelli A ed A', si ha

$$v' = \frac{1}{2}b$$
,
 $l' = \frac{1}{12}b^3$,
 $\mu_m = \frac{1}{2}pa^2$,

e quindi l'equazione (1) diventa

$$n''R'' = \frac{3pa^2}{b^2}$$
 (2).

Quest'equazione, quando si conosca la spessezza b che hanno le tavole da impiegarsi nella costruzione del tavolato, permette di ottenere la semi-distanza a e quindi l'intiera distanza 2a alla quale conviene porre i travicelli A ed A'; viceversa, essendosi preventivamente stabilita questa distanza, si può trovare la spessezza b. Il valore di R'' da porsi nell'ultima equazione è quello conveniente al legname costituente il tavolato, riferito al metro quadrato, ed il valore di n'' non deve essere maggiore di 1/10.

Aggiungendo al peso p quello corrispondente ad un metro quadrato di tavolato e moltiplicando questo peso per la distanza fra

asse ed asse di due travicelli successivi A ed A' (fig. 99), si ha nel prodotto, ed in chilogrammi, il peso p' sopportato dall'unità di lunghezza dei travicelli. Ciascuno di questi travicelli trovasi orizzontalmente collocato su più travi principali, e, per schivare i calcoli lunghi che convengono ai travicelli così disposti, usasi nella pratica operare in favore della stabilità, col supporre ciascun travicello tagliato trasversalmente in corrispondenza degli assi di due travi principali T e T' in E ed F. Allora, chiamando

2 a' la distanza orizzontale EF espressa in metri,

b' la dimensione verticale e

 c^{\prime} la dimensione orizzontale della sezione retta di un travicello, pure espresse in metri , si ha

$$v' = \frac{1}{2}b'$$
 $1' = \frac{1}{12}c'b'^3$
 $\mu_m = \frac{1}{2}p'a'^2$,

e l'equazione (1) diventa

$$n'' R'' = \frac{3p'a'^2}{c'b'^2}$$
 (3).

Quest'equazione permette di ricavare una delle tre quantità a', b' e c' quando si conoscono le altre due. Il valore di R'' da porsi nell'ultima equazione è quello che conviene al legname costituente i travicelli, riferito al metro quadrato; il valore di n'' non deve essere maggiore di 1/10.

Venendo alle traverse di ferro t, devono esse presentare tali dimensioni da essere capaci di sostenere il peso del riempimento, posto fra due travi principali T (fig. 97). Ora, anche queste traverse si possono considerare come solidi rettilinei orizzontalmente disposti e caricati d'un peso, il quale, se non è esattamente distribuito con uniformità sulla sua lunghezza, tale però si può supporre nelle pratiche applicazioni. Segue da ciò che, essendo

2 a' la distanza fra asse ed asse di due travi principali, se chiamansi

b" la dimensione verticale e

c" la dimensione orizzontale della loro sezione retta, espresse in metri,

p" il peso in chilogrammi corrispondente alla unità di lunghezza di traversa, il qual peso si può assumere siccome rappresentato dal quoziente che ottiensi dividendo il peso totale del prisma di riempimento compreso fra i due piani verticali passanti pel mezzo dei due intervalli che esistono fra tre traverse successive per la lunghezza 2 a',

risulta

$$v' = \frac{1}{2}b''$$
 $\Omega = b'' c''$
 $I' = \frac{1}{12}c'' b''^{3}$
 $\mu_{m} = \frac{1}{2}p'' a'^{2}$
 $N_{m} = p'' a'$

e quindi, sostituendo nelle equazioni (1), si ha

$$n'' R'' = \frac{3 p'' a'^{2}}{c'' b''^{2}}$$

$$n'' R'' = \frac{p'' a'}{c'' b''}$$
(4).

Mediante queste equazioni, quando in esse si pongono per R^n e per R^n il coefficiente di rottura per pressione e per scorrimento trasversale del ferro, riferiti al metro quadrato, e per n^n ed n^n i relativi coefficienti di stabilità, variabili fra 1/6 ed 1/5, si possono ricavare due diversi valori di una delle due dimensioni n^n e n^n quando si conosce l'altra, ed il maggiore dei due è quello da adottarsi.

Venendo ora a considerare una delle travi principali T (fig. 97), si può essa ritenere siccome un solido prismatico, orizzontalmente disposto, collocato su due appoggi, incastrato alle sue due estremità e sollecitato, per ogni unità della sua lunghezza, d'un peso p''' uniformemente distribuito. Questo peso insiste ad un rettan-

golo lungo 1 metro nel senso dell'asse di una trave principale e largo 2a' nel senso normale al detto asse; comprende il massimo carico accidentale che vi può essere sul tavolato; il peso del tavolato, quello dei travicelli, delle traverse e del riempimento; e finalmente il peso proprio di una trave principale, il qual peso viene generalmente fissato per falsa posizione. Trovato in chilogrammi il peso p''' riferito ad 1 metro di lunghezza di una trave principale, se supponesi che ciascuna di esse debba presentare una sezione a doppio T simmetrico (fig. 84) e se, prendendo il metro per unità di lunghezza, chiamansi

2a''' la lunghezza libera di una trave principale, b''' l'altezza $\overline{C'D'}$ della sua sezione retta, b^{iv} l'altezza $\overline{C''D''}$ del gambo, c''' la larghezza $\overline{E'C'} = \overline{F'D'}$,

c" la somma $\overline{A'C''} + \overline{A''E''} = \overline{B'D''} + \overline{B''F''}$,

si ha

$$v' = \frac{1}{2}b'''$$
 $\Omega = b'''c''' - b^{rv}c^{tv}$
 $I' = \frac{1}{12}(c'''b'''^3 - c^{vv}b^{vv^3})$
 $\mu_m = \frac{1}{3}p'''a'''^2$
 $N_m = p'''a'''$

e quindi le equazioni (1) diventano

$$n'' R'' = \frac{2 p''' b''' a'''^{2}}{c''' b'''^{3} - c^{1v} b^{1v}^{3}}$$

$$n^{1v} R^{1v} = \frac{p''' a'''}{b''' c''' - b^{1v} c^{1v}}$$

$$(5).$$

Queste equazioni, quando prendansi per R" e per R" i coefficienti di rottura per pressione e per scorrimento trasversale del ferro riferiti al metro quadrato, quando assumasi da 1/6 ad 1/5 per valori dei coefficienti di stabilità n'' ed n^{v} e quando si lasci incognita una

sola delle quattro dimensioni b''', b'', c''' e c'', potrebbe servire a determinarne il valore. Nella pratica però conviene generalmente porre per b''', b'', c''' e c'' le dimensioni dei ferri che trovansi in commercio e procedere, come si è detto nel numero 54, finchè trovasi un tal ferro per cui risulti compreso fra 4/6 ed 4/5 il valore del coefficiente di stabilità n'' e minore di 4/5 l'altro coefficiente di stabilità n''.

Quando le travi principali T (fig. 97) non si trovano perfettamente incastrate sui loro appoggi, conviene considerarle siccome semplicemente appoggiate, allora il valore di μ_m vien dato da

$$\mu_{\rm m} = \frac{1}{2} p^{\prime\prime\prime} a^{\prime\prime\prime 2}$$
,

ed invece della prima delle equazioni (5) conviene applicare l'equazione

$$n'' R'' = \frac{3 p''' b''' a'''^2}{c''' b'''^3 - c'' b''^3},$$

la quale conduce a dimensioni un po' maggiori di quelle risultanti dall'applicazione della prima delle formole (5).

Avviene in alcune circostanze eccezionali di dover costrurre dei solai di grande portata, i quali esigono l'impiego di robuste travi, composte di legno o di ferro a parete continua od a parete reticolata. In questi casi, quando le travi presentano quelle ingegnose disposizioni dirette ad aumentarne la resistenza alla flessione coll'allontanamento della materia dallo strato delle fibre invariabili, come avviene nelle travi di legno all'americana e nelle travi composte di ferro, si considerano le pareti verticali siccome unicamente destinate a resistere allo sforzo di taglio; e si calcolano le parti da queste pareti rilegate siccome quelle che da sole devono presentare la necessaria resistenza alla flessione.

ARTICOLO III.

Volte.

67. Uso delle vôlte nelle costruzioni civili. — Tutte le vôlte, per cui, nel capitolo VII della prima parte del volume intitolato Lavori generali di architettura civile, stradale ed idraulica, si fece

conoscere la generazione non che le norme riguardanti la materiale loro esecuzione, si adoperano nelle costruzioni civili; e le circostanze particolari determinano generalmente in ogni caso quando di tali vôlte siano da preferirsi le une anzichè le altre.

Le vôlte a padiglione, le vôlte a schifo e le vôlte a crociera si prestano per coprire figure poligonali qualunque. Le vôlte a vela non si possono adottare che per coprire quelle figure poligonali alle quali riesce circoscrivibile un circolo. Le vôlte a botte e le vôlte a botte con teste di padiglione possono essere costrutte sopra figure rettangolari, parallelogrammiche e trapezie. Le vôlte coniche e le vôlte conoidiche in alcune circostanze riescono vantaggiose sopra le figure trapezie e quadrilatere. Le vôlte a bacino sono quelle alle quali è necessario ricorrere allorquando voglionsi coprire figure circolari, figure ellittiche od anche figure ovali. Le vôlte anulari convengono per quei rari casi in cui avviene di dover coprire superficie poste in piani orizzontali, foggiate a guisa di corone o di porzioni di corone circolari. Le vôlte rampanti e quelle a collo d'oca sono unicamente riservate per la costruzione delle scale le cui rampe proiettansi in altrettanti rettangoli, mentre le vôlte elicoidali non che le vôlte anulari ed elicoidali unicamente convengono per le scale a chiocciola. Le vôlte a fascioni si possono adottare per coprire aree di forme svariatissime, ma principalmente convengono per quelle aventi una certa regolarità. Finalmente, le vôlte a cupola composta unicamente si costruiscono in quei cospicui edifizi, i quali devono presentare un carattere monumentale e che colle elevate loro cupole da lungi devono manifestare la loro importanza e la loro grandiosità.

Dovendosi coprire un'area alla quale possono essere applicabili due o più vôlte di differente struttura, il costruttore sceglierà quella che meglio conviene alla monta di cui si può disporre, e che presenta le forme le quali meglio si confanno colla destinazione del locale per cui la vôlta vuol essere costrutta. In generale bisogna procurare che, nelle vôlte a vela ed in quelle a crociera per costruzioni civili, risultino semi-circonferenze le linee che ne limitano la superficie d'intrados, e quindi conviene abbandonare l'impiego di queste vôlte allorquando non si può disporre di monte piuttosto considerevoli. Per le vôlte a vela conviene che la loro monta sia eguale al raggio del circolo circoscritto al poligono che esse coprono; e per le vôlte a crociera è bene che la loro monta sia almeno eguale alla metà del lato maggiore dello stesso poligono. Quando si devono costrurre vôlte a monta depressa, conviene ricorrere a

vôlte diverse da quelle a vela ed a crociera e principalmente: alle vôlte a padiglione ed a schifo, se devono esse coprire aree poligonali, regolari od aree qualunque; alle vôlte a botte od a botte con teste di padiglione, quando devono insistere ad aree rettangolari, parallelogrammiche o trapezie.

Le vôlte maggiormente usate nelle costruzioni civili per abitazioni sono quelle a botte, quelle a padiglione, quelle a botte con

testa di padiglione e quelle a schifo.

63. Dimensioni delle volte per costruzioni civili. - Queste vôlte possono essere a tutta monta, a monta depressa od anche a monta rialzata. Per le vôlte a monta depressa importa che la saetta non sia al disotto di un certo limite, e si può ritenere che la sua lunghezza non deve essere minore di 1/12 della corda. In Torino, dove tutti i piani delle fabbriche per abitazioni, salvo l'ultimo, sono generalmente coperti con vôlte, alcuni costruttori usano determinare per ogni piano la maggiore fra le corde delle diverse vôlte che lo devono coprire, e determinano quindi le monte, assumendole rispettivamente di 1/10, di 1/9, di 1/8 e di 1/7 delle indicate maggiori corde, secondo che trattasi delle vôlte del piano terreno, di quelle del primo, del secondo e del terzo piano sopra il piano terreno. Altri costruttori, prendono le saette di tutte le vôlte del pianterreno di 1/11 della maggiore delle loro corde, assumono rispettivamente di 1/10, di 1/9 e di 1/8 delle relative maggiori corde le monte per le vôlte del primo, del secondo e del terzo piano sopra il piano terreno.

Venendo alle grossezze da darsi ai vôlti, esse dipendono principalmente dalla loro portata, dai carichi che devono sopportare e dalla qualità dei materiali che si impiegano nella loro costruzione. Per le vôlte di mattoni, che sono quelle quasi esclusivamente adottate nelle costruzioni civili, si può stabilire: che per corde non eccedenti i 4 metri convengono le volte di grossezza uniforme, pari alla dimensione media del mattone, ossia di circa metri 0,12; che per corde comprese fra 4 e 6 metri riesce utile la stessa grossezza alla chiave, da portarsi alla dimensione massima del mattone, ossia a circa metri 0,24 all'imposta, incominciando quest'aumento di grossezza al livello del piano orizzontale che dista dal piano d'imposta di circa 1/3 della saetta; e finalmente, che per corde comprese fra 6 ed 8 metri conviene ancora la stessa grossezza alla chiave, purchè si porti alla dimensione massima del mattone, ossia a circa metri 0,24 la grossezza del vôlto verso le reni, ed alla grossezza di un mattone e mezzo, ossia a circa metri 0,36 la grossezza all'imposta.

Alcuni costruttori usano i mattonetti nella costruzione delle vôlte per gli edifizii civili, e così, adottando le norme pratiche sopra indicate, coll'esprimere le grossezze prendendo per unità la dimensione media del mattone, assegnano a queste vôlte grossezze alla chiave, le quali, a seconda delle dimensioni dei mattonetti che impiegano, sono comprese fra metri 0,08 e metri 0,14.

Allorquando avviene di coprire qualche locale che, senza avere una larghezza eccedente gli 8 metri, considerevolmente si estende in lunghezza, torna generalmente vantaggiosa la costruzione di robusti archi colle loro corde nel senso della detta larghezza, e di costrurre fra questi delle vôlte a botte, o delle vôlte a botte con teste di padiglione. Fra un arco e l'altro si possono anche costruire delle vôlte a vela, delle vôlte a padiglione, delle vôlte a schifo, delle vôlte a crociera, oppure delle vôlte a botte lunulate; in questo caso però è bene, che la distanza fra i piani di testa vicini di due archi successivi non ecceda la citata lunghezza di 8 metri, per non avere che vôlte di portata ordinaria. Un'analoga disposizione conviene per quei locali che molto si estendono in lunghezza e larghezza. Stabilendo una o piu file di colonne o di pilastri, riesce possibile la costruzione di robusti archi, alcuni colle loro corde nel senso della lunghezza ed alcuni colle loro corde nel senso della larghezza del locale da coprirsi. Costruendo poi delle vôlte a botte, delle vôlte a padiglione, delle vôlte a botte con teste di padiglione, delle vôlte a schifo, delle vôlte a vela, delle vôlte a crociera, oppure delle vôlte a botte lunulate, si può coprire l'intiero locale solamente con vôlte non eccedenti le ordinarie portate. Le norme che vennero date nel numero 27 possono servire per determinare le grossezze da darsi agli archi che, unitamente ai muri perimetrali, concorrono a sostenere le interposte vôlte. Queste grossezze in ogni caso devono almeno superare della dimensione media del mattone, ossia di circa metri 0,12, quelle delle vôlte ai detti archi interposte. In quanto poi alla lunghezza degli stessi archi nel senso delle generatrici, difficilmente può essere minore di metri 0,50.

Alcune volte le esigenze della costruzione impongono che agli archi si sostituiscano altrettante piattabande. In questo caso, per ottenere un lavoro posto in buone condizioni di stabilità, conviene che le portate delle piattabande non superino 5 metri, e, essendo imperiosa necessità di adottare portate maggiori, si costruiscono archi a monta molta depressa, aventi per curva direttrice della superficie d'intrados un arco circolare dell'ampiezza di 60°. Questi archi poi assai facilmente si riducono a presentare l'aspetto di

piattabande, giacchè non incontrasi difficoltà nel fare un riempimento con malta e con detriti di pietra e di laterizii fra la superficie d'intrados dell'arco e quello della piattabanda che il medesimo deve simulare. Le vôlte a botte con monta molto depressa, le vôlte a padiglione, le vôlte a botte con teste di padiglione e le vôlte a schifo sono quelle che generalmente s'interpongono fra una piattabanda e l'altra o fra l'uno e l'altro degli archi che devono simulare le piattabande.

Presentandosi il caso di dover costrurre qualche vôlta posta in condizioni eccezionali, e per la quale non si credono convenienti le norme pratiche ora esposte, prima di dar mano alla materiale sua esecuzione bisogna studiare il progetto mediante appositi disegni, e procedere quindi alla verificazione della sua stabilità con metodi analoghi a quelli che già vennero indicati nei numeri 29, 30, 51 e

32 parlando della verificazione della stabilità degli archi.

69. Riempimenti da porsi tra l'estrados dei vôlti ed il sovrastante pavimento. — Al disopra delle vôlte, nell'intento di raggiungere il livello al quale vuol essere stabilito il pavimento del piano superiore, si fa un riempimento con rottami di fabbrica, con calcinaccio asciutto e con altri minuti materiali che si trovano sul cantiere.

Ben di frequente, onde diminuire il considerevole carico che questo riempimento esercita sul vôlto, si fa uso di sottili vôlte a botte, dette porcelle, disposte come in proiezione orizzontale ed in sezione secondo la retta XY appare dalla figura 100, e costrutte in modo da trovarsi in uno stesso piano orizzontale tutte le generatrici superiori delle loro superficie d'estrados. Talvolta le porcelle P sono poste ad una certa distanza le une dalle altre, tal'altra invece comincia l'una dove termina quella che la precede. La prima disposizione si adotta allorquando, dovendosi stabilire il pavimento sopra travicelli, non si rende necessario riempimento alcuno pel sostegno del detto pavimento. La seconda riesce vantaggiosa quando, dovendosi stabilire il pavimento sopra una superficie continua, è necessario di rendere il minimo possibile l'indispensabile riempimento al disopra della superficie d'estrados del vôlto e delle porcelle.

In quei casi in cui il pavimento esige di essere stabilito sopra travicelli, e nei quali, per conseguenza, importa soltanto di avere una serie di appoggi posti allo stesso livello pei detti travicelli, assai utilmente s'impiegano gli speroni S che, come in proiezione orizzontale ed in proiezione verticale secondo il piano determinato

dalla retta XY, appare dalla figura 101, hanno le loro superficie superiori in uno stesso piano orizzontale.

Le figure 100 e 101 fanno rispettivamente vedere come devono essere disposte le porcelle e gli speroni nei casi di una vôlta a botte e di una vôlta a botte con teste di padiglione. Disposizioni analoghe convengono per tutte le altre vôlte, ed in ogni caso particolare si presentano così naturalmente le disposizioni più convenienti, che credesi affatto inutile di ulteriormente insistere su quest'argomento.

70. Carichi permanente ed accidentale gravitanti sulle vôlte per costruzioni civili. — Il carico permanente, che sopporta una vôlta per costruzioni civili, consta generalmente: del peso proprio della vôlta; del peso del materiale che trovasi fra il suo estrados ed il sovrastante pavimento; del peso di quanto costituisce il pavimento. In alcune circostanze avviene di dover considerare delle vôlte, per le quali non devesi superiormente costrurre un pavimento ma solamente una copertura. In questo caso, aggiungendo al peso proprio della vôlta quelli della copertura e dei pezzi che servono a sostenerla, si ha il carico permanente che la vôlta sopporta.

Il carico accidentale si deve desumere dalla particolare destinazione della vôlta. Per quelle destinate a sopportare i pavimenti delle ordinarie fabbriche d'abitazione e dei magazzini, si possono assumere i carichi accidentali come già si disse nel numero 65, parlando dei solai. Per quelle invece sulle quali deve essere stabilita una copertura, possono valere i dati che vennero riportati nel numero 44, parlando dei pesi delle coperture.

In alcuni casi si costruiscono delle vôlte, le quali, come quasi sempre succede per le chiese, dovendo soltanto servire come coperture sottostanti ad un tetto che su esse non gravita, non hanno da sopportare carichi accidentali. Per queste vôlte devesi solamente tener conto di quella parte del peso permanente che corrisponde al loro peso proprio.

71. Verificazione della stabilità delle volte a padiglione. — Il triangolo ABC (fig. 102) rappresenti la proiezione orizzontale di quella parte di una volta a padiglione (Lavori generali d'architettura civile, stradale ed idraulica, num. 250, 251 e 252), la quale trovasi compresa fra due fusi corrispondenti dell'intrados e dell'estrados, non che fra due piani verticali di tracce orizzontali AC e BC, passanti pei vertici successivi A e B del poligono coperto dalla volta e pel punto C in cui orizzontalmente proiettasi il vertice della sua superficie d'intrados. In A'A"C"C' sia poi rappresentata la se-

zione, nella definita parte di vôlta a padiglione, secondo il piano verticale di traccia orizzontale CX normale al lato AB.

Nella verificazione della stabilità di una vôlta a padiglione, ammettesi generalmente che ciascuna delle sue parti, come quella orizzontalmente proiettata in ABC, sia separata dalle due parti fra cui trovasi lungo i piani verticali di tracce orizzontali AC e BC; e considerasi essa come una porzione di vôlta a botte per applicarvi i metodi di verificazione di cui si è parlato nei numeri 29, 30, 31 e 32, avendo, ben inteso, riguardo alla caratteristica circostanza che la volta a botte, di cui è quistione, non è compresa fra due piani normali alle sue generatrici dell'intrados, sibbene fra due piani inclinati per rapporto a queste generatrici ed incontrantisi secondo la direzione della monta della vôlta. Segue da ciò che, scomponendo la parte di vôlta, orizzontalmente proiettata in ABC, in tante parti piuttosto piccole, mediante piani diretti secondo altrettante generatrici della superficie d'intrados e normali a questa superficie, le lunghezze di queste parti non sono costanti come nella volta a botte compresa fra due piani di testa paralleli. Considerando poi nella sezione retta A' A" C" C' una qualunque delle piccole parti ab b'a' in cui essa risulta scomposta dagli accennati piani, riesce facile determinare, come si è detto nel numero 29, il centro di superficie q della figura piana ab b'a'; la perpendicolare gc alla verticale C"Z, passante pel vertice della vòlta, dà la distanza dell'accennato centro q dal piano verticale parallelo ad AB e passante per C; e nella retta 93 93, condotta nel triangolo ABC parallelamente ad AB con distanza $\overline{Cq}_i = cq$ da C, si ha quella media lunghezza da attribuirsi alla parte di vôlta che sulla sua sezione retta proiettasi in abb'a'.

Egli è evidente che l'ipotesi della separazione fra le diverse parti componenti una vôlta a padiglione conduce ad operare in favore della stabilità, giacchè avviene effettivamente che queste parti trovansi fra loro collegate, sia per l'adesione delle malte, sia per l'addentellamento che esiste sugli spigoli fra i materiali componenti due parti vicine.

Determinando la grossezza dei piedritti di una vôlta a padiglione in modo che ciascuno di essi resista alla spinta che contro vi produce quella parte di vôlta che vi si trova impostata, si arriva ad un risultamento inferiore a quello che converrebbe adottare qualora lo stesso piedritto dovesse sopportare la metà di una vôlta a botte avente per lato, per semi-corda e per monta della sua superficie d'intrados, il lato, la semi-corda e la monta del fuso d'intrados della

parte di vôlta a padiglione che effettivamente sopporta, giacchè la più gran parte di ciò che bisogna togliere dalla definita mezza vôlta a botte, per ottenere la detta parte di vôlta a padiglione, cade sui conci situati verso il vertice, ossia su quelli che determinano la spinta.

Una grossezza di piedritto, ammissibile nell'ipotesi che esso non sia esposto a cedere per parti, può riuscire insufficiente quando sia possibile che la separazione succeda secondo linee come mn e pq. È necessario, se giudicasi possibile questo modo di rottura, dividere la parte di vôlta a padiglione orizzontalmente proiettata in ABC in un certo numero di parti, mediante piani normali alla linea d'imposta (\overline{AB}, A') , e determinare successivamente la grossezza di piedritto conveniente a ciascuna di esse. Il massimo di questa grossezza corrisponde al mezzo della lunghezza \overline{AB} , ed essa tanto meno differisce da quella corrispondente alla mezza vôlta a botte già sopra definita, quanto più le divisioni sono state numerose. È principalmente quando trattasi di vôlte di grandi dimensioni, da eseguirsi con materiali di mediocre qualità, che conviene aver riguardo alla possibilità di tali disgiunzioni.

72. Verificazione della stabilità delle volte a botte con teste di padiglione. — Considerando il caso della vôlta a botte con teste di padiglione (Lavori generali d'architettura civile, stradale ed idraulica, num. 253 e 254) coprente un rettangolo ABCD (fig. 403), s'immaginerà essa divisa nelle quattro parti proiettate orizzontalmente nei trapezi ABFE e CDEF e nei triangoli ADE e BCF. Per una delle parti la cui proiezione orizzontale è un trapezio, per esempio per quella che orizzontalmente proiettasi in ABFE, si applica il metodo di verificazione conveniente alle vôlte a botte (num. 29, 30, 31 e 32), coll'avvertenza che trattasi di una vôlta a botte non compresa fra due piani paralleli. Riconosciuto che essa trovasi in buone condizioni di stabilità, si conchiude che in condizioni ancora migliori è ciascuna delle altre due parti proiettantisi orizzontalmente nei triangoli ADE e BCF, quando il profilo che ottiensi, immaginandole tagliate con un piano perpendicolare alle loro generatrici d'intrados, è identico a quello delle altre due parti.

Allorquando il lato maggiore AB del rettangolo ABCD supera di molto il suo lato minore BC, si applica il metodo di verificazione solamente alla mezza vôlta a botte orizzontalmente proiettantesi nel rettangolo HGFE: così operasi generalmente in favore della stabilità, e contemporaneamente si tiene conto della possibilità di

disgiunzioni secondo le direzioni EK ed FI, oppure secondo dire-

zioni ad esse parallele.

Il metodo di verificazione della stabilità di una vôlta a botte con teste di padiglione, coprente un rettangolo, conviene anche al caso in cui essa copre un'area parallelogrammica, oppure un'area

trapezia.

73. Verificazione della stabilità delle volte a schifo e delle vôlte a padiglione sopra schifo. - Abbiasi una vôlta a schifo (Lavori generali d'architettura civile, stradale ed idraulica, num. 255 e 256) orizzontalmente proiettantesi nel rettangolo ABCD (fig. 104). e sia proposto di verificarne la sua stabilità. S'incominci perciò dal valutare l'azione esercitata dalla parte piana o quasi piana sulle quattro parti di vôlta ABFE, BCGF, CDHG e DAEH, e si considerino queste parti come staccate nelle direzioni dei piani verticali determinati dalle rette AE, BF, CG e DH. Nei casi ordinarii della pratica, in cui il pavimento sovrastante alla vôlta trovasi caricato d'un peso uniformemente distribuito sulla sua superficie. si può supporre che il peso P sopportato dalla parte piana EFGH si ripartisca uniformemente sul perimetro EFGH. Se adunque si indica con L la lunghezza dell'or indicato perimetro, il quoziente P rappresenta quella parte di detto peso che corrisponde all'unità di lunghezza dello stesso perimetro, e, essendo a la lunghezza del suo lato maggiore EH, si può ritenere che l'azione trasmessa dalla parte piana EFGH sulla parte di vôlta orizzontalmente proiettata in ADHE sia rappresentata dal peso F, dato da

$$=$$
F $\frac{P}{L}a$.

Trovato il valore di F, riesce facile applicare il metodo di verificazione conveniente per le vôlte a botte (num. 29, 30, 31 e 32) alla parte più lunga della vòlta a schifo, ossia a quella orizzontalmente proiettantesi nel trapezio ADHE, e di decidere se essa trovasi in buone condizioni di stabilità. Nel fare quest'operazione di verificazione, conviene osservare che trattasi di una vôlta a botte non compresa fra due piani paralleli e che non bisogna dimenticare l'azione della forza F.

Il metodo di verificazione della stabilità della vôlta a schifo, del quale si è dato un breve cenno, ragionando sul caso di una base rettangolare, conviene anche alle vôlte a schifo su base poligonale qualunque. Conviene considerare quella parte di detta vôlta che impostasi sul maggior lato del poligono che essa copre, giacchè, riconosciuta stabile questa parte, non può nascere dubbio sulla stabilità delle altre, qualora vengano costrutte nello stesso modo di quella per la quale venne applicato il metodo di verificazione.

Allorquando la lunghezza \overline{EH} della generatrice superiore della parte cilindrica più lunga di una vôlta a schifo è piuttosto lunga, in confronto della differenza \overline{AD} — \overline{EH} fra la generatrice più bassa e la generatrice più alta della stessa parte cilindrica, si applica il metodo di verificazione solamente alla mezza vôlta a botte orizzontalmente proiettata nel rettangolo IEHK; così facendo, operasi generalmente in favore della stabilità, e contemporaneamente si tiene conto della possibilità di disgiunzioni secondo le direzioni EL ed HM, oppure secondo direzioni ad esse parallele.

Dovendosi verificare la stabilità di una vôlta con padiglione sopra schifo (Lavori generali d'architettura civile, stradale ed idraulica, num. 257), si incomincia dall'accertarsi della stabilità della parte a padiglione, operando come già si è detto nel numero 71, e quindi si passa a verificare la stabilità di quella parte dello schifo che ha maggior lunghezza, tenendo conto dell'azione che su essa esercita la vôlta a padiglione. Per tener conto di quest'azione, si fa il peso totale P' risultante dalla somma dei pesi dei corti piedritti della vôlta a padiglione, del peso proprio di questa, del peso dei materiali che sovr'essa si trovano, e del peso del massimo sovraccarico che nelle circostanze più sfavorevoli si può accumulare sulla parte di pavimento corrispondente alla detta vôlta a padiglione. Dividendolo per la lunghezza L' del perimetro medio della base dei piedritti della vôlta a padiglione sullo schifo, si ottiene quella parte del detto peso che corrisponde all'unità di lunghezza dell'accennato perimetro, e moltiplicando questo quoziente per la lunghezza del lato maggiore dello stesso perimetro si ha l'azione verticale F', di cui bisogna tener conto nel verificare la stabilità della parte più lunga dello schifo, che è appunto quella alla quale devono essere applicati i processi di verificazione.

74. Verificazione della stabilità delle volte a vela su pianta rettangolare. — Il metodo che nella pratica si può seguire per verificare la stabilità di una volta a vela su pianta rettangolare (Lavori generali d'architettura civile, stradale ed idraulica, num. 245, 246, 247 e 248) consiste nell'immaginarla scomposta in tanti archi

mediante piani verticali le cui tracce orizzontali EF, E'F', E'F'', (fig. 105) sono paralleli al lato di maggior lunghezza AB del rettangolo che essa copre, e nell'accertarsi, coi metodi che vennero svolti nei numeri 29, 30, 31 e 32, che tutti questi archi trovansi in buone condizioni di stabilità.

A ciascuno degli archi ABFE, EFF'E', E'F'F"E",, corrisponde la propria spinta orizzontale; e tutte queste spinte trovansi applicate in punti noti, orizzontalmente proiettati in M₁, M₂, M₃,, sulla retta LO dividente per mezzo i due lati AB e DC, ma situati a differenti altezze sul piano d'imposta della vôlta. I pesi, che le metà dei detti archi devono rispettivamente sopportare nelle più sfavorevoli condizioni in cui saranno per trovarsi, non che le verticali passanti pei punti d'applicazione di questi pesi, le quali orizzontalmente suppongonsi proiettate in G₄, G₂, G₃,, sono elementi che di necessità si determinano nella verificazione della stabilità degli archi stessi; e questi elementi, congiunti a quelli che si riferiscono alle definite spinte, vengono in acconcio per verificare la stabilità del piedritto ADGH, e per determinare la sua grossezza allorquando non trovasi in buone condizioni di stabilità.

Il procedimento che conviene applicare per la verificazione della stabilità del piedritto ADGH, riesce pure per accertarsi della stabilità del piedritto ABIK, quando la vôlta s'immagini scomposta in più archi mediante piani verticali aventi le loro tracce orizzontali parallele ad AD. Se però da una parte e dall'altra del piedritto ABIK esistono due vôlte identiche per forma e dimensioni, e che per conseguenza esercitano su esso due spinte eguali e contrarie, riesce inutile l'ultima scomposizione, ed è sufficiente che l'accennato piedritto sia capace di resistere alla pressione che gli viene trasmessa dalla parte di costruzione di cui sopporta il peso.

Allorquando, come in proiezione orizzontale risulta dalla figura 106, si devono considerare più vôlte a vela tutte su pianta rettangolare, separate le une dalle altre da archi o sostenute da pilastri, nella determinazione delle sezioni orizzontali di questi ultimi è necessario tener conto della loro posizione. Per un pilastro intermedio, come P, bisogna considerare: la spinta orizzontale che contro vi esercita l'arco orizzontalmente proiettato in HFEG, diretta nel senso della freccia f; il peso corrispondente a quella metà di detto arco, la quale ha per proiezione orizzontale il rettangolo EQTG; le spinte orizzontali che, nelle direzioni delle frecce f' ed f'', esercitano gli archi in cui, mediante piani verticali aventi le loro tracce

orizzontali parallele ad FE, conviene scomporre le due mezze vôlte a vela orizzontalmente proiettate in ABCD ed MLKI; i pesi corrispondenti a quelle due parti di ciascuna delle dette vôlte, le cui proiezioni orizzontali trovansi nei rettangoli ARQD ed MSTI; il peso proprio del pilastro, compresi quelli dei due mezzi archi a dritta ed a sinistra e dei corrispondenti timpani, fino al livello del pavimento superiore alle vôlte che esso concorre a sostenere; e finalmente le azioni che il pilastro riceve da quella parte dell'edifizio che elevasi al disopra del piano del detto pavimento.

Per un pilastro d'angolo, come P, è necessario tener conto: delle spinte orizzontali che, nel senso delle frecce f" ed f", esercitano gli archi che orizzontalmente si proiettano nei rettangoli efgh ed iklm; dei pesi corrispondenti a quelle metà dei detti archi, le cui proiezioni orizzontali cadono nei rettangoli enoh ed iopm; della spinta orizzontale che, nel senso della freccia f, produce l'arco avente la sua proiezione orizzontale nel rettangolo VUXY; del peso il quale corrisponde a quella metà di questo arco, la cui proiezione orizzontale cade in OMXY: delle spinte orizzontali che, nel senso delle frecce f" ed f", producono gli archi in cui, mediante piani verticali aventi rispettivamente le loro tracce orizzontali parallele ad ML ed a Tn, conviene scomporre le due metà di vôlta a vela orizzontalmente proiettate in MLrq ed ITnq; del peso corrispondente a quella quarta parte della vôlta I Krq la quale ammette per proiezione il rettangolo MSnq; del peso proprio del pilastro, supposto terminato al livello del pavimento superiore alla vôlta che esso concorre a sostenere; e finalmente delle azioni che il pilastro riceve da quella parte di edifizio che trovasi al disopra del piano del detto pavimento.

75. Verificazione della stabilità delle volte a crociera su pianta rettangolare. — Quanto si è detto sulla verificazione della stabilità delle volte a vela su pianta rettangolare, conviene presso a poco alle volte a crociera pure su pianta rettangolare, qualunque sia la genesi della superficie d'intrados delle loro unghie (Lavori generali d'architettura civile, stradale ed idraulica, num. 258, 259, 260, 261 e 262).

Essendo ABCD (fig. 107) una figura rettangolare, posta in un piano orizzontale, da coprirsi con una vôlta a crociera di cui si ha il progetto, s'immagini questa divisa in quattro parti mediante i due piani verticali aventi per loro tracce orizzontali le due diagonali AC e BD, e la parte di vôlta a crociera orizzontalmente proiettata nel triangolo ABV si supponga divisa in un numero piuttosto

considerevole di archi mediante piani verticali non molto discosti fra di loro ed aventi per tracce orizzontali le rette EF, E'F', E"F",, parallele ad AB. A ciascuno degli archi ABFE, EFF'E', E'F'F"E",, corrisponde la sua spinta orizzontale; e tutte queste spinte sono applicate in punti noti, orizzontalmente proiettati in M., M., M., sulla retta LO dividente per mezzo i due lati AB e DC. Quando l'unghia orizzontalmente proiettantesi nel triangolo VAB è cilindrica, si può ritenere che i punti d'applicazione delle indicate spinte trovansi allo stesso livello sul piano d'imposta; quando invece l'indicata unghia è cilindroidica o sferica, i detti punti trovansi ad altezze differenti sull'accennato piano. I pesi, che le metà dei definiti piccoli archi dovranno sopportare nelle condizioni più sfavorevoli in cui saranno per trovarsi, e le distanze dei punti d'applicazione di questi pesi dal piano verticale passante per la retta LO, sono elementi che di necessità si determinano nella verificazione della stabilità degli archi stessi. La somma di tutti questi pesi costituisce quello sopportato dalla parte di vôlta la quale ammette il triangolo ALV per sua proiezione orizzontale, e, mediante il teorema dei momenti, riesce facile dedurre la distanza del punto d'applicazione dell'or indicato peso dal piano verticale determinato dalla retta LO. La somma delle spinte orizzontali esercitate dagli archi, in cui venne scomposta la parte di vôlta proiettantesi nel triangolo ABV, dà la totale spinta esercitata da questa stessa parte di vôlta contro il piedritto ADGH; e, applicando il teorema dei momenti, si può dedurre la distanza di questa spinta dal piano d'imposta della vôlta. Il peso sopportato dalla parte di vôlta, la quale orizzontalmente proiettasi in DOV, è quello stesso sopportato dall'altra parte la cui proiezione orizzontale cade in ALV e sono identiche le distanze di questi due pesi dal piano verticale determinato dalla retta LO. La spinta orizzontale, che da L in V ha luogo contro l'or indicato piano verticale, si verifica pure da O in V; e sono eguali tra loro le distanze di queste due spinte dal piano d'imposta della vòlta. Il peso sopportato dalla parte di vôlta la quale orizzontalmente proiettasi in ADV, non che la distanza del suo punto d'applicazione dal piano verticale passante per la retta LO, sono elementi che si possono determinare; e, fatta questa determinazione, riesce agevole passare alla verificazione della stabilità del piedritto ADGH ed alla determinazione della sua grossezza allorquando non trovasi in buone condizioni di stabilità.

Il procedimento che conviene per verificare la stabilità del pie-

dritto ADGH è pur quello da applicarsi per assicurarsi della stabilità del piedritto ABIK. Le, tre parti di vôlta a crociera, orizzontalmente proiettantesi nei triangoli ADV, BCV ed ABV, si comportano rispettivamente per rapporto al piedritto ABIK come le tre parti proiettate in ABV, CDV e ADV per rapporto al piedritto ADGH. Se da una parte e dall'altra del piedritto ABIK esistono due vôlte identiche per forma e dimensioni, e che per conseguenza esercitano su esso due spinte eguali e contrarie, l'accennato piedritto unicamente deve essere capace di resistere alla pressione che gli viene trasmessa dalla parte di costruzione di cui sopporta il peso.

Allorquando devonsi considerare più vôlte a crociera, tutte su pianta rettangolare (fig. 108), separate le une dalle altre mediante archi e sostenute da pilastri, nella verificazione della stabilità di questi ultimi, precisamente come già si è detto per le vôlte a vela, importa tener conto della loro posizione. Per un pilastro intermedio come P, bisogna tener conto: della spinta orizzontale che contro vi esercita l'arco A, la qual spinta è diretta nel senso della freccia f; del peso corrispondente a quella metà del detto arco che trovasi fra il detto pilastro ed il piano verticale determinato dalla retta XY passante pei punti, come v e v', in cui orizzontalmente proiettansi i vertici delle vôlte a crociera; delle spinte orizzontali che nelle direzioni delle frecce f' ed f'', esercitano le due parti di vôlte a crociera B e B' poste, una da una parte e l'altra dall'altra parte dell'arco indicato; dei pesi sopportati da quelle metà delle or accennate parti di vôlte a crociera che si impostano in e ed f sul pilastro P; dei pesi sopportati dalle due parti di vôlte a crociera C e C', orizzontalmente proiettautisi in due triangoli rettangoli eguali, aventi rispettivamente un cateto sulle rette RS e TU perpendicolari ad XY e passanti pei punti v e v'; del peso proprio del pilastro, compresi quelli dei due mezzi archi a dritta ed a sinistra e dei corrispondenti timpani, fino al livello del pavimento superiore alle vôlte che esso concorre a sostenere: e finalmente delle azioni che al pilastro vengono trasmesse dalla parte di edifizio che trovasi al disopra del piano del detto pavimento.

Per un pilastro d'angolo, come P_4 , è necessario aver riguardo: alle spinte orizzontali che, nel senso delle frecce f''' ed f'', esercitano gli archi A' ed A''; ai pesì corrispondenti a quelle metà di tali archi che trovansi fra il detto pilastro ed il piano verticale determinato dalla retta XY; alla spinta orizzontale che, nel senso della freccia f', produce l'arco A'''; al peso di quella metà di quest'arco che ha l'imposta sul pilastro P_4 ; alle spinte orizzontali che, nel senso delle frecce f'' ed f''', producono le due parti di vôlta a crociera B'' e B'''; ai

pesi corrispondenti a quelle due metà delle or indicate parti di vôlte a crociera che trovano appoggio in g sul piedritto P₄; al peso proprio del pilastro, supposto terminato al livello del pavimento superiore alla vôlta che esso concorre a sostenere, e finalmente alle azioni che il pilastro riceve da quella parte di edifizio che elevasi al disopra del piano del detto pavimento.

76. Verificazione della stabilità delle volte a bacino. - Per verificare la stabilità di una vôlta a bacino (Lavori generali d'architettura civile, stradale ed idraulica, num. 241, 242 e 243), conviene immaginarla divisa in tanti spicchi, e considerarli siccome non uniti lateralmente gli uni agli altri, giacchè, come ormai venne confermato dall'osservazione e dalla sperienza, la rovina di una vôlta a bacino è sempre preceduta da fenditure e da disgiunzioni nel senso dei meridiani. Ora, considerando lo spicchio orizzontalmente proiettantesi in COD (fig. 109) ed assumendolo in modo che l'arco DC sia di piccola lunghezza, si può, senza sensibile errore per le pratiche applicazioni, considerare come una porzione di arco limitato da due piani verticali facenti fra loro l'angolo DOC, ed applicare a questo arco, analogamente a quanto già si disse per le vôlte a padiglione, i metodi di verificazione che diffusamente vennero spiegati nei numeri 29, 30, 31 e 32. Quando il piccolo arco, al quale vennero applicati i metodi di verificazione, si trova in buone condizioni di stabilità, si conchiude che lo è pure l'intiera volta a bacino, la quale in ultima analisi, per quanto si riferisce al metodo di verificazione della sua stabilità, considerasi come una vôlta a padiglione con base poligonale di molti lati.

Avvenendo di dover verificare la stabilità di una vôlta a bacino su base ellittica o su base ovale, si considererà quello fra i diversi piccoli spicchi in cui può essere divisa, il quale presenta la maggiore semi-corda, ossia quello che simmetricamente si estende da una parte e dall'altra del piano verticale passante per l'asse maggiore dell'ellisse o della ovale che serve di base alla vôlta.

Per quanto spetta al piedritto che serve di sostegno ad una vôlta a bacino, si incomincia dal verificare la stabilità o dal determinare la grossezza per quella sua parte, come ABCD, la quale corrisponde allo spicchio CDO che già venne considerato nell'accertarsi della stabilità della vôlta, ed in seguito ritiensi che l'intiero piedritto si trova in buone condizioni d'equilibrio stabile quando ha la grossezza di quella parte per cui venne riconosciuta ed accertata la stabilità.

Egli è evidente che, se esistono aperture nelle parti infe-

riori o nei piedritti di una vôlta a bacino, bisogna di queste tener conto. Così, se queste aperture sono equidistanti ed uniformemente distribuite sul totale sviluppo del piedritto, si farà quella lunghezza che corrisponde alla somma delle loro larghezze e quindi, col metodo delle parti proporzionali, riescirà facile dedurre quale larghezza di apertura conviene supporre nella parte di piedritto pel quale vuolsi verificare la stabilità.

Anche per le vôlte a bacino che sono troncate ad una certa altezza e che al disopra portano una lanterna od un cupolino, riesce facile verificare la stabilità. La vôlta a bacino si considera come una vôlta a schifo su pianta poligonale di molti lati piuttosto piccoli, ed i procedimenti di verificazione si riducono a quelli che vennero svolti nel numero 75, parlando dei metodi che conducono ad accertarsi della stabilità delle vôlte a schifo.

77. Osservazioni sugli esposti metodi per verificare la stabilità delle vôlte. - I procedimenti di verificazione della stabilità delle vôlte, stati esposti nei numeri 71, 72, 73, 74, 75 e 76, evidentemente si appoggiano sopra ipotesi inesatte, e non possono condurre che a risoluzioni di grossolana approssimazione. Il trascurare la tenacità dei cementi, è, per la maggior parte delle vôlte impiegate nelle costruzioni civili, non tener conto della principale delle cause che le mantiene in equilibrio stabile, ed una valida conferma di quest'osservazione si ha in quelle vôlte che talora si costruiscono nelle abitazioni per dividere in due parti l'altezza di un piano ordinario, che presentano una monta depressissima, e che sono formate con mattoni posti di piatto, generalmente cementati con malta di gesso o con malta bastarda. Si trovano anche degli esempli di tali vôlte in cui ai mattoni vennero sostituite le pianelle o le tavelle. Gli indicati metodi di verificazione possono servire a dare qualche indicazione sull'equilibrio delle vôlte di grande portata, per le quali è sempre meglio procurare che siavi qualche eccesso di stabilità; ma nelle ordinarie circostanze della pratica conviene attenersi alle norme che vennero indicate nel numero 68, le quali si possono dire il riassunto di numerose osservazioni su vôlte sottili che hanno fatto buona prova. I piedritti sono quelli che maggiormente devono attirare l'attenzione del costruttore, ed è a questi che conviene assicurare la necessaria resistenza e l'immobilità sotto l'azione delle spinte delle vôlte che sopportano.

78. Verificazione della stabilità dei piedritti. — I metodi che servono a verificare la stabilità delle vôlte conducono alla deter-

minazione delle loro spinte contro i piedritti che le sostengono: e le norme esposte nei numeri 55 e 54, congiunte alle osservazioni che vennero fatte nei numeri 71, 72, 73, 74, 75 e 76, in ogni caso sono sufficienti a far comprendere quali sono gli elementi di cui conviene tener conto e quali sono i calcoli da instituirsi, sia per accertarsi se un piedritto qualunque trovasi in buone condizioni di stabilità sotto il triplice rapporto della resistenza alla pressione, allo scorrimento ed al rovesciamento, sia per determinare la sua sezione orizzontale in modo che tali condizioni si trovino soddisfatte.

L'operazione di verificare la stabilità dei piedritti, principalmente quando sopportano un fabbricato numerante più piani, se non è difficile, riesce però assai lunga e penosa; per cui, nella maggior parte dei casi pratici, si ricorre all'osservazione di edifizi già esistenti, nei quali trovansi piedritti in buone condizioni di equilibrio stabile e posti in analoghe circostanze di quelli pei quali vuolsi accertare la stabilità. Le formole che vennero date nel numero 19 possono riuscire di qualche utilità e, nelle ordinarie circostanze della pratica, col sistema di costruzione e con materiali del genere di quelli che impiegansi in Torino, si possono esse adottare colla sicurezza di ottenere piedritti posti in buone condizioni di equilibrio. Conviene però osservare, che la convenienza dell'applicazione della citate formole presentasi solamente quando trattasi di muraglie colle ordinarie aperture delle fabbriche per abitazioni, e non quando trattasi di colonne o di pilastri sopportanti una serie di arcate e di vôlte, come avviene nei portici. In quest'ultimo caso assai facilmente si può procedere determinando, coll'applicazione di quella formola del numero 19 che conviene ai muri perimetrali, la grossezza x, che si dovrebbe dare ad un muro continuo, lungo come l'intiera fronte sulla quale devono essere distribuite le colonne od i pilastri, ed alto come il piano nel quale devono questi trovarsi in opera. Dopo di ciò, si pone la condizione che il momento resistente al rovesciamento pel definito muro sia eguale a quello del sistema costituito dalle colonne o pilastri, dagli archi posti nella detta fronte che questi sostegni sopportano e dai corrispondenti timpani fino alla sommità dell'altezza già attribuita al muro continuo ipotetico. La definita condizione conduce ad un'equazione dalla quale si può ricavare una delle dimensioni atta a determinare la superficie della sezione orizzontale delle colonne o dei pilastri.

I piedritti situati alle estremità libere dei portici sono sollecitati al rovesciamento in due direzioni, e per questo motivo importa farli più resistenti dei pilastri intermedii. Traendo partito di quanto si è detto nei numeri 33, 34, 74 e 75, non incontrasi difficoltà a riconoscere se un dato piedritto di spalla trovasi in buone condizioni d'equilibrio stabile, ed a determinare la sua sezione orizzontale affinchè questa condizione sia soddisfatta. Nella pratica però, senza ricorrere a calcoli, quasi sempre si adottano speciali disposizioni, che assai facilmente conducono allo scopo; e sovente si fa uso delle colonne accoppiate, delle colonne contro pilastri, dei pilastri presentanti di fronte una larghezza doppia di quella dei pilastri intermedii. In generale poi si può ritenere che i piedritti di spalla presentano le più ampie guarentigie di stabilità quando le larghezze che presentano sulle due fronti non sono inferiori alle metà delle corde degli archi che essi sopportano.

79. Chiavi di ferro pel consolidamento delle volte. — Le chiavi di ferro che, come si disse nel numero 55, sovente si impiegano nelle costruzioni civili pel consolidamento degli archi e delle piattabande, allorquando per qualsiasi causa non si possono costrurre i piedritti di grossezza corrispondente al bisogno, riescono anche vantaggiose pel consolidamento delle volte. In questi casi però è quasi indispensabile di togliere il cattivo effetto che producono alla vista, e si raggiunge lo scopo col disporle in modo che in nessun punto della loro lunghezza si trovino al disotto dell'intrados dei volti che consolidano.

Occorrendo di porre in opera alcune chiavi pel consolidamento di vôlte, bisogna collocarle coi loro assi orizzontali, ed in modo da opporsi alle azioni delle spinte orizzontali operanti sui piedritti. Segue da ciò, che si devono disporre: in piani diretti normalmente alle generatrici della superficie d'intrados, per le vôlte a botte; in piani verticali taglianti le superficie d'intrados secondo generatrici, per le vôlte anulari, per le vôlte elicoidali e per le vôlte anulari ed elicoidali; in piani verticali normali all'asse, per le vôlte coniche; in piani verticali, normali alla generatrice più alta dell'intrados, per le vôlte conoidiche; in piani verticali normali a quelli in cui trovansi le curve d'imposta, per le vôlte a vela; in piani diretti secondo sezioni rette della superficie d'intrados dei fusi, per le vôlte a padiglione; in piani diretti normalmente alle generatrici più lunghe della superficie d'intrados, per le vôlte a botte con teste di padiglione; in piani diretti perpendicolarmente alle generatrici delle superficie cilindriche d'intrados, per le vôlte a schifo e per quelle a padiglione sopra schifo; in piani paralleli a quelli contenenti le lunette, e da essi non molto lontani, per le vôlte a crociera. Per le vôlte a padiglione, per quelle a botte con testa di padiglione e per

quelle a schifo su pianta rettangolare, principalmente quando la langhezza non è molto differente dalla larghezza, si dispongono le chiavi in due direzioni fra loro perpendicolari. Per le vôlte a crociera usasi anche disporre le chiavi nei piani verticali passanti ner le diagonali dei poligoni che esse coprono. Nelle vôlte lunulate uon si ha generalmente alcun riguardo alle unghie nello stabilire le chiavi di consolidamento, e si dispongono queste in modo conforme alle esigenze delle vôlte nelle quali le unghie trovansi praticate. Nelle vôlte a fascioni si deve sopratutto pensare al consolidamento di questi, per cui le posizioni più convenienti delle chiavi in queste vôlte vengono generalmente determinate dalle disposizioni dei loro fascioni. Come regola generale poi devesi ritenere che. fra due muraglie facenti l'ufficio di piedritti per tre vôlte successive. è inutile ogni chiave, allorquando le spinte della vôlta di mezzo sulle dette muraglie, oltre di essere eguali o poco differenti dalle controspinte che contro vi esercitano le due vôlte laterali, si verificano anche alla stessa o presso a poco alla stessa altezza.

Per quanto si riferisce alla forma delle chiavi di ferro, principalmente alle loro estremità, ed alle unioni che su esse può avvenire di dover eseguire, vale quanto si è detto nel numero 35. Alle formole poi che trovansi in questo numero conviene riportarsi, allorquando in modo conveniente vuolsi determinare la superficie della loro sezione retta. Siccome poi le chiavi per vôlte quasi sempre trovansi coperte e stabilite nell'interno degli edifizii, non possono esse sentire i dannosi effetti degli eccessivi abbassamenti di temperatura, e, volendosi determinare la loro sezione retta mediante quella formola che tiene conto delle variazioni di temperatura, conviene nei nostri climi assumere il valore della differenza $\theta - \theta''$ non maggiore di 16°.

80. Cerchiature di ferro pel consolidamento delle vôlte a bacino. — Per consolidare le vôlte a bacino, invece delle chiavi, si fa uso delle cerchiature di ferro. Queste cerchiature, nelle vôlte un po' grandi, si compongono di molte spranghe incurvate, le quali generalmente si annodano le une alle altre, nel modo espresso dalle figure 20 e 21. Esse si possono disporre a differenti altezze sull'estrados delle vôlte che cingono, ma, nell'intento di renderle della massima efficacia, conviene collocarle all'altezza alla quale tende manifestarsi la rottura sui fianchi.

Per determinare la superficie della sezione retta da assegnarsi ad una cerchiatura da porsi in un determinato sito di una vôlta a bacino su base circolare, si consideri di questa vôlta uno spicchio qualunque, compreso fra due meridiani facenti fra loro un angolo dato FOI (fig. 410), e si chiamino:

α l'arco di raggio eguale all'unità chiudente il detto angolo;

Q la spinta orizzontale corrispondente a quella parte di vôlta a bacino definita dall'or indicato arco α;

q il braccio di questa spinta per rapporto al punto C attorno al quale si suppone poter aver luogo la rotazione dell'accennato spicchio, ossia la lunghezza AB;

P il peso della parte di vôlta proiettantesi in OIF e del corrispondente piedritto;

p il braccio EC di questo peso per rapporto al punto C;

N la pressione orizzontale che la parte di fascia, compresa fra i due piani meridiani OF ed OI, esercita contro l'estrados della vôlta;

n il braccio \overline{DC} di questa pressione per rapporto allo stesso punto C;

nº il coefficiente di stabilità relativo al rovesciamento.
 Ponendo l'equazione dei momenti di rotazione per rapporto al punto C, si ha

$$Qq = n^{vi}(Pp + Nn),$$

da cui ricavasi

$$N = \frac{\frac{Qq}{n^{v_1}} - Pp}{n}.$$

Calcolato mediante quest'equazione il valore della forza N, si riferisca questa all'unità di lunghezza dell'arco circolare a cui trovasi applicata. Perciò, se chiamasi r il raggio $\overline{\rm RM}$ di quel parallelo dell'estrados della vôlta a bacino, il quale trovasi al livello del piano orizzontale passante per la metà dell'altezza della cerchiatura, si ha: che l'arco circolare a cui trovasi applicata la forza N è lungo $r\alpha$; che $\frac{\rm N}{r\alpha}$ è la pressione riferita all'unità di lunghezza della fasciatura sull'estrados della vôlta; che la fasciatura è adunque sollecitata normalmente alla sua superficie înterna, dall'indentro all'infuori e per ogni unità della sua lunghezza dalla forza $\frac{\rm N}{r\alpha}$; che sopporta normalmente ad una sua sezione retta qual: nque

(Resistenza dei materiali e stabilità delle costruzioni, num. 24) la tensione T' data da

$$T' = \frac{N}{\alpha};$$

che

$$\Omega = \frac{\Gamma'}{n' R'}$$

è la formola determinatrice della superficie Ω della sezione retta della cerchiatura quando si crede che non debbasi tenere conto degli abbassamenti di temperatura cui sarà per andare soggetta quando si troverà in opera; e che finalmente

$$\Omega = \frac{\Gamma'}{n'R' - E'\delta(\theta - \theta'')}$$

è la formola da adottarsi tuttora che di questo abbassamento di temperatura debbasi tener conto. Le quantità n', R', E', ∂ e $\theta - \theta''$ si assumeranno come già venne indicato nel numero 35, parlando delle chiavi di ferro.

CAPITOLO V.

Portoni, portoncini, androni, atrii, portici e scale.

81. Portoni e portoncini — Le porte per entrare in qualsiasi fabbricato, o sono semplicemente destinate al passaggio dei pedoni, oppure devono contemporaneamente servire pel passaggio dei pedoni, delle vetture e dei carri. Le prime si chiamano comunemente col nome di portoncini e le seconde col nome di portoni o di porte carraie.

La larghezza dei portoncini varia generalmente fra metri 1,20 e 2, e la loro altezza quasi sempre trovasi compresa fra i 5/3 ed i 5/2 della larghezza.

La larghezza dei portoni varia fra metri 2,70 e 3,50. La larghezza di metri 2,80, o tutto al più di metri 3, è quella generalmente usata nelle ordinarie case da pigione in città. Per quanto si riferisce al-

l'altezza dei portoni, si può ritenere che essa è quasi sempre compresa fra i 3/2 ed i 5/2 della loro larghezza.

Le accennate proporzioni fra la larghezza e l'altezza dei portoncini e dei portoni non si devono ritenere come assolute; l'architetto, a seconda delle circostanze, deve saper scegliere la conveniente proporzione fra gli indicati limiti, e, non trovandone una adatta al caso e conforme al suo gusto, può liberamente allontanarvisi.

Attorno ai portoncini ed ai portoni conviene distinguere la mazzetta, la battuta e lo squarcio. Considerando una sezione orizzontale nei muri di un edifizio dove esiste un portoncino od un portone, nella retta AB = FG (fig. 111) si ha la grossezza della mazzetta, nella retta BC = GH risulta la larghezza della battuta, e nella retta CD=HI ottiensi la lunghezza dello squarcio. La grossezza della mazzetta, che può essere di metri 0,12 nei portoncini, deve essere portata a metri 0,24 nei portoni. In quanto alla larghezza della battuta si può assumere non minore di metri 0,04 pei primi e di metri 0,08 pei secondi. La lunghezza CE della perpendicolare abbassata dal punto C sulla retta DI, la quale unisce le estremità D ed I delle rette rappresentanti i due squarci, può essere chiamata profondità dello squarcio; deve essa risultare di qualche centimetro o due più lunga della metà della larghezza AF del portoncino o del portone, aumentata della larghezza BC della battuta e della spessezza delle imposte, quando queste sono due di egual larghezza; e può invece essere la terza o la quarta parte di AF, più BC, più la spessezza delle imposte, più ancora uno o due centimetri, quando nel complesso delle imposte havvi una divisione in tre od in quattro parti eguali. In quanto alla larghezza DI fra due estremità D ed I delle rette rappresentanti gli squarci, si può ritenere che essa debba essere eguale alla lunghezza della retta CH, aumentata di 1/3 ad 1/4 o almeno di 1/5 dalla profondità CE.

82. Androni, atrii e portici. — Ai portoncini ed ai portoni, tengono generalmente dietro gli androni, aventi per iscopo di condurre ai locali in cui trovansi stabilite le scale, ed ai cortili. La larghezza e l'altezza degli androni devono essere un po' maggiori di quelle dei portoncini o dei portoni ai quali fanno seguito: l'accennata maggior larghezza dell'androne, mentre viene richiesta dalle esigenze di comodità, risulta anche una naturale conseguenza della necessità degli squarci di cui si parlò nel precedente numero.

Invece degli androni s'incontrano in alcuni cospicui edifizi quegli

ampii locali, chiamati atrii. Qualche vôlta gli atrii sono preceduti da corti androni, e talvolta questi tengono dietro a quelli.

Allorquando il piano terreno di un edifizio in parte vuol essere destinato all'uso di portici, questi devono trovarsi in comunicazione coll'androne o coll'atrio; la loro larghezza non deve essere troppo piccola e, se è possibile, non inferiore a 5 metri.

Gli androni, gli atrii ed i portici sono quelle parti delle costruzioni civili che per le prime si presentano allo sguardo di chi in esse entra, e quindi quelle che maggiormente fanno impressione sugli animi degli osservatori. Segue da ciò, che devesi per esse adottare un conveniente sistema di decorazione, che deve essere posto in evidenza il loro scopo e la loro destinazione, e che chiaramente devono apparire le loro relazioni coi principali membri del piano terreno e colle scale per salire ai piani superiori.

85. Scale. — Le scale per salire dal piano terreno ai piani superiori possono presentare tre principali disposizioni per quanto spetta al modo con cui i loro gradini sono posti in opera: quella in cui i gradini trovano appoggio su due muri paralleli; quella in cui i gradini sono incastrati in un muro solamente per una estremità; e finalmente quella in cui i gradini sono sostenuti da una sottostante vôlta.

La larghezza delle scale varia ordinariamente fra 1 e 2 metri. Nelle case signorili havvi generalmente una scala principale pel piano nobile, indipendente dalle scale ordinarie che conducono agli altri piani, e sovente alla detta scala principale si assegna una larghezza maggiore di 2 metri. Gli scaloni dei palazzi hanno larghezze assai maggiori di quelle indicate, e se ne trovano alcuni in cui la lunghezza dei gradini supera i 4 metri.

Alcuni costruttori, assumendosi che l'alzata a dei gradini debba essere compresa fra metri 0,12 e metri 0,17, determinano la larghezza p della pedata colla semplicissima formola che venne data nel numero 11. Alcuni altri invece, fissandosi che l'alzata a debba essere compresa fra metri 0,12 e 0,16, adottano la formola

$$2a+p=0^{m},61$$
,

la quale è preferibile a quella del citato numero 11 per le scale di qualche importanza e principalmente per gli scaloni. Nelle scale interne, ed in quelle secondarie si può portare a metri 0,19 l'alzata ed a metri 0,25 la pedata.

In generale devesi ritenere, che le scale con rampe disposte se-

L'ARTE DI FABBRICARE

condo direzioni rettilinee sono preferibili a quelle che si sviluppano su un andamento curvilineo qualunque; che il numero dei gradini di una stessa rampa non deve essere troppo grande, e non maggiore di venti; che, presentandosi la necessità di adottare rampe con più di venti gradini, conviene lasciare un ripiano a circa metà della loro altezza; che una scala deve essere convenientemente illuminata e ventilata, e che quindi deve ricevere luce ed aria almeno da una finestra per ogni piano; che, essendo imperiosa necessità di illuminare una scala con un solo lucernario, bisogna ricorrere a quella struttura la quale meno si oppone alla discesa dei raggi luminosi dall'alto al basso, e procurare che la sezione orizzontale nella parte libera della gabbia sia in metri quadrati non minore dei 2/3 dall'altezza del lucernario espressa in metri.

Le scale, e soprattutto quelle di qualche importanza, devono trovarsi in tali posizioni che facilmente riescano visibili da quanti vengono a ricercarle per salirvi, ed importa per conseguenza che siano presso le entrate principali, in luoghi chiari, e tali che vi si possa andare con brevi e ben tracciati cammini. Gli accessi alle scale e le scale stesse devono presentare una conveniente decorazione: importa che la decorazione di queste sia una ben dedotta conseguenza degli ornamenti di quelli, ed il tutto deve essere semplice ed in armonia colle altre parti degli edifizii in cui le scale si trovano. La coincidenza del piano verticale passante pel mezzo della prima rampa di una scala col piano verticale passante pel mezzo dell'apertura che dà nella sua gabbia è sempre cosa conveniente e bella a vedersi. Nei paesi in cui la stagione invernale riesce piuttosto rigida, è cosa ottima quella di munire di porte a vetri gli ingressi delle scale, principalmente quando queste conducono ad alloggi signorili. Con questo mezzo si conserva nelle gabbie un ambiente meno rigido dell'esterno; e chi sorte dai riscaldati appartamenti del ricco signore non sente immediatamente la spiacevole e talvolta funesta sensazione del passaggio dalla mite alla rigidissima temperatura.

Le scale devono presentare comodi ripiani in tutti i siti in cui danno accesso agli appartamenti, nei quali trovansi scomposti gli edifizii pei quali vengono costrutte; questi ripiani non devono presentare larghezza minore di quella delle rampe; ed assolutamente è da schivarsi l'esistenza di qualsiasi oggetto che possa dar origine ad immondizie ed a cattivi odori. Per quanto si può, si devono situare le scale in tali posizioni da prestarsi al facile disimpegno delle diverse parti dell'edifizio in cui si trovano; e, quando un fabbricato

consta di più maniche, riesce quasi sempre vantaggioso di collocare le scale dove due maniche vengono ad incontrarsi, perchè allora una medesima scala può servire per due di esse, occupando uno spazio pel quale difficilmente si potrebbe trovare un più conveniente

impiego.

84. Distinzione delle scale per rapporto alla loro pianta, e dimensioni di questa. — La pianta di una scala può essere rettangolare, poligonale, a contorno mistilineo ed a contorno curvilineo. Nelle scale con pianta rettangolare, le direzioni delle rampe e dei ripiani sono sempre rettilinee e perpendicolari fra di loro; in quelle con pianta poligonale qualunque, le dette direzioni, ancora rettilinee e parallele alle facce dei muri, risultano generalmente fra loro oblique; nelle scale la cui pianta ha contorno mistilineo, s'incontrano generalmente alcune rampe ed alcuni ripiani con direzioni rettilinee, alcune rampe ed alcuni ripiani con direzioni curvilinee; finalmente nelle scale il cui contorno è tutto curvilineo, tanto le rampe quanto i ripiani procedono in linea curva.

Le dimensioni della pianta di una scala dipendono dalle altezze dei diversi piani per cui essa deve servire, dalle larghezze che voglionsi assegnare alle rampe ed ai ripiani, dalla condizione di avere luce sufficiente quando trattasi di una scala con lucernario, e dal modo con cui si vogliono mettere fra loro in correlazione le parti che la compongono. Allorquando è quistione di determinare le dimensioni orizzontali di una scala che deve condurre a diversi piani, si considera generalmente quella sola parte che deve salire al piano più alto e si procede come risulta dalla risoluzione dei due problemi che seguono.

I. Determinare le dimensioni orizzontali che deve avere una scala su pianta rettangolare con un ripiano disposto lungo AB (fig. 112) e con tre rampe, la prima per cui si sale lungo BC, la successiva lungo CD e la terza lungo DA.

I dati del problema sono: la lunghezza

b di una delle dimensioni orizzontali della pianta della scala, per esempio la lunghezza del lato AB; l'altezza

A che colle tre rampe della scala vuolsi superare ; la larghezza costante

c che vuolsi assegnare alle rampe ed ai ripiani; l'altezza

a dell'alzata dei gradini e la larghezza

p della loro pedata.

Le incognite da determinarsi sono le tre dimensioni orizzontali $\overline{LK} = x$, $\overline{GL} = y$ e $\overline{BC} = z$, le due prime appartenenti alla sezione

orizzontale del vano intorno al quale girano le rampe, la terza rappresentante una delle dimensioni della gabbia della scala.

Indicando con n il numero delle alzate occorrenti per superare l'altezza A, questo numero viene dato da

$$n = \frac{\Lambda}{a}$$
,

e, siccome per ogni rampa vi ha sempre un'alzata di più delle pedate, si avrà, per essere tre le rampe, che il numero totale m delle pedate è espresso da

$$m=n-3$$
.

Osservando ora che \overline{LK} è la differenza fra \overline{AB} e la larghezza di due rampe, risulta

$$x=b-2c$$

ed il numero m' delle pedate contenute in LK vien dato da

$$m'=\frac{x}{p}$$
.

Nel complesso delle due lunghezze \overline{GL} ed \overline{HK} stanno adunque m-m' pedate, tanto su \overline{GL} quanto su \overline{HK} ne stanno $\frac{m-m'}{2}$, cosicchè risulta

$$y=\frac{m-m'}{2}p$$
,

e

$$z=y+2c$$

Il numero di pedate espresso dalla differenza m-m' egualmente deve essere distribuito sui due lati eguali \overline{HK} e \overline{GL} ; segue da ciò che questo numero deve essere pari, e che, risultando esso dispari, è necessario aumentarlo o diminuirlo dell'unità.

II. Determinare le dimensioni orizzontali che deve presentare una scala avente per pianta un rettangolo ed un semicircolo, con due rampe rettilinee, una lungo AB (fig. 113) e l'altra lungo BC, con una rampa curvilinea lungo la mezza circonferenza CDE, e con un ri-

piano lungo EA.

Si indichi con b la lunghezza \overline{BC} che si suppone nota, si ritengano le denominazioni già stabilite nel precedente problema, per quanto concerne all'altezza che le tre rampe devono superare, alla larghezza delle rampe e del ripiano, alle alzate ed alle pedate. Suppongasi che nella rampa in curva la larghezza media della pedata debba essere valutata sulla circonferenza media FGH, e si procuri di trovare le tre lunghezze \overline{KI} , \overline{OI} ed \overline{AB} , che si indicano rispettivamente colle lettere $x, y \in z$.

Il numero n delle alzate necessarie per salire l'altezza A viene dato da

$$n = \frac{A}{a}$$
.

Siccome poi la rampa rettilinea, disposta lungo BC, e quella curvilinea si possono considerare siccome una rampa unica, e siccome per ogni rampa havvi sempre un'alzata di più del numero delle pedate, il numero totale m delle pedate si ottiene in questo caso mediante la semplicissima formola

$$m=n-2.$$

Essendo KI la differenza fra BC e la larghezza di una rampa, si ha

$$x=b-c$$
,

ed il numero m' delle pedate contenute in KI risulta

$$m' = \frac{x}{p}$$
.

Se ora si osserva che il numero delle pedate le quali stanno sulle rampe poste lungo \overline{AB} e lungo \overline{CDE} deve essere m-m', che lo sviluppo da esse abbracciato deve risultare (m-m')p, che $\overline{LK}=2\overline{OI}=2y$, che $\overline{OF}=y+\frac{c}{2}=\frac{2y+c}{2}$ e che la mezza circonferenza

FGH ammette la lunghezza $\pi \frac{2y+c}{2}$, l'equazione determinatrice di y risulta

$$2y + \pi \frac{2y + c}{2} = (m' - m)p$$
,

dalla quale immediatamente ricavasi

$$y = \frac{2(m'-m)p - \pi e}{2(2+\pi)}$$
.

Finalmente, la lunghezza $\overline{AB} = z$ vien data da

$$z=2y+2c$$
.

I due problemi che vennero risoluti indicano abbastanza come in ogni caso si deve procedere per determinare le dimensioni orizzontali delle scale. Conviene poi ritenere, che nello scegliere l'altezza A del piano più alto non si sceglie quasi mai quella del piano terreno, quantunque ben sovente sia più alto degli altri; e questo si fa perchè nel piano terreno, non essendo assolutamente necessario di sviluppare le rampe contro i muri perimetrali della scala, facilmente si trova modo di poter superare un'altezza che sia anche di qualche poco maggiore di quella che servì di base per dedurre le dimensioni orizzontali della scala.

Pei piani i quali hanno altezze minori di quella che servi alla deduzione delle dimensioni di una scala, è necessario diminuire le alzate ed aumentare le pedate, se non vuolsi variare il numero delle rampe. Se poi vuolsi che in una stessa scala e per tutti i piani le alzate e le pedate si conservino sensibilmente le stesse, è necessario diminuire le rampe ed aumentare i ripiani, per quelle parti di scala che devono superare piani meno alti di quello la cui altezza venne adottata nel dedurre le dimensioni della pianta.

85. Scale in cui i gradini trovano appoggio su due muri paralleli. — Queste scale hanno quella disposizione che per la prima ha dovuto presentarsi allo spirito, e quella che, in quanto a concetto, è la più naturale e la più semplice. La distanza dei due muri, nei quali si incastrano i gradini di una medesima rampa, deve essere eguale alla larghezza che a questa vuolsi assegnare; se non che, quando quest'ultima dimensione è considerevole, si possono avere delle difficoltà per procurarsi le pietre della lunghezza voluta, e, anche nel caso che si possano queste pietre trovare, può avvenire che esse non siano capaci di resistere all'azione dei

carichi ai quali dovranno trovarsi sottoposte. Quando nulla si oppone, come avviene nelle scalinate di piccola altezza, riesce facile il guarentirsi contro questi inconvenienti, aumentando i muri che sostengono i gradini, per guisa che ciascuno di essi possa essere formato di più pezzi, ciascuno dei quali abbia un fermo appoggio alle sue due estremità, ed anche in punti intermedii, qualora questa disposizione si reputi necessaria alla stabilità. Se però questo sistema deve essere applicato per un'altezza pinttosto considerevole, conduce a grandi spese; e, quel che più importa, presenta il grave inconveniente di opporsi a ciò che si possa trar partito dello spazio sottostante alla scala, sia per istabilirvi un'altra rampa, sia per un altro uso qualunque. Quando la scala deve constare di più rampe disposte le une sopra le altre, è necessario sostenere i gradini di ciascuna rampa mediante una vôlta rampante, avente per piedritti i due muri fra cui la rampa si trova, ed avente le generatrici della sua superficie d'intrados parallele alla linea che marca il pendio della rampa stessa.

Le scale, i cui gradini sono sostenuti da due muri pieni paralleli, od anche da vôlte rampanti alle quali questi muri servono di piedritti, non presentano la disposizione più favorevole per essere convenientemente illuminate, e, quando constano di più rampe, non permettono che, stando su una rampa qualunque, si possa vedere quanto si trova sulla rampa superiore e sulla rampa inferiore. Per diminuire in parte questi inconvenienti, conviene fare in modo che il muro sul quale internamente hanno appoggio i gradini non sia pieno, ma sibbene che sia costituito da pilastri riuniti con archi rampanti, le cui corde si assumono generalmente parallele alle linee di maggior pendio delle rampe che concorrono a sostenere.

Le indicate disposizioni non sono particolari alle scale costituite da rampe rettilinee, ma si applicano anche a quelle la cui pianta ammette un contorno mistilineo od anche un contorno totalmente curvilineo: le facce anteriori dei gradini non sono più parallele come nelle rampe con direzioni rettilinee, e le pedate non conservano la stessa larghezza per tutta la loro lunghezza. La loro maggior larghezza si verifica contro la parte concava della gabbia della scala, e la più piccola contro la parte convessa. Quando credesi opportuno l'impiego di una vôlta per sostenere una rampa con direzione curvilinea, si usa generalmente la vôlta elicoidale, oppure quella anulare ed elicoidale, di cui si parlò nei numeri 256 e 237 del volume sui lavori generali d'architettura civile, stradale ed idraulica.

Altre scale, i cui gradini sono sostenuti alle due estremità e che meritano una menzione speciale, sono quelle a chiocciola, di cui si ha una rappresentazione nella figura 114, la quale ne presenta la pianta ed una porzione di sezione secondo l'asse. Queste scale sono contenute in una gabbia cilindrica, ed i loro gradini sono sostenuti, per un estremo dal muro che circonda la scala, per l'altro estremo dal maschio che trovasi nel mezzo. Ciascun gradino porta con sè la parte che costituisce quest'ultimo punto d'appoggio; il suo spigolo anteriore proiettasi orizzontalmente secondo un raggio del circolo che costituisce la pianta della scala, ed il suo spigolo posteriore è diretto tangenzialmente al detto maschio. Quest'ultima disposizione ha per oggetto di assicurare al gradino una larghezza sufficiente dove si unisce al maschio.

Se la sezione trasversale dei gradini della scala a chiocciola dicui si ragiona, è rettangolare, si presentano sulla superficie inferiore della scala altrettanti risalti quanti sono i gradini, e quindi o effettivamente riesce incomoda la circolazione, o almeno l'osservatore, trovandosi sempre gli indicati spigoli sotto gli occhi, si crede ad ogni momento di dover urtare contro di essi. Per questo motivo generalmente si prende il partito di togliere lo spigolo posteriore dal disotto di ciascun gradino, facendo in guisa che da questa parte si trovi limitato da una superficie sghemba, generata dal movimento di una linea retta, che costantemente si mantiene orizzontale e tangente alla superficie del maschio e che si appoggia sopra un arco di elica tracciato sul muro che circonda la scala. Risulta da ciò, che ogni gradino, quantunque formato d'un sol pezzo, può essere decomposto in tre distinte parti: la parte che trovasi incastrata nel detto muro che circonda la scala; quella che appartiene al maschio; e quella che costituisce il gradino propriamente detto, posta fra le altre due. Quest'ultima parte poi presenta cinque facce: la faccia superiore, la quale in parte trovasi coperta dal gradino che c'è sopra; la faccia anteriore, che consiste in un piano verticale passante per l'asse della scala; la faccia posteriore, la quale è formata da un piano verticale, di alcuni centimetri d'altezza, tangente alla superficie del maschio; la superficie sghemba di cui si è parlato; finalmente la faccia inferiore, che è orizzontale e che trovasi compresa fra la faccia anteriore del gradino e lo spigolo posteriore del gradino che sta sotto. La citata figura 114 fa vedere queste disposizioni, e sono in essa rappresentati in linee punteggiate gli spigoli non apparenti nell'adottato sistema di rappresentazione.

Le scale a chiocciola, di cui si è parlato, occupano poco spazio, e se ne costruiscono di quelle che non hanno più di metri 1,20 di diametro interno. Se ne possono anche fare con diametro minore, ma allora risultano troppo strette e riescono incomode.

86. Scale a sbalzo. - Le scale a sbalzo sono quelle in cui i gradini sono incastrati in un muro solamente per un estremo. Queste scale si mostrano siccome più eleganti, più leggiere e più ardite di quelle di cui si è parlato nel precedente numero; non frappongono imbarazzo al libero propagarsi della luce; ma non si possono costrurre con larghezze eguali a quelle che si riscontrano negli scaloni degli antichi monumenti. La prudenza consiglia non doversi mai assegnare alle rampe delle scale a sbalzo una larghezza maggiore di metri 1,50 o tutto al più di 2 metri. Conviene che la parte di ogni gradino, la quale deve essere incastrata nel muro, sia prossima ad essere 1/5 dell'intiera lunghezza del gradino stesso. Quando la parte di muratura sovrastante al luogo d'incastro di alcuni gradini di una rampa non è molto alta, conviene consolidare l'incastramento con archi rovesci, e questa stessa disposizione viene in acconcio quando una rampa di scala a sbalzo attraversa una finestra. La parte della finestra che resta al di sotto della rampa si chiude con muratura; su questa si posano i gradini; sovr'essi si eleva di poco la muratura fino ad una curva a b c (fig. 115) e quindi si costruisce l'arco rovescio A. Qualora la parte di finestra che trovasi sotto la rampa abbia altezza considerevole, si può tralasciare di otturarla completamente, purchè si costruiscano due archi A e B, e che fra essi si stabilisca quella muratura, la quale è necessaria per ottenere l'incastramento dei gradini. Riesce pur agevole comprendere come l'incastramento dei gradini al passaggio di una rampa su qualche apertura si possa anche facilmente ottenere sostituendo all'arco A, od anche ai due archi A e B, apposite spranghe di ferro, opportunamente incastrate pei loro estremi nelle spalle dell'apertura.

Nelle scale a sbalzo si possono impiegare gradini a tutta alzata, oppure si possono impiegare semplici lastre. I gradini a tutta alzata, come chiaramente risulta dalla figura 116, posti l'uno sopra l'altro formano l'intiero corpo della rampa; ciascuno di essi si posa, per una piecola superficie orizzontale, su quello che gli sta sotto, e vi si appoggia inoltre lungo un giunto piano diretto normalmente alla superficie rampante che costituisce il di sotto della rampa. Nelle scale a sbalzo i cui gradini sono costituiti da semplici lastre di pietra (fig. 147), fra un gradino e l'altro e nel senso dell'alzata

si pongono dei mattoni su cui si pratica esternamente un'arricciatura; ed al disotto della rampa, nell'intento di ottenere una superficie piana, si distende una stuoia oppure un'incannucciata su cui si eseguisce un'arricciatura analoga a quella dei soffitti (Lavori generali d'architettura civile, stradale ed idraulica, num. 527 e 528). Alcune volte i prismi triangolari che rimangono fra le pedate e le alzate dei gradini si riempiono con malta e con una sostanza leggiera come pietra pomice o coke: l'aderenza delle malte colla pietra costituente i gradini, coi mattoni posti nel senso dell'alzata e colle sostanze leggiere che esse involvono è sufficiente per mantenere a posto il detto riempimento, il quale si copre in seguito di arricciatura sulle facce che rimangono visibili.

Allorquando le rampe di una scala a sbalzo sono molto larghe e che le pietre di cui sono formati i gradini non sono molto resistenti, è prudente di consolidare queste rampe con sottostanti spranghe di ferro, poste nel senso della lunghezza dei gradini a convenienti distanze, ben incastrate nel muro e sopportanti verso le loro estremità una spranga, pure di ferro, disposta nel senso del pendio della scala.

Nelle scale a sbalzo i ripiani si possono costrurre a vôlta, ma più di frequente si fanno mediante lastroni di pietra, o solamente incastrati alle estremità, o sopportati da modiglioni, secondo che devono superare piccole o grandi portate. Le distanze degli appoggi dei lastroni non devono essere maggiori di 3 metri nelle ordinarie circostanze della pratica; però si può anche eccedere questo limite, quando sono essi costituiti da pietre riconosciute molto resistenti, e quando riesce possibile avere incastramenti od anche semplici appoggi nel senso dei lati meno lunghi ed incastramento nel senso del lato più lungo.

I parapetti da porsi sulle scale a sbalzo, dalla parte opposta a quella dei muri che le circondano, devono presentare un carattere di ben marcata leggierezza, e per questo è necessario di eseguirli in metallo e non in pietra.

Le scale a shalzo si adottano egualmente bene, tanto per le scale su pianta poligonale, come per quelle su piante a contorno curvilineo del tutto od in parte. La differenza, che esiste fra una rampa in direzione rettilinea ed una rampa in direzione curvilinea, sta unicamente in ciò che la superficie inferiore di quella è piana, o che la superficie inferiore di questa è elicoidale.

87. Scale a volta. — Le scale a volta sono di due sorta: quelle in cui i gradini di ciascuna rampa vengono sostenuti da

una vôlta a botte, disposta colle generatrici della superficie d'intrados parallelamente al pendio della rampa, oppure da una vôlta a crociera, disposta in modo da assecondare il pendio della rampa stessa; e quelle in cui i gradini di ciascuna rampa sono portati da una vôlta cilindrica, avente per direttrice una curva policentrica oppure una curva costrutta a mano libera, in modo da poter ottenere una vôlta capace di sostenere i gradini ed i massimi carichi che sulla rampa possono passare, colle generatrici della sua superficie d'intrados parallele alla larghezza della rampa stessa.

Il primo sistema di scale a vôlta richiede che tutte le rampe siano sostenute da muri o da pilastri, ed entra nel sistema di scale con vôlte rampanti di cui si parlò nel numero 85.

Il secondo sistema invece, grandemente usato in Torino nelle fabbriche per abitazioni, esige soltanto che le vôlte sopportanti le rampe abbiano due immobili appoggi alle loro estremità. Queste scale quasi esclusivamente si costruiscono su pianta rettangolare. ed i loro ripiani vengono in questo caso sostenuti da vôlte a botte. aventi archi di circolo per direttrici della loro superficie d'intrados e linee rette parallele alla larghezza dei ripiani stessi per generatrici della stessa superficie. Le rampe ed i ripiani, di una scala destinata a servire per più piani, devono essere combinati in modo che possano rimanere a posto tutte le rampe dei piani superiori, anche dopo la rovina di quelle di un piano inferiore. Per ottenere l'intento, conviene disporre le cose nel modo indicato dalla figura 418, la quale, supponendo tolti i due muri M e Q, rappresenta la pianta e due elevazioni di una porzione di scala su base rettangolare, destinata per salire a più piani e numerante tre rampe per ogni piano. Si faccia appoggiare la prima rampa A, inferiormente contro un resistente muro M, superiormente contro il muro N parallelo al primo; la seconda rampa B trovi appoggio, inferiormente contro la parte suprema della prima rampa A, e superiormente contro il muro P, parallelo a detta prima rampa; alla terza rampa C si dia appoggio, inferiormente contro la seconda rampa e superiormente contro il ripiano R. Per salire al piano superiore, si getterà una prima rampa dal ripiano accennato al muro parallelo N, una seconda dalla prima al muro a questa parallelo, ed una terza dalla seconda all'altro ripiano; e così si continuerà fino al compimento della scala. L'impostatura superiore di una rampa contro un muro si fa mediante un rettangolo, avente per dimensione orizzontale la larghezza della rampa e per dimensione verticale da metri 0,80 a metri 0,90. Questo si verifica in ab

per la rampa A, ed in cd per la rampa B. L'impostatura tanto superiore quanto inferiore di una rampa contro un ripiano o contro un'altra rampa si ottiene mediante un rettangolo, il cui lato orizzontale è la larghezza della rampa ed il cui lato verticale varia da metri 0,40 a 0,45. Questo genere d'impostature ha luogo in ef per dar appoggio alla rampa B sulla rampa A, in q h per impostare la rampa C sulla rampa B, in ik per appoggiare la rampa C contro il ripiano R, in lm per impostare la rampa D sullo stesso ripiano. Ben di frequente si fa in modo che le linee d'imposta della superficie d'intrados di due rampe, una discendente e l'altra ascendente, si trovino, sul piano di testa di uno stesso ripiano, collocate allo stesso livello, ossia si fa in modo che nel disegno vengano a confondersi i due punti i ed l. Quando la vôlta di una rampa deve protendersi nella parte inferiore fino sotto il pianerottolo che precede i gradini, la qual cosa sovente avviene per la prima rampa di una scala a vôlta, il rettangolo d'impostatura presenta sempre una grande altezza, la quale può anche essere maggiore di 2 metri. Questo caso si presenta nella figura 118 per l'impostatura della prima rampa A sul muro M.

La grossezza dei vôlti delle rampe è generalmente eguale alla dimensione media dei mattoni, ossia di circa metri 0,12, nel loro mezzo. Mediante riseghe si fa crescere questa grossezza dal mezzo alle imposte, dove deve essere almeno eguale alla dimensione massima del mattone, ossia di circa metri 0,24. Nelle imposte delle rampe sopra muri, le grossezze delle vôlte si portano a tre dimensioni medie di mattoni, ossia a circa metri 0,36; che anzi, questa stessa grossezza suolsi da molti adottare anche alle imposte inferiori delle rampe sopra altre rampe o sopra ripiani. Sovente nella costruzione delle vôlte per le rampe delle scale, invece di impiegare mattoni si adoperano mattonetti, ed allora le indicate grossezze trovansi di qualche poco diminuite. Difficilmente la superficie d'estrados dei vôlti presenta un conveniente appoggio alle lastre costituenti i gradini ed i pianerottoli, e per ottenere questo si fanno gli opportuni riempimenti in muratura.

Alle vôlte dei ripiani si assegnano grossezze non inferiori a quelle delle vôlte delle rampe, che anzi, esigendo la stessa necessità di impostare le rampe contro i ripiani che le superficie d'intrados dei vôlti di questi passino al disotto dei rettangoli d'impostatura delle rampe, alcuni costruttori usano adottare la dimensione massima del mattone nel mezzo della vôlta dei ripiani e portarla a tre dimensioni medie od anche a due dimensioni massime del mattone alle loro

imposte. Per arrivare dall'estrados del vôlto di un ripiano al suo pavimento, è necessario costrurre su esso un muro frontale che, unitamente al vôlto, serve a dare appoggio alle due rampe che da esso partono, una in salita e l'altra in discesa. Fra il detto muro frontale, la cui superficie esterna è in prosecuzione del piano di testa del vôlto del ripiano ed il muro a cui il ripiano è addossato, si fa un riempimento con calcinaccio, con rottami di fabbrica o con muratura di poco valore, e così si raggiunge quel piano orizzontale sul quale il detto pavimento deve essere stabilito.

88. Cenno sulle scale di legno e sulle scale di ghisa. — Le scale di struttura murale coi gradini di pietra non sono le sole che si trovano nelle costruzioni civili; in quei paesi nei quali abbonda il legno si costruiscono molte scale con questo materiale; e non sono rare le circostanze in cui può convenire di ricorrere all'impiego del legno o della ghisa nella costruzione di scale per gli interni disim-

pegni da un piano all'altro.

Le scale di legno, a motivo della facilità con cui questo materiale si deforma, esigono che i gradini si trovino incastrati alle loro estremità entro robusti ritegni, i quali generalmente sono pure di legno. Questi ritegni consistono quasi sempre in tavoloni di considerevole spessezza, disposti colla loro lunghezza nel senso del pendio della scala e sorretti da ritti negli angoli in cui hanno luogo i cangiamenti di direzione delle rampe, ed anche in punti intermedii, qualora la lunghezza delle rampe sia considerevole. Si costruiscono delle scale di legno in cui ciascun gradino è formato d'un solo pezzo, come lo sono quelli delle scale in pietra coi gradini a tutta alzata; più di frequente però, nella formazione della pedata e dell'alzata di ciascun gradino, si impiegano due pezzi differenti; quella è formata con una porzione di tavolone orizzontale, il cui bordo anteriore porta le solite sagome dei gradini, ossia un tondino ed un listello; questa invece è formata con un pezzo di tavola verticale.

Ben di frequente i ritegni dei gradini per scale di legno si tagliano a riseghe, per posarvi ed inchiodarvi le tavole costituenti le pedate e le alzate; e, quando le rampe devono essere molto larghe, mediante ritegni di questo genere è possibile sostenere i gradini in punti intermedii della loro lunghezza. Importa poi che i ritegni dei gradini delle scale di legno non si spostino e che non si deformino; e, per ottenere questo, si possono riunire i ritegni di una stessa rampa mediante traverse di legno o di ferro, disposte sotto i gradini nel senso della larghezza delle rampe. Si costruiscono anche delle scale di legno coi gradini a tutta alzata, le quali si presentano

precisamente come quelle in pietra, di cui si parlò nel numero 86. Per la facilità però con cui il legno si deforma, è necessario rilegare ciascun gradino a quello immediatamente inferiore mediante una o più chiavarde, e così si sostituiscono i legamenti di ferro a quelli che si potrebbero ottenere con ritegni di legno.

La ghisa serve principalmente per la costruzione di scale a sbalzo e di scale a chiocciola. Per le scale a sbalzo si adopera una disposizione affatto analoga a quella indicata al numero 36, parlando delle scale coi gradini a tutta alzata, salvochè i gradini sono vuoti invece di essere pieni. Questi si toccano ordinariamente per una stretta faccia piana normale al pendio della rampa nella quale si trovano, e ciascuno di essi trovasi fissato al gradino inferiore mediante due o tre chiavarde. Le rampe vengono generalmente sostenute da sbarre di ferro solidamente ed orizzontalmente incastrate, dirette secondo la larghezza delle rampe stesse ed attraversanti diversi gradini da una testa all'altra.

Disposizioni analoghe a quelle che vennero indicate nel numero 85 per costrurre le scale a chiocchiola coi gradini a tutta alzata, si trovano nelle scale di ghisa su base circolare. Ciascun gradino porta con sè la parte di maschio corrispondente alla sua altezza. Il maschio è internamente vuoto, ed ogni sua parte si incastra alla inferiore. Ciascuna alzata riposa sulla pedata del gradino inferiore, e vi è fissata mediante una chiavarda che attraversa due appendici o due orecchie. Finalmente, per diminuire il peso di queste scale e per dare loro più leggierezza apparente, non si riempiono le teste dei gradini, le quali sono generalmente in evidenza, perchè non hanno bisogno d'essere sostenute. Secondo l'asse del maschio si colloca una spranga di ferro solidamente fissata inferiormente, attraversante un disco di ghisa che copre il maschio, ed avente il suo estremo lavorato a vite onde potere, mediante una chiocciola, convenientemente serrare le diverse parti del sistema le une sulle altre.

CAPITOLO VI.

Altezze, interassi, finestre ed altre aperture.

89. Ripartizione delle altezze. — Negli edifizii numeranti varii piani, si presenta la quistione di determinare quali differenze di livello conviene adottare fra un pavimento e l'altro dei diversi piani, e solamente la destinazione degli edifizii e dei varii loro piani, non che speciali considerazioni di economia, di convenienza e di decorazione possono servire di guida nella risoluzione dell'enunciata quistione.

Considerando principalmente le case da pigione per abitazioni, si può dire che, quando trovansi i siti di commercio assai attivo ed in luoghi molto frequentati, convengono le botteghe al pianoterreno, gli ammezzati sopra queste, il piano più bello e più alto sopra gli ammezzati, e quindi al disopra gli altri piani di minore importanza. Questa distribuzione, tuttochè ponga il piano migliore a qualche altezza sopra il piano terreno, pure è necessaria, imperocchè al disopra delle botteghe grandemente si fanno sentire i rumori che hanno luogo nelle vie molto frequentate, ed i disturbi che possono derivare dalle botteghe sottostanti.

Nelle case in cui il piano terreno è occupato da botteghe, l'altezza del portone è quella che determina l'altezza del detto piano. Il comodo transito pel portone esige che la larghezza di quest'ultimo arrivi almeno a metri 2,80, e che l'altezza sia per lo meno una volta e mezzo la larghezza, il che dà un'altezza di portone espressa da metri 4.20. A quest'altezza aggiungasi quella di metri 0,80, che vi deve essere dal punto più alto della linea che superiormente limita la luce del portone fino al pavimento degli ammezzati, per comprendere la battuta, lo squarcio e la vôlta all'entrata nell'androne, ed immediatamente risulta, perchè il piano terreno deve avere un'altezza di circa 5 metri. Si può diminuire l'altezza del piano terreno e ridurla fino a 4 metri, quando si prende il partito di fare in modo che lo spazio occupato dall'androne vada ad invadere gli ammezzati. Il ripiego stato adottato da alcuni architetti e che consiste nel fare in modo che l'ammezzato che corrisponde al portone abbia altezza minore di quella degli altri, è generalmente riprovevole: esso

manifesta una difficoltà male superata ed uno sconveniente riparto delle altezze. Conviene osservare che, se lo spazio occupato dall'androne si estende anche agli ammezzati, e se la conveniente distribuzione del fabbricato esige una sola scala od anche molte, tutte poste dalla medesima parte dell'androne, gli ammezzati situati dall'altra parte restano senza mezzo per accedervi e che per essi importa stabilire un'apposita scaletta.

Nelle case poste in siti tranquilli ed in cui il piano terreno viene destinato ad alloggi, un'altezza compresa fra la minima di 5 metri e la massima di 6 metri sembra quella più conveniente, sia per tenere il piano terreno di metri 0,30 a 0,60 elevato sulla superficie naturale del suolo, sia per ottenere finestre abbastanza alte e capaci di dare sufficiente luce agli alloggi.

L'altezza degli ammezzati deve essere tale che le loro finestre possano sufficientemente illuminarli, e quindi dipende essa dalle località. Quest'altezza varia, nelle ordinarie circostanze delle fabbriche per abitazioni, fra il minimo di metri 3,15 ed il massimo di metri 3,75, convenendo la prima dimensione per ammezzati prospicienti verso larghe vie e spaziose piazze, e la seconda per ammezzati in vie ristrette e prospicienti sotto portici.

Al primo piano, che è quello generalmente destinato ad alloggi signorili, conviene assegnare l'altezza maggiore, e sono riputate convenienti quelle comprese fra 4 e 5 metri.

Per gli altri piani le altezze devono essere minori di quelle del primo piano, ma non inferiori a metri 3,75.

90. Ripartizione degli interassi. — Le aperture che trovansi nelle fronti degli edifizii sono simmetriche rispetto ad un asse verticale, e negli edifizii a più piani un solo asse verticale serve per diverse aperture collocate le une sulle altre. La distanza poi fra due di questi assi successivi prende il nome di interasse. Gli interassi tutti di una stessa facciata, subordinata alle leggi della simmetria, per quanto è possibile devono essere fra loro eguali, od almeno le discrepanze essere tali che l'occhio non le possa apprezzare. Nel caso che imperiose circostanze non permettano quest'eguaglianza, almeno apparente, d'interassi, si può trarre partito del sistema dei corpi leggiermente avanzati, o di altri ripieghi che l'architetto sempre assai facilmente sa porre in pratica.

La lunghezza degli interassi dipende dalla grandezza che vuolsi avere negli interni scompartimenti e dalla maggiore o minore quantità di luce che per essi occorre. Nelle ordinarie fabbriche per civili abitazioni, riescono convenienti gli interassi aventi lunghezza com-

presa fra metri 5,20 e 5,60. L'interasse di metri 5,40 è il migliore; e, nel caso che non sia possibile attenersi agli indicati limiti, si prenderà il partito di adottare un interasse minore di metri 5,20 o maggiore di metri 5,60, in seguito a speciali considerazioni di decorazione e principalmente d'utilità negli interni scompartimenti.

Le distanze fra l'asse verticale di una fila di finestre estreme ed il corrispondente limite di una facciata si dice spalla. La lunghezza di questa deve essere minore di quella degli interassi, e solamente il sistema di decorazione che vuolsi adottare nella facciata può condurre a stabilire il giusto rapporto fra la lunghezza della spalla e quella dell'interasse. Nei casi in cui la facciata deve presentare una decorazione semplice, e che in essa non vi devono essere nè paraste, nè colonne, può convenire una spalla compresa fra i 2/3 ed i 3/4 dell'interasse.

Nel ripartire gli interassi per un determinato edifizio, conviene generalmente incominciare dalle fronti che maggiormente devono essere decorate e da quelle prospicienti all'esterno. In queste fronti importa di porre la maggiore regolarità possibile; ma, nel caso di portoni o di portoncini sboccanti verso interni cortili, si deve procurare che il piano verticale, perpendicolare alla fronte principale e passante per l'asse su cui trovansi i detti portoni o portoncini, venga a determinare sulla fronte interna corrispondente un asse convenientemente situato.

91. Finestre ed altre aperture. — Le dimensioni delle finestre nulla hanno di assoluto: a seconda della destinazione dell'edifizio in cui si trovano possono esse variare; e le proporzioni fra le loro larghezze e le loro altezze non sono soggette a regole fisse ed immutabili. Nelle fabbriche per abitazioni, le finestre si fanno generalmente con larghezza variabile fra metri 0,90 e metri 1,30; e si reputano generalmente assai convenienti quelle comprese fra metri 1,10 e metri 1,20. In quanto all'altezza delle finestre, si può dire che essa abitualmente trovasi compresa fra una volta e mezzo e due volte la loro altezza, ma che in alcune circostanze si fanno anche finestre con altezza eguale alla loro larghezza.

Attorno alle finestre, precisamente come pei portoni e pei portoncini (num. 81), conviene distinguere la mazzetta, la battuta e lo squarcio. La grossezza della mazzetta è abitualmente di metri 0,12, la larghezza della battuta di metri 0,04 a metri 0,06, e finalmente la larghezza AB (fig. 119), fra le due estremità A e B delle

rette rappresentanti gli squarci, si può ritenere siccome eguale alla larghezza CD, aumentata di 1/3 ad 1/4 della profondità CE.

Lo squarcio, principalmente nelle finestre alle quali deve essere possibile affacciarsi, si prolunga generalmente per tutta l'altezza del parapetto, la cui grossezza trovasi così ordinariamente ridotta a quella stessa della mazzetta, aumentata della grossezza del telarone delle invetriate. Per quanto spetta all'altezza del parapetto, si può dire che ordinariamente viene essa assunta siccome variabile fra 0,90 ed 1 metro.

Nelle finestre munite di balcone non esiste il parapetto, e misurasi la loro altezza a partire dalla sommità del parapetto del balcone.

Oltre i portoni, i portoncini e le finestre, esistono nelle fronti di molte costruzioni civili le aperture per le botteghe. Queste aperture hanno generalmente larghezza minore di quella dei portoni, e si può dire che essa varia fra metri 1,50 e 2,20. In quanto all'altezza delle aperture per botteghe, si assume generalmente in modo che essa varii fra una volta e mezzo e due volte la corrispondente larghezza.

Le aperture per botteghe, al pari delle finestre e dei portoncini, hanno mazzette, battute e squarci. La grossezza della mazzetta non deve essere minore di metri 0,12, la larghezza della battuta sta generalmente fra metri 0,04 e 0,08, e gli squarci si possono determinare come già si è detto parlando degli squarci delle finestre.

Per porre in comunicazione i diversi membri componenti una costruzione civile, occorrono quelle aperture che generalmente si chiamano porte. Quando queste aperture sono interne, come quelle che pongono fra loro in comunicazione i diversi membri di un alloggio, si costruiscono generalmente senza battute, mazzette e squarci; la loro sezione orizzontale suol essere un rettangolo; nelle fabbriche per abitazione la loro larghezza è compresa fra metri 0,90 e metri 1,50; e finalmente la loro altezza si assume quasi sempre maggiore di 2 metri. In alcune circostanze, per ottenere dei passaggi in luoghi ristretti e nascosti, e quando l'apertura di una porta ordinaria può essere causa d'indebolimento delle muraglie principali dell'edifizio, si adottano aperture con larghezza ancora minore del più basso degli indicati limiti e si discende fino a metri 0,60.

Le aperture che costituiscono le entrate principali negli alloggi e che trovansi generalmente collocate sotto androni, sotto atrii, sotto portici e su ripiani di scale, si costruiscono quasi sempre con larghezza compresa fra metri 1,10 ed 1,50 e con altezza eccedente

- 2 metri, senza che però sorpassi due volte e mezzo la larghezza. Queste aperture talvolta sono fornite di mazzetta, battuta e squarci, tal'altra ammettono una sezione orizzontale rettangolare; ed in quest'ultimo caso i battenti, che servono a chiuderle, devono essere posti in opera su apposita intelaiatura di legno, saldamente fissata nella muratura.
- 92. Osservazioni. Le regole che vennero date in questo capitolo e nel precedente sulle dimensioni da assegnarsi alle aperture per costruzioni civili, convengono principalmente per gli edifizii destinati all'uso di abitazioni. In ogni caso, a seconda della destinazione dei locali, della maggior o minor quantità di luce che in essi si rende necessaria, delle dimensioni degli oggetti che devono passare per le loro aperture e dell'importanza delle aperture stesse, è necessario regolare la forma e le dimensioni delle porte e delle finestre, badando di conservare quelle proporzioni che non producono cattivo effetto e che per generale consentimento sono riconosciute buone.

CAPITOLO VII.

Riscaldamento, ventilazione e salubrità degli abitati.

- 95. Apparecchii pel riscaldamento degli abitati. Gli apparecchii di riscaldamento, che più di frequente veggonsi impiegati nelle abitazioni, possono essere divisi in due grandi classi, secondo che l'apparecchio in cui ha luogo la combustione trovasi nell'ambiente stesso che riscalda, o fuori di questo. Tralasciando di parlare delle braciere, di cui gli antichi facevano grande uso e che al giorno d'oggi vanno perdendo d'importanza, a motivo dei numerosi casi d'asfissia che questo sistema di riscaldamento produce, appartengono alla prima classe i camini e le stufe. Nella seconda classe conviene annoverare i caloriferi ad aria calda, a vapore e ad acqua calda.
- 94. Camini. I camini che si trovano negli antichi edifizii presentano grandi dimensioni; le loro canne sonno assai larghe; molto vasti i focolari. In questi camini è necessario consumare una quantità considerevolissima di combustibile, per ottenere un tenue riscaldamento; nei locali in cui essi si trovano si manifestano copiose e moleste correnti d'aria; e sovente dànno fumo pel fatto che, a

motivo dell'eccessiva grandezza delle loro canne, vi si stabiliscono due correnti, una ascendente e l'altra discendente. I camini antichi costituiscono il tipo dei peggiori fra tutti gli apparecchii di riscaldamento, e, come dice Franklin, sembrano fatti coll'intento di utilizzare la minore quantità possibile di calore in essi prodotto.

I camini che si fanno nelle moderne costruzioni, non presentano più i gravi ed innumerevoli inconvenienti dei camini che si trovano negli antichi edifizii, e generalmente si costruiscono in modo d'irradiare la più grande quantità possibile del calore prodotto dal combustibile nel locale in cui sono stabiliti, di ridurre la minima possibile la quantità d'aria chiamata al camino e che non viene utilizzata nella combustione, di sostituire aria pura, preventivamente riscaldata, a quella che alimenta la combustione e che sfugge per la canna del camino, e finalmente di opporsi alla sortita del fumo dalla bocca del camino, qualunque sia la forza e la direzione del vento.

Per soddisfare alla prima condizione, Rumfort ha suggerito: di dare poca profondità al focolare, per aumentare il circuito d'irradiamento del calore; di allargare le pareti laterali e la superiore al davanti dell'orifizio della canna, onde inviare nel locale in cui il camino trovasi stabilito i raggi calorifici che vengono ad incontrarle; e di rivestire le dette pareti con un intonaco di materia bianca e capace di un bel pulimento. Queste utili disposizioni, le quali indubitatamente costituiscono un notevole miglioramento, quando si mettano in confronto con quelle adottate nei camini antichi, non conducono ad una grande economia di combustibile; ed è dimostrato, che un camino nel quale esse trovansi realizzate utilizza solamente i 0,06 od i 0,13 del calore prodotto, secondo che il combustibile è legna o carbone fossile.

Lo stesso Rumfort, nell'intento di ridurre la minima possibile la quantità d'aria chiamata al camino e che non viene utilizzata nella combustione, suggerisce di restringere la parte inferiore del camino, in modo da limitare lo spazio per cui l'aria può sfuggire senza incontrare il combustibile. Questa disposizione ha il vantaggio di aumentare la velocità dell'aria affluente e di attivare la combustione, e, per utilmente praticarla, riesce vantaggioso di stabilire una chiudenda di lamiera di ferro all'entrata della canna, la quale, nel mentre permette di regolare il tiraggio a volontà, riesce anche utile per chiudere l'orifizio della detta canna in caso d'incendio, e per opporsi al raffreddamento dopo che nel focolare trovasi solamente bragia.

Malgrado gli indicati miglioramenti, i camini consumano ancora una straordinaria quantità d'aria. Ammettendo che la sezione della canna di un camino sia di 5 decimetri quadrati e che la velocità dell'aria sia presso che la minima che ordinariamente si verifica. ossia di metri 1,50 per ogni minuto secondo, il consumo d'aria per ogni ora si eleva a circa 270 metri cubi. Oppure, partendo da un altro dato, che cioè in un camino ben costrutto passano circa 100 metri cubi d'aria per ogni chilogramma di legna bruciata, e che non è eccessivo un fuoco il quale consuma tre chilogrammi di legna all'ora, si viene a conchiudere, che l'aria consumata in un'ora da un camino in azione è di 300 metri cubi. Segue da ciò, che in una sala della capacità di 100 metri cubi, riscaldata da un camino, viene rinnovata tutta l'aria che essa può contenere circa tre volte per ogni ora. Ma come si sopperisce a questo immenso consumo d'aria, come si verifica il suo rinnovamento? Facile è la risposta a questa domanda, se osservasi che quasi tutte le porte e le finestre sono così mal chiuse che facilmente lasciano passare la quantità d'aria necessaria per sopperire al detto consumo, e la realtà di questa asserzione trova conferma in ciò che. se cercasi di rendere ermetiche le chiusure, la combustione diventa languida ed il camino manda fumo. Il permettere però che l'aria necessaria ad alimentare la combustione entri per le fenditure delle porte e delle finestre, produce il grave inconveniente dell'introduzione continua di aria fredda nel locale in cui trovasi il camino, dello stabilirsi, al livello del suolo, correnti assai incomode ed anche nocive alla salute. Per rimediare a quest'inconveniente, si possono praticare degli spiragli, pei quali l'aria esterna viene a portarsi innanzi al focolare. Questo modo però di somministrare al camino l'aria necessaria alla combustione, è causa che sempre esista uno strato d'aria fredda innanzi al camino, e toglie al medesimo uno dei meriti principali, quello cioè di estrarre l'aria viziata dal locale in cui si trova. Bisogna cercare di sostituire aria pura, preventivamente riscaldata, a quella che alimenta la combustione e che sfugge per la canna del camino; e la disposizione più conveniente per raggiungere lo scopo consiste nel far circolare attorno al focolare, in tubi di ghisa, l'aria fredda che viene dal di fuori, e nel far sì che essa arrivi nella camera in cui trovasi il camino, allorquando ha subito un conveniente grado di riscaldamento. Quest'aria sostituisce quella consumata pel fatto della combustione, e così si allontana l'inconveniente dell'entrata di aria fredda, che diversamente avrebbe luogo per le fessure delle

porte e delle finestre. Ai tubi in ghisa pel riscaldamento dell'aria fredda si possono dare varie disposizioni. È però essenziale di osservare, che essi non siano in posizioni tali da trovarsi esposti ad un troppo forte calore, imperocchè l'aria sortirebbe con un odore spiacevole, che ordinariamente dà male al capo. Generalmente riesce vantaggioso di collocare, in prossimità delle bocche dalle quali sorte l'aria calda, un vaso contenente acqua, per dare all'aria della camera quel grado d'umidità che conviene alla sua temperatura.

Le due ultime disposizioni, quella cioè che consiste nel restringere la sezione della canna alla sua origine e quella diretta ad alimentare l'aria calda necessaria alla combustione, rendono in gran parte soddisfatta la quarta condizione, ossia quella di opporsi a che il fumo, sortendo dalla bocca del camino, si spanda nel locale in cui esso si trova. La prima, contribuendo a dare una grande velocità alla corrente ascendente, caccia il fumo all'insù nel momento in cui tende a sortire dall'orifizio della canna; la seconda, mantenendo attiva la combustione col somministrare tutta l'aria necessaria, previene le correnti discendenti.

L'insufficienza d'altezza nelle canne da camino, la deficienza o l'eccesso di sezione, l'attrito, la troppo grande apertura della canna alla sua parte superiore, l'azione del vento, i tiraggi vicini, le canne comuni a più camini, sono le cause principali che possono attirare il fumo nei locali riscaldati da camini.

La forza la quale tende a far salire l'aria calda ed i prodotti gazosi della combustione in una canna da camino, è misurata dalla differenza fra il peso di due colonne d'aria, aventi l'una e l'altra l'altezza della canna, e le cui densità sono rispettivamente eguali alla densità dell'aria esteriore ed a quella dell'aria nell'interno della canna. Segue da ciò che, a parità d'ogni altra circostanza, il moto ascendente deve essere di tanto più rapido, quanto più la canna da camino si eleva sul suo punto di partenza, e che può darsi che l'altezza di una canna sia insufficiente a determinare un buon tiraggio.

Una canna da camino con piccola sezione orizzontale può essere causa di fumo, siccome insufficiente a dare passaggio a tutti i prodotti della combustione. Per contrario, una canna con grande sezione ha per effetto di diminuire la velocità della corrente d'aria calda e di permettere lo stabilimento di due correnti, una ascendente e l'altra discendente, la qual'ultima evidentemente non potrebbe fare a meno che seco trascinare una qualche parte della

prima. È ormai constatato dall'esperienza, che una sezione di metri 0,22 a metri 0,25 di diametro è sufficiente per la maggior parte dei camini d'appartamento; che bisogna adottare sezioni un po' maggiori nelle canne dei camini per grandi sale, alle quali vuolsi assicurare una ventilazione un po' energica; e che è sempre miglior partito peccare per eccesso anzichè per difetto di sezione, giacchè all'inconveniente di una sezione troppo grande assai facilmente si rimedia mediante registri. A quest'ultima prescrizione soddisfano i camini quali si fanno in Torino nelle private abitazioni, la cui canna ha sezione rettangolare col lato minore di circa metri 0,25.

La colonna d'aria calda, che sale per la canna di un camino mentre questo funziona, prova un ritardo nel suo moto ascensionale, a motivo della resistenza d'attrito prodotta dalle pareti della canna stessa; ed un tale ritardo può essere causa della produzione di fumo. Procurando che le pareti interne delle canne dei camini siano ben unite e ben liscie, e facendole di sezione circolare, si rende il minimo possibile l'effetto dell'attrito. I tubi di gesso, di terra e di ghisa sono soggetti a rottura nell'assestarsi delle costruzioni in cui si trovano posti in opera, e talvolta succede che per le indicate rotture viene a spandersi il fumo da un appartamento ad un altro. Buone canne da camino sono quelle che si fanno con mattoni sagomati da una parte sotto forma di archi circolari, per guisa che, ponendone due o tre o quattro su uno stesso piano orizzontale, si viene a formare uno strato in cui trovasi un foro circolare di raggio eguale a quello dell'arco secondo cui i mattoni trovansi sagomati.

Affinchè l'aria calda, portatasi alla sommità di una canna da camino, possa vincere l'azione, talvolta molto gagliarda, del vento e sboccare dalla luce suprema, è necessario che essa sia fornita di una certa velocità, e quindi che sia piuttosto ristretta la detta luce. Facilmente si può raggiungere l'intento, coronando superiormente le canne mediante un'appendice piramidale o conica, che si restringe in alto.

Soffiando il vento con violenza e secondo una direzione inclinata all'orizzonte, può esso penetrare nell'interno di una canna da camino e cacciare il fumo all'ingiù. Per ovviare a quest'inconveniente, si pone abitualmente alla sommità della canna, o un cappuccio girante, disposto in modo che la sua apertura si volti sempre dalla parte opposta a quella secondo cui soffia il vento, o un cappello che copra la canna senza chiuderla, o una lastra mobile, disposta in modo da chiudere l'orifizio superiore della canna verso quel

lato dal quale arriva il vento e da aprirlo dall'altra. Questi apparecchii non sempre producono il loro effetto, allorquando l'estremità della canna è più bassa delle costruzioni circostanti, ed in questi casi è necessario prolungare la canna del camino coll'aggiunta di un tubo.

Quando in un appartamento esistono più camini, sovente avviene che uno di essi manda fumo, se trovasi acceso il fuoco in un altro, perchè, avendo il secondo un tiraggio più potente del primo, richiama l'aria che trovasi nell'ambiente in cui questo è stabilito. Il vuoto che si fa nel locale, in cui funziona il camino che ha debole tiraggio, richiama l'aria che trovasi nella canna del camino medesimo; e questa discende, portando con sè una notevole quantità di fumo. Per ovviare all'inconveniente, conviene chiudere il più ermeticamente possibile le aperture che mettono in comunicazione i locali in cui esistono i due camini, ed assicurare a ciascuno una sufficiente ventilazione diretta mediante fori che servono ad introdurre dall'esterno, e già riscaldata, l'aria necessaria alla combustione.

Alcune volte più canne da camino si riuniscono assieme; e da una tale riunione avviene non di rado che la corrente più forte intercetta il passaggio alle altre, le quali perciò, obbligate a piegare in basso, danno fumo nell'interno degli appartamenti. Quando poi uno solo dei camini funziona, il fumo sovente discende per le canne dei camini in cui non trovasi fuoco, sia perchè è già troppo freddo alla sua entrata nella canna comune, sia perchè si stabiliscono delle correnti d'aria. È cosa della massima importanza l'assegnare ad ogni camino la sua-canna, la quale dia sfogo nell'atmosfera ai prodotti della combustione.

Nei muri trasversali delle fabbriche per abitazioni si trovano sovente molte canne da camino, separate fra loro da semplici tramezze di mattoni; e, se vuolsi che il fumo di una canna non si porti nella canna vicina, e che quindi discenda nell'appartamento in cui trovasi il camino al quale questa canna appartiene, è necessario che non sianvi fori fra un mattone e l'altro delle dette tramezze.

95. Stufe. — Le stufe utilizzano il calore assai meglio dei camini. L'aria dei locali in cui esse si stabiliscono viene riscaldata per il contatto colle loro pareti e per irradiamento del calore dalle pareti medesime. Quasi sempre si adottano tali disposizioni da aversi una continua sortita di aria calda nei locali in cui le stufe trovansi stabilite col far circolare attorno al focolare, entro appositi condotti, dell'aria presa nei locali stessi, o, ciò che è preferibile,

dell'aria presa esternamente, per sostituirvi quella consumata dalla combustione, e per contemporaneamente provvedere al riscaldamento ed alla ventilazione. Le stufe sono più economiche dei camini, ma hanno l'inconveniente di non permettere la vista del fuoco, la quale generalmente viene ricercata quanto il calore, e di non dare un rinnovamento d'aria tanto abbondante. In una stufa ben costrutta tutta l'aria chiamata al focolare per la combustione si trova in contatto del combustibile, e quindi il consumo è inferiore a quello prodotto da un camino. Questa quantità d'aria non supera che di poco quella necessaria ad una buona combustione, ossia circa 6,15 e 18 metri cubi per ogni chilogramma di legna, di coke e di carbon fossile.

Le stufe si costruiscono generalmente con lamiera di ferro, con ghisa e con terra cotta. Le stufe di lamiera di ferro e di ghisa danno generalmente un odore spiacevole e malsano, allorquando trovasi in esse un'elevata temperatura; si riscaldano assai rapidamente, utilizzano bene il combustibile e sono di lunga durata. Le stufe di terra cotta si riscaldano lentamente, e pure lentamente si raffreddano; in generale non mandano cattivo odore e non alterano le qualità dell'aria.

Da qualche tempo va estendendosi l'uso delle stufe di ferro o di ghisa per le cucine. Queste stufe procurano una considerevolissima economia di combustibile, sia perchè notevolmente riducono il consumo fatto in pura perdita, sia perchè permettono l'impiego di carbon fossile.

96. Caloriferi ad aria calda. — Questi caloriferi si stabiliscono al di sotto dei locali da riscaldarsi, onde facilitare il movimento ascendente dell'aria calda che in questi deve arrivare. Una disposizione, che si riconobbe conveniente per tali apparecchii, consiste: nel costrurre attorno ad una stufa di ghisa, di cui si lascierà libera la bocca per l'introduzione del combustibile, una camera murale, detta camera di riscaldamento, colle pareti senza fenditure, e nella quale, mediante apposite aperture, possa introdursi l'aria esterna; nel far girare diverse volte il tubo di condotta del fumo in questa camera, per riscaldare l'aria che in essà si trova; nel disporre le cose in modo che la detta camera si possa porre in comunicazione coi locali da riscaldarsi. L'aria, dopo aver subito un certo grado di riscaldamento, pel contatto coll'indicato tubo e per irradiamento, passa nei locali in cui si aprono le bocche da calore, e nuova aria si introduce nella camera di riscaldamento,

la quale, a suo torno riscaldata, viene anche a passare nei detti locali.

Talvolta s'incontrano delle difficoltà nella buona riuscita di un calorifero ad aria calda, e queste difficoltà principalmente si presentano: nell'assicurare la medesima temperatura a tutti i locali da riscaldarsi; nel procurare all'aria riscaldata il necessario grado di umidità; nello schivare gli odori spiacevoli ed insalubri; nel trasmettere il calore a grandi distanze. Per assicurare la medesima temperatura a tutti i locali da riscaldarsi, e principalmente per impedire che in essi abbia luogo un eccessivo calore, possono essere di qualche vantaggio i registri di cui generalmente si muniscono le bocche da calore, od anche appositi congegni automatici i quali, nel caso che la temperatura dell'aria nell'interno del calorifero diventi troppo elevata, permettano che una certa quantità d'aria fredda direttamente vada a mescolarsi coll'aria calda, per ridurla ad un conveniente grado di temperatura. Per procurare all'aria riscaldata il necessario grado d'umidità, è necessario disporre alcuni saturatori, di maniera che l'aria calda, prima di venire nei locali da riscaldarsi, possa assorbire quella quantità di vapore acqueo che è sufficiente per non somministrarla troppo secca alla respirazione. Per schivare gli odori spiacevoli ed insalubri, può essere vantaggioso di rivestire internamente la stufa di ghisa del calorifero con uno strato di materia refrattaria della spessezza di 6 a 8 centimetri, perchè così, allontanandosi la ghisa dal contatto del combustibile, nel mentre si provvede alla sua conservazione, si ovvia anche in parte al pericolo della mescolanza di gaz insalubri coll'aria calda che deve venire nei locali da riscaldarsi.

Ai caloriferi ad aria calda appartengono quelli privilegiati della Società Duca Antonio Litta e Compagnia, di cui si fanno numerose applicazioni, tanto nelle fabbriche di privata proprietà, quanto nei pubblici stabilimenti.

L'economia nelle spese di primo impianto costituisce il merito principale dei caloriferi ad aria calda.

97. Caloriferi a vapore. — Questi caloriferi essenzialmente constano di un apparecchio generatore del vapore, di tubi distributori, di recipienti con estese pareti destinati alla condensazione del vapore ed alla trasmissione del calore prodotto, e di tubi destinati a condurre l'acqua di condensazione nel generatore, ed anche fuori di esso. Il sistema di riscaldamento a vapore esige spese piuttosto considerevoli nel suo primo impianto, ma dopo riesce assai economico. Per la buona sua riuscita, si richiede che i lavori ven-

gano eseguiti colla massima cura, giacchè altrimente potrebbero verificarsi fughe di vapore assai nocive agli edifizii in cui i caloriferi trovansi stabiliti. Le applicazioni dei caloriferi a vapore nelle costruzioni civili non sono tanto numerose quanto quelle dei caloriferi ad aria calda, sia perchè non permettono di far variare il grado di riscaldamento a seconda delle variazioni della temperatura esterna, sia perchè il loro raffreddamento è quasi istantaneo.

Facendo in modo che tutto l'apparecchio riscaldatore si trovi entro un condotto od una camera nella quale sia possibile introdurre, per appositi orifizii, aria fredda dall'esterno, quest'aria si riscalda, e quindi, per aperture che generalmente si muniscono di registri, può essere introdotta nei locali da riscaldarsi.

98. Caloriferi ad acqua calda - A questi caloriferi suolsi dare una disposizione affatto analoga a quella dei caloriferi a vapore. Invece di vapore trovasi acqua nei tubi di distribuzione, e l'aria si riscalda per contatto e per irradiamento dei tubi in cui circola l'acqua e di serbatoi, che si possono chiamare stufe ad acqua, nei quali i tubi stessi conducono l'acqua calda. In tali caloriferi, dalla caldaia, sotto la quale trovasi il fuoco, sorte un tubo ascendente: questo tubo termina superiormente in un recipiente, aperto quando il calorifero è a bassa pressione, e chiuso da una valvola di sicurezza quando il calorifero è ad alta pressione. L'indicato recipiente serve per l'introduzione dell'acqua nell'apparecchio; permette lo sprigionamento dell'aria che trovasi nello spazio che l'acqua viene occupando a misura che essa si innalza nel calorifero, non che dell'aria nella medesima contenuta quando per la prima volta si riscalda; si presta all'estricamento del vapore che si produce; non si oppone all'aumento di volume che l'acqua subisce elevandone la temperatura; e finalmente è il punto di partenza dei tubi discendenti, destinati a ricondurre l'acqua nella caldaia, dopo che ha compiuto l'intiera circolazione nel calorifero. L'apparecchio nel suo complesso si può considerare come una vasta caldaia a ramificazioni; e la circolazione dell'acqua è in essa continua, finchè trovasi acceso il fuoco. L'acqua riscaldata nella caldaia si eleva nel tubo ascendente, e quindi discende quando, avendo già abbandonato una gran parte del suo calore, è giunta nel recipiente superiore. Convenientemente proporzionando le superficie riscaldanti allo spazio da riscaldarsi, col moltiplicare, se occorre, i giri dei tubi, si può in ogni caso ottenere una regolare e conveniente temperatura.

Il riscaldamento con caloriferi ad acqua calda riesce general-

mente economico, di facile applicazione, non esige una sorveglianza assidua, permette di moderare a piacimento il calore, ed il raffreddamento ha luogo in modo assai lento. I principali suoi inconvenienti stanno nelle spese di primo impianto un po' considerevoli, nell'alta pressione che devono sopportare gli apparecchii allorquando occorre di riscaldare molti piani, e nell'impossibilità di poter portare il calore a grandi distanze. Questo sistema di riscaldamento ha già ricevuto molte utili applicazioni, e l'esperienza ha dimostrato che riesce assai vantaggioso per il riscaldamento delle chiese.

Affinchè questi caloriferi possano immettere aria pura e calda nei locali che devono riscaldare, è necessario che i loro apparecchii riscaldatori si trovino entro condotti o camere, comunicanti coll'esterno mediante orifizii convenientemente disposti, coi detti locali mediante aperture che generalmente si muniscono di registri.

- 99. Caloriferi ad acqua ed a vapore. Coll'uso simultaneo dell'acqua e del vapore si possono ottenere risultamenti di gran lunga migliori di quelli dati dai due sistemi di riscaldamento, di cui si fece cenno nei due precedenti numeri. Questo nuovo sistema consiste nell'impiegare il vapore per riscaldare l'acqua contenuta entro serbatoi più o meno numerosi, i quali costituiscono altrettanti punti di partenza della circolazione dell'acqua calda. Volendosi applicare questo sistema di riscaldamento in un edifizio a più piani, conviene porre alcune caldaie piene d'acqua nei diversi piani; riscaldare l'acqua in esse contenuta, mediante tubi serpeggianti, pei quali si fa arrivare il vapore; e munirle di tubi riscaldatori, destinati a ricevere l'acqua calda ed a ricondurnela allorquando ha perduto il suo calore. I tubi riscaldatori trovansi generalmente allogati in un condotto, in modo che in loro contatto può venire dell'aria fredda e pura. La temperatura di quest'aria aumenta, e per apposite aperture, le quali quasi sempre sono munite di registri, passa nei locali che devono essere riscaldati.
- 100. Conclusioni sui diversi sistemi di riscaldamento Conchiudendo sulla convenienza relativa dei diversi sistemi di riscaldamento, si può dire:
- 1° Che i camini sono apparecchii di riscaldamento di qualche convenienza per le private abitazioni, ma che sono meno economici degli altri, perchè utilizzano una piccola quantità del calore prodotto, e che consumano una quantità considerevole d'aria già riscaldata;
- 2° Che le stufe ben disposte possono dare un sufficiente riscaldamento, con molta economia di combustibile, e che assai conve-

nientemente si possono collocare nei vestiboli e nelle anticamere, facendo andare l'aria calda nei locali vicini mediante appositi condotti muniti delle rispettive bocche di calore;

3° Che i caloriferi costituiscono il miglior mezzo di riscaldamento, e quello che più conviene nei grandi stabilimenti;

4° Che convengono i caloriferi ad aria calda, quando importa di ridurre le spese di primo impianto, e quando i diversi membri da riscaldarsi sono poco numerosi ed assai vicini;

5° Che i caloriferi ad acqua calda si possono ritenere siccome convenienti in quegli edifizii che non esigono un troppo grande sviluppo di tubi di circolazione, sia per la facilità con cui permettono di regolare la temperatura, sia per la grande economia di combustibile che con essi si ottiene;

6° Che i caloriferi con acqua riscaldata dal vapore presentano, presso a poco, gli stessi vantaggi di quelli ad acqua calda, ma che hanno principalmente la proprietà di portar rapidamente il calore a grandi distanze.

Nelle private abitazioni riesce conveniente di collocare le bocche da calore al livello del suolo e mai ad altezza maggiore di 1 metro. L'aria calda si eleva, mentre quella fredda e viziata dalla respirazione si abbassa e viene attratta dall'apparecchio di riscaldamento. Per le sale a mangiare conviene il riscaldamento dato da un calorifero o da una stufa di terra cotta, collocata in un locale vicino. Il calore vi deve essere ripartito con uniformità, e per ciò le bocche da calore devono trovarsi, per quanto si può, uniformemente distribuite sul perimetro della sala al livello del suolo. Le bocche per l'estrazione dell'aria viziata si possono collocare negli intervalli esistenti fra quelle d'introduzione dell'aria calda. Riesce anche cosa assai commendevole quella di far passare aria calda sotto piastre di ghisa o di lamiera, disposte sotto la tavola e coperte con un tapeto, nell'intento di assicurare una dolce temperatura ai piedi dei commensali.

Nelle scuole riesce conveniente il sistema di riscaldamento ad acqua calda, oppure quello ad acqua riscaldata dal vapore. I tubi di condotta dell'acqua calda bastano generalmente per riscaldare le gabbie delle scale, i corridoi e i dormitoi. I recipienti o stufe d'acqua calda si pongono nelle sale di studio, che esigono una temperatura più elevata, e generalmente torna vantaggioso lo stabilimento di piastre di ghisa leggiermente riscaldate, e poste al livello del suolo in diversi punti della sala.

I grandi anfiteatri per pubbliche scuole e per pubbliche adunanze

esigono che il calore si trovi distribuito colla maggior uniformità possibile; e generalmente si raggiunge lo scopo facendo arrivare l'aria calda, somministrata da un calorifero, per un gran numero di piccoli orifizii aperti sotto ciascun rango delle gradinate. Per la sortita dell'aria viziata si lasciano più aperture ai piedi delle pareti; siccome però ben di frequente avviene che l'aria contenuta negli anfiteatri notevolmente si riscalda nel viziarsi, e che per conseguenza tende a sollevarsi, importa che siavi la possibilità di darvi sfogo dall'alto mediante aperture da potersi a piacimento chiudere ed aprire.

Pel riscaldamento delle pubbliche biblioteche convengono i caloriferi, e principalmente quelli ad acqua riscaldata dal vapore. Conviene avere delle stufe ad acqua e delle piastre di ghisa riscaldate, poste sotto i piedi dei lettori. Le aperture per la sortita dell'aria viziata si stabiliscono quasi al livello del suolo.

Pel riscaldamento delle chiese riescono vantaggiosi i caloriferi, e principalmente quelli ad acqua calda. La caldaia si stabilisce nei sotterranei, i tubi di circolazione dell'acqua si pongono entro canali sotto il pavimento dell'edifizio; di tanto in tanto si pongono delle stufe ad acqua, ossia dei recipienti in cui può raccogliersi una considerevole quantità d'acqua calda; si fa in modo che nel detto canale possa introdursi dall'esterno aria fredda, per riscaldarsi in contatto delle pareti dei tubi e delle stufe, e quest'aria riscaldata vien emessa nella chiesa da bocche di calore uniformemente distribuite al livello del suolo o in corrispondenza delle stufe ad acqua calda, o in altri siti che si reputano più convenienti, e coperte con una griglia di ghisa a maglie piuttosto strette.

Per gli ospedali conviene il sistema di riscaldamento con caloriferi, e sarebbe bene che in tali stabilimenti si avesse esclusivamente ricorso ai caloriferi ad acqua riscaldata dal vapore. Perciò in un'estremità dell'ospedale conviene stabilire una caldaia, capace di produrre vapore sotto una pressione di 4 a 5 atmosfere. Questo vapore, espandendosi, metta in movimento un ventilatore a forza centrifuga per assicurare la ventilazione, come si vedrà nei numeri 101 e 102; e dopo l'espansione, conservando ancora una pressione di circa un'atmosfera e mezza, venga esso condotto per un tubo principale, che deve essere mantenuto inviluppato da sostanze cattive conduttrici del calore, in altri secondarii quante sono le maniche del fabbricato da riscaldarsi. Un apposito sistema di tubi deve condurre l'acqua di condensazione nella caldaia. Nei corridoi ed in tutte le camere per il personale destinato al ser-

vizio degli infermi, si può mantenere una conveniente temperatura, aprendo apposite bocche di calore, che ricevano l'aria riscaldata dalle colonne montanti di vapore e dalla condotta di ritorno dell'acqua nei serbatoi. Per le gabbie delle scale chiuse e per le infermerie conviene stabilire delle stufe ad acqua riscaldata dal vapore e di immettere in questi locali aria la quale ha circolato attorno a queste stufe. È vantaggioso che i tubi della condotta del vapore sieno stabiliti in appositi condotti coperti da piastre di ghisa. L'aria pura, venendo in contatto di questi tubi si riscalda, attraversando le stufe ad acqua calda, acquista una temperatura ancora maggiore, e sbocca nelle infermerie.

Nei carceri cellulari, in cui trovansi generalmente parecchii corridoi, sui quali a dritta ed a sinistra ed in più piani sono disposte le celle dei detenuti, devesi ottenere il necessario riscaldamento mediante caloriferi. In conveniente posizione, e preferibilmente verso il centro dell'edifizio, si può stabilire un calorifero ad aria calda; mediante appositi condotti condurre quest'aria all'estremo dei corridoi del piano di celle che trovasi più basso; entro canali fatti nei fianchi delle vôlte, farla venire ai piedi dei muri divisorii fra i corridoi e le celle; e finalmente immetterla nelle celle ad altezza non maggiore della metà della loro altezza totale, median te canne verticali munite di registri. - Invece dei caloriferi ad aria calda, possono riescire di gran vantaggio quelli ad acqua calda riscaldata dal vapore. In ciascun piano si può stabilire un recipiente, che sia il punto di partenza di una circolazione d'acqua in tubi di ghisa. L'acqua contenuta in ognuno di questi recipienti, riscaldata col farvi arrivare dei tubi contenenti vapore, passando per la bocca più elevata dei tubi di circolazione, prende a muoversi in questi e, più o meno fredda, ritorna ai recipienti. Le due parti di ciascuno dei tubi di circolazione siano parallele per quasi tutta la loro lunghezza; si trovino disposte sul davanti delle celle, ad una piccola profondità sotto il suolo, entro condotti di muratura; e due tramezze trasversali assegnino a ciascuna cella la conveniente superficie riscaldante per una lunghezza di circa metri 1,20. L'aria pura dei corridoi portandosi in contatto di queste superficie riscaldanti, acquista una conveniente temperatura, e passando nelle celle vi apporta il necessario calore.

Quanto si è detto in questo capitolo basta per dare una prima idea sui metodi di riscaldamento generalmente adottati nelle costruzioni civili. L'argomento è della più grande importanza, presenta parecchie quistioni del massimo interesse, e chi ben vuol conoscerlo e studiarlo può consultare il prezioso lavoro del Péclet, intitolato Traité de la chaleur.

101. Ventilazione. — La ventilazione degli abitati consiste nell'estrarre l'aria viziata e nell'introdurre aria pura. Queste due operazioni sono talmente collegate fra di loro, che ciascuna di esse è una conseguenza quasi obbligata dell'altra; e basta di provvedere a una sola, quando trovansi aperti gli orifizii necessarii per l'altra.

Si è visto nel numero 94, che i camini sono potenti mezzi di ventilazione, che funzionano richiamando l'aria viziata, e che anche un fuoco non troppo attivo consuma in un'ora circa 500 metri cubi d'aria, ossia tanta quanta è necessaria ad una riunione di cinquanta persone, in ragione di 6 metri cubi per ogni persona e per ogni ora. È però facile il vedere che la ventilazione mediante camini non può sempre convenire: essa esige che il fuoco sia acceso, e, soddisfacendo a questa condizione, talvolta si accresce eccessivamente la temperatura.

I camini degli appartamenti, e principalmente i grandi camini dei saloni, sono adunque convenientissimi apparecchii ventilatori nelle più frequenti circostanze; essi però non possono funzionare che nell'inverno; ed anche in questa stagione riescono insufficienti per le sale in cui devono aver luogo grandi riunioni.

Allorquando si reputa che i camini da stabilirsi nei locali da ventilarsi non siano per riescire convenienti, si può ricorrere ai camini di richiamo da porsi fuori dei locali stessi. Questi camini devono essere costrutti in modo da consumare la maggior quantità possibile d'aria per una determinata quantità di combustibile; devono avere la loro canna molto alta, con sezione orizzontale piuttosto grande; ed è di più necessario che, per una conveniente disposizione d'ogni cosa, l'alimentazione del fuoco in essi acceso venga operato solamente coll'aria da estrarsi. Una sorgente qualunque di calore basta per ottenere lo stesso effetto che si ottiene coi camini di richiamo. L'aria contenuta nei locali da ventilarsi deve poter venire in contatto di questa sorgente, riscaldarsi e salire entro apposito tubo, per portarsi nell'atmosfera e per determinare un sufficiente tiraggio.

Negli apparecchii di riscaldamento ad acqua calda, sovente si pongono i recipienti superiori, non che i tubi pei quali sorte il fumo che viene dal focolare, entro un camino di richiamo e si ottiene così un tiraggio assai attivo.

In quelle circostanze per le quali non occorre una ventilazione

energica, può bastare di accendere una lampada nel camino di richiamo, o di far in questo passare il tubo a fumo di una stufa o di un focolare da cucina.

La sola differenza di temperatura, che quasi sempre esiste fra l'aria interna e l'aria esterna, può bastare affinchè si stabilisca una corrente nelle canne dei camini, e quindi questi apparecchii contribuiscono alla ventilazione degli appartamenti, anche quando in essi non trovasi acceso il fuoco.

Lasciando in un locale da ventilarsi alcune piccole aperture al livello del pavimento dalla parte del nord, ed altre nella parte superiore verso sud, si ottiene che l'aria fredda s'introduce per le prime, che si riscalda, che si innalza, e che sorte dalle seconde. Conviene però osservare: che la ventilazione, la quale dipende solamente dalla temperatura dell'atmosfera, varia con questa; che non è sempre sufficiente; e che bisogna ricorrere ad altri sistemi, allorquando è necessario un movimento regolare dell'aria.

Invece dei camini di richiamo, impiegansi ben di frequente appositi apparecchii meccanici per la ventilazione. Questi apparecchii si possono mettere in azione mediante una macchina a vapore, mediante una caduta d'acqua, mediante animali ed anche da uomini, in quelle circostanze in cui la mano d'opera costa poco. Molte sono le disposizioni che si danno agli apparecchii meccanici per ventilazione, assai di frequente ne compaiono dei nuovi, e alcuni di essi si prestano anche per ventilazioni di poca importanza, alcuni di essi si montano come gli orologi, e funzionano regolarmente per determinati intervalli di tempo.

Allorquando vuolsi produrre mediante macchine la ventilazione in un determinato edifizio, riesce generalmente vantaggioso di procedere per introduzione di aria pura, giacchè la riuscita dell'operazione è più sicura che non operando per estrazione dell'aria viziata. Quando si opera nella seconda maniera, non si può avere la certezza che l'aria estratta venga sostituita da quella che si ha in mira di introdurre, ossia da aria calda nell'inverno e da aria fredda nell'estate; le porte che di tanto in tanto bisogna aprire, le loro fenditure, quelle dei soffitti e delle tramezze possono dare passaggio ad una certa quantità d'aria che non ha la temperatura nè la purezza conveniente.

Nella stagione estiva si può ottenere una conveniente ventilazione senza camini di richiamo e senza apparecchii meccanici. Per ottenere questo, basta collocare degli apparecchii refrigeranti nelle parti più elevate dei locali da ventilarsi. L'aria esterna attraversa questi apparecchi, si raffredda, discende in virtù della sua densità, e scaccia l'aria calda la quale sorte passando per orifizii convenientemente disposti.

In generale, qualunque sia il metodo di ventilazione che credesi opportuno di dover adottare, conviene disporre gli orifizii d'entrata dell'aria pura e di sortita dell'aria viziata in modo che la sostituzione di quella a questa abbia luogo, per quanto si può, in modo uniforme e regolare. È bene che l'aria pura venga immessa circa al livello dei pavimenti, perchè, se è calda, immediatamente si innalza e si mescola con quella che la circonda, riscandandola e purificandola; se è fredda si spande a poca altezza sul detto livello, si riscalda, a poco a poco si altera e si eleva per dar posto a nuova aria pura. Nell'inverno ed in quei locali in cui l'aria si raffredda, si devono pure stabilire gli orifizii di sortita dell'aria viziata al livello dei pavimenti; mentre nell'estate ed in tutti i locali in cui l'aria viene riscaldata, importa che questi orifizii si trovino nelle parti superiori, perchè l'aria viziata e quindi riscaldata, perdendo di densità, tende innalzarsi. Finalmente conviene fare in modo che le bocche d'immissione siano lontane da quelle d'emissione; e questo affinche il movimento dell'aria in tutte le parti del locale da ventilarsi sia conforme all'effetto che vuolsi ottenere.

102. Cenno di alcune disposizioni per ottenere una conveniente ventilazione. — Le disposizioni da adottarsi per ottenere una conveniente ventilazione dipendono dalla destinazione dell'edifizio in cui essa vuolsi effettuare.

Negli edifizii per abitazioni il riscaldamento si produce generalmente mediante camini o mediante stufe, e questi apparecchii provvedono già ad una sufficiente ventilazione nelle ordinarie circostanze. Pei grandi appartamenti si possono impiegare i caloriferi, e quelli ad aria calda già si vedono applicati in molti edifizii per abitazioni. I caloriferi a vapore, quelli ad acqua calda e quelli in cui trovasi l'impiego simultaneo del vapore e dell'acqua calda, esigono un sistema d'impianto un po' incomodo e non molto adatto alle disposizioni delle case per abitazioni, e per questo non hanno ricevuto numerose applicazioni per il riscaldamento di tali edifizii. Per provvedere alla ventilazione in quei casi in cui il riscaldamento ottiensi mediante caloriferi, può convenire un camino di richiamo, il quale, mediante condotti o mediante tubi muniti di registri, possa attirare l'aria viziata dei locali da ventilarsi.

Negli ospedali, un sistema di ventilazione il quale conduce indubitatamente ad eccellenti risultati quando vuolsi riscaldare coll'uso simultaneo dell'acqua e del vapore, è il seguente. Il vapore, che viene prodotto sotto una pressione di 4 o 5 atmosfere (num. 100). espandendosi, metta in moto un ventilatore a forza centrifuga; e questo, aspirando aria pura dall'esterno, la cacci in un largo condotto o tubo che, mediante ramificazioni, sbocca nei locali da ventilarsi. Nell'estate, il vapore che espandendosi ha contribuito al movimento del ventilatore, si può utilizzare per il servizio dei bagni, della lavanderia o per la produzione di qualche altro lavoro. Nell'inverno, si impiega al riscaldamento dell'acqua contenuta in apparecchii riscaldatori del genere di quelli che convengono per porre in pratica il sistema di riscaldamento di cui si diede un cenno nel numero 99. Facendo in modo che l'aria aspirata dal ventilatore venga a sboccare nel locale da ventilarsi dopo essersi mantenuta in contatto degli accennati apparecchii riscaldatori, contemporaneamente si provede alla ventilazione ed al riscaldamento. Per la sortita dell'aria viziata conviene praticare parecchii condotti nei muri dei locali da ventilarsi, lasciare questi condotti, muniti di registri alla loro bocca inferiore, in comunicazione coi detti locali, e farli superiormente sboccare in un camino comune, che viene a portare l'aria viziata fuori del tetto. Affinchè poi il ventilatore aspiri aria pura, è necessario usare tale disposizione che vengagli somministrata aria proveniente dall'alto, alla qual cosa facilmente si arriva, facendo in modo che l'aria da esso aspirata sia quella che discende in un tubo o in una torretta o in un campanile elevantesi sopra il tetto dello stabilimento. Per determinare un conveniente tiraggio nel camino d'estrazione dell'aria viziata, conviene che in esso si trovi una sorgente di calore, e si può questa gratuitamente ottenere, facendo in modo che nel senso del suo asse venga a passare un tubo metallico che serve di camino e nel quale passano i prodotti della combustione, che ha luogo in un focolare continuamente acceso come quello della caldaia a vapore e quello delle cucine.

Col metodo di ventilazione di cui or ora si è parlato, non è difficile ottenere negli ospedali una ventilazione di circa 50 metri cubi per ogni letto e per ogni ora, e di portarla anche al doppio nei casi eccezionali di malattie contagiose e di epidemie le quali obligano a moltiplicare il numero dei letti. I risultati a cui si arriva sono eccellenti; ma le spese di primo impianto sono molto consi-

derevoli, e la gran parte delle amministrazioni degli ospedali non hanno a loro disposizione le somme occorrenti. Ad ogni modo però è necessario che abbia luogo l'estrazione dell'aria viziata e l'introduzione dell'aria pura. Il primo scopo si può raggiungere col metodo già indicato, ossia coi condotti praticati nel muro e comunicanti con un camino d'estrazione in cui trovasi una sorgente di calore, od anche con uno o più camini di richiamo; nell'inverno si può raggiungere il secondo scopo mediante caloriferi ad aria calda o mediante stufe. Con ogni cura bisogna cercare che l'aria calda venga portata al conveniente grado di umidità prima della sua immissione nei locali da riscaldarsi, facendola passare sopra vasi contenenti dell'acqua; ed è indispensabile che i caloriferi e le stufe siano di tale struttura da non dar luogo ad odori spiacevoli ed insalubri.

Nei carceri cellulari si può operare la ventilazione traendo partito del cesso che necessariamente deve trovarsi in ciascuna cella, e cercare così la salubrità dove trovasi la principale causa d'infezione. I condotti principali, in cui immettono le canne verticali o quasi verticali dei cessi di una stessa fila di celle, ed i quali pei loro estremi più bassi riversano le immondizie nei pozzi neri, per le loro estremità più elevate si pongano in comunicazione con un condotto collettore, il quale possa condurre l'aria viziata attorno ad un tubo metallico in cui passano i prodotti della combustione di un focolare continuamente acceso, che può essere quello stesso delle cucine. Si ha un camino d'estrazione nello spazio cilindrico compreso fra il detto tubo e la scorza murale che lo circonda a conveniente distanza; ed in questo camino determinasi una colonna ascendente d'aria viziata, la quale viene dal collettore, dai tubi principali, dai condotti verticali dei cessi e quindi dalle celle.

Un altro mezzo per ventilare le celle nei carceri cellulari è il seguente: nei muri opposti a quelli per cui nell'inverno arriva l'aria calda, si pratichi per ogni cella una canna verticale colla sua bocca inferiore munita di registro e posta all'altezza di circa metri 0,25 sul pavimento. Queste canne vadano a sboccare nei sottotetti in canali orizzontali longitudinali, posti internamente contro i muri nei quali sono esse praticate. In questi canali raccoglitori e verso il loro mezzo si mantenga continuamente il fuoco in focolari d'estrazione, che richiameranno a sè l'aria dei canali, quella delle canne e quindi quella viziata delle celle, offrendo uno sfogo ad essa non che ai gas della combustione per un camino

che convenientemente elevasi al disopra del tetto. Quando impiegasi questo secondo mezzo di ventilazione, è necessario che le bocche dei cessi siano mantenute ben chiuse se vuolsi che non si spandano cattivi odori nelle celle, e per raggiungere lo scopo servono quelle disposizioni che permettono un chiudimento idraulico.

Nei teatri si provvede generalmente al riscaldamento nell'inverno mediante caloriferi, e, mediante l'aria calda che questi somministrano, si riscaldano i vestiboli ed i corridoi. L'aria calda, attraversando i palchi, le gallerie e le aperture che pongono il teatro in comunicazione coi locali riscaldati, si porta in quello; il calore prodotto dai numerosi lumi nuovamente la riscalda e si verifica un tiraggio energico per il gran foro che generalmente trovasi nel mezzo del soffitto, il quale serve da camino di richiamo. È bene di evitare che nei teatri si verifichino correnti troppo energiche, e si raggiunge lo scopo facendo in modo che l'aria passi dai corridoi nella sala degli spettatori, attraversando numerosi piccoli fori lasciati nel soffitto dei palchi, ed uniformemente distribuiti. In alcuni teatri ciascun palco è munito di due aperture, una per farvi arrivare aria direttamente presa dai corridoi, l'altra comunicante col camino di richiamo mediante un piccolo tubo e destinata alla sortita dell'aria viziata. In alcuni altri le porte dei palchi sono fatte a guisa di persiane nel loro basso. L'aria dei corridoi entra divisa nei palchi, attraversandoli produce una continua ventilazione, e si porta nella sala degli spettatori. È indispensabile un camino di richiamo sul palco scenico: questo camino si mantiene generalmente chiuso, e si apre quando devesi dar sfogo a cattivi odori sviluppati nel teatro. La bocca del camino di richiamo posto nel mezzo della sala degli spettatori si può generalmente più o meno aprire, nell'intento di produrre una ventilazione più o meno energica. - Nell'estate, osservando che l'aria che viene dai corridoi in breve tempo riscaldasi in modo eccessivo, si procura di avere dai sotterranei l'aria fresca necessaria alla ventilazione: difficilmente però si raggiunge lo scopo, giacchè quest'aria non risponde alla chiamata quando è più fredda dell'esterna, la quale ultima, più leggiera della prima, arriva più prontamente passando per le porte sempre aperte della platea, dei palchi e delle gallerie. Generalmente il male di avere nella sala degli spettatori una troppo elevata temperatura si presenta tanto nell'estate quanto nell'inverno, e la causa dell'inconveniente sta nell'introdurvi l'aria dei corridoi e dei vestiboli. Bisogna trovar mezzo, appena si sente che il calore va crescendo oltre il bisogno, di introdurre aria fresca senza incomodare gli spettatori; e pare che questo si possa ottenere facendola arrivare per un grande numero di orifizii, formanti una corona attorno al soffitto del teatro, e ripartiti in tutti quei siti in cui l'aria calda non potrebbe prendere parte alla circolazione generale. Quest'aria si può far venire dal di fuori, giacchè, essendo essa più fredda di quella del teatro, discende per proprio peso. Nell'estate, per essere la differenza fra la temperatura esterna e la interna insufficiente a determinare un movimento abbastanza attivo, può convenire di far passare l'aria da introdursi nel teatro in apposito apparecchio atto a raffreddarla e situato nel sottotetto dell'edifizio.

Quanto si è detto sulla ventilazione basta per dare un'idea sui sistemi generalmente impiegati per soddisfare a quest'imponente bisogno della nostra esistenza, e, chi vuol conoscere e studiare quest'importante argomento, può consultare il già citato prezioso lavoro del signor Péclet, intitolato Traité de la chaleur.

103. Disinfezione degli abitati. — I cessi costituiscono la principale causa d'infezione nelle costruzioni civili.

Le canne dei cessi, seguendo per la massima parte della loro lunghezza un percorso verticale, presentando in alcuni siti dei gomiti leggiermente incurvati e prendendo una direzione inclinata verso le loro estremità inferiori, versano le materie che per esse passano in appositi serbatoi o pozzi neri. È necessario che queste canne siano assolutamente impermeabili; i loro gomiti devono essere fatti in guisa che non possa ostruirsi la loro sezione; e quelle parti che sono inclinate devono presentare pendenza sufficiente a ciò che le immondizie non possano in esse fermarsi, e non mai minore di 1/8. Queste canne si costruiscono con tubi di terra cotta, di pietra o di ghisa, ed il loro diametro varia fra metri 0,20 e 0,30.

Nelle abitazioni per agiate famiglie, il sedile di ogni cesso è stabilito su un bacino di porcellana chiuso alla sua parte inferiore da una valvola a bilico, la quale si apre per dar passaggio alle materie che su essa cadono. Mentre si apre la detta valvola, un tubo, che trovasi in comunicazione con un serbatoio d'acqua, versa nel bacino quant'acqua è necessaria alla sua lavatura e quanta ne occorre, affinchè, appena chiusa la valvola, ne resti su essa uno strato dell'altezza di qualche centimetro.

I muri di circuito dei pozzi neri devono essere assolutamente impermeabili, onde prevenire le infiltrazioni che potrebbero infestare il suolo e corrompere l'acqua dei pozzi e delle sorgenti d'acqua potabile. La pianta dei pozzi neri può essere rettangolare, circolare, ellittica ed anche ovale; una platea impermeabile deve loro servire di fondo; a seconda della forma della pianta, una vôlta a padiglione oppure a bacino deve ricoprirli. La grossezza dei muri perimetrali dei pozzi neri deve essere da metri 0,40 a 0,50; la stessa grossezza si può assegnare alla platea nel suo mezzo; e basta pel vôlto una grossezza di metri 0,24 a 0,50. La platea deve essere foggiata a bacino, ed internamente si devono togliere gli spigoli vivi che presentano i pozzi neri su pianta rettangolare, raccordando convenientemente le pareti interne. I pozzi neri si stabiliscono generalmente sotto una superficie libera, per esempio, sotto i cortili; alcune volte si stabiliscono a dirittura al di sotto dei sotterranei. Il primo modo di stabilimento dei pozzi neri rende facile il loro spurgo, ma obbliga all'inconveniente di molti tratti inclinati nelle canne dei cessi; il secondo invece è meno favorevole alla facilità di spurgo, ma per contro le canne risultano quasi totalmente verticali.

Nei vasti fabbricati, per non assegnare ai tratti inclinati delle canne dei cessi una pendenza insufficiente, è necessario costrurre più pozzi neri. Le loro dimensioni variano secondo le quantità di materie che devono ricevere in un dato tempo. Se sono a base quadrata, il loro lato deve essere compreso fra 2 ed 8 metri; queste lunghezze convengono pel diametro quando sono a base circolare; e l'altezza sotto chiave deve essere fra 2 e 4 metri. Alcuni costruttori determinano la capacità dei pozzi neri per civili abitazioni, partendo dall'ipotesi che siano necessarii 2 metri cubi per ogni individuo e per ogni anno.

È necessario che la bocca d'estrazione della materia di un pozzo nero sia costrutta in modo da non permettere esalazioni e da servire al facile spurgo. Questa bocca ha generalmente forma rettangolare con lati di circa 4 metro per 0,65; al di sopra è circondata da un telaio di pietra, e corrisponde al mezzo del vôlto del pozzo nero. L'altezza della bocca d'estrazione sull'intrados del vôlto non deve essere maggiore di metri 4,50, salvo che le località imperiosamente esigano un'altezza maggiore; e, pel chiudimento ermetico di questa apertura, le cose devono essere disposte in modo da riuscire possibile il collocamento di una prima lastra orizzontale di pietra nell'interno della canna posta fra la bocca ed il vôlto, di un sovrastante strato di creta e di una seconda lastra inquadrata nella detta intelaiatura ed avente la sua superficie superiore al livello del suolo.

Le canne da cesso, da lavatoio ed altre qualsiasi, per le quali

vengono a passare materie sucide nel portarsi ai pozzi neri, devono essere poste in diretta comunicazione coll'aria esterna mediante tubi o sfiatatoi, sboccanti sopra il tetto, ad una tale altezza che le esalazioni non possano penetrare nei sottotetti, nè apportar incomodo agli abitanti delle case vicine. Le canne degli sfiatatoi si fanno con tubi di terra cotta, di pietra o di ghisa ed hanno generalmente lo stesso diametro delle canne da cesso o da lavatoio di cui fanno seguito. Invece di fare tanti sfiatatoi quante sono le canne per le quali vengono a passare le immondizie, si può fare uno sfiatatoio unico per ogni pozzo nero, farlo partire dall'alto del suo vôlto e portarlo a sboccare sopra il tetto preferibilmente a mezzodi. Per ottenere che questo sfiatatoio funzioni come mezzo di ventilazione, conviene farlo passare presso i camini dei focolari abitualmente in attività, oppure mantenere accesa una lampada o un becco di gas nel suo interno. Questa disposizione è da riputarsi siccome assai vantaggiosa in quanto, determinando una corrente ascendente d'aria viziata dal pozzo nero nello sfiatatoio, è causa che debbano stabilirsi correnti discendenti dai cessi al detto pozzo, e toglie il pericolo delle correnti ascendenti dal pozzo nero nelle canne dei

I pozzi neri, i quali altro non sono che serbatoi collocati nelle costruzioni civili per raccogliere le materie più infette, non possono a meno che essere causa di odori spiacevoli e malsani. Nelle grandi città importa di radicalmente modificare il sistema, procurando che le immondizie vengano asportate nel più breve tempo possibile, colla minima spesa ed a totale benefizio dell'agricoltura.

PARTE SECONDA

COSTRUZIONI STRADALI.

CAPITOLO I.

Nozioni generali.

104. Strade e loro distinzione. — Chiamansi strade quelle zone di terreno convenientemente apparecchiate, affinchè su esse facilmente possa effettuarsi il transito di uomini a piedi, di animali, di veicoli trainati da animali e di veicoli trainati da locomotive.

Le strade, a seconda della materiale struttura della loro parte resistente, si distinguono: in strade con inghiaiata; in strade selciate; in strade lastricate; in strade ferrate.

Le strade con inghiaiata hanno la loro parte centrale, o carreggiata, costituita da ghiaia o da pietrisco, e presentano esse la struttura che vedesi applicata su tutte le lunghe linee destinate all'ordinario carreggio.

Le strade selciate sono quelle il cui suolo resistente è costituito da ciottoli naturali, posti in opera sopra un letto di arena. Questa struttura di frequente si vede adottata nei luoghi abitati, non che in quei siti in cui l'inghiaiata sarebbe esposta ad essere scompigliata ed esportata dalla violenza delle acque in tempo di pioggia.

Le strade lastricate sono quelle che hanno il loro suolo resistente costituito da pietre convenientemente apparecchiate. Questa struttura si adotta nei luoghi abitati e principalmente nelle vaste e popolate città.

Le strade interne con selciate, rotaie e marciapiedi, quali si vedono in quasi tutte le città dell'Alta Italia, presentano una tale struttura da appartenere simultaneamente alle strade selciate ed alle strade lastricate. Si devono poi considerare siccome strade lastricate quelle il cui suolo resistente è costituito da uno strato ben compresso di pietra d'asfalto preventivamente ridotta allo stato di polvere (Materiali da costruzione, num. 149).

Le strade ferrate sono quelle in cui il passaggio dei veicoli ha luogo sopra guide o rotaie di ferro. Queste rotaie trovansi generalmente poste in opera su traversine di legno, ed il complesso delle traversine, delle rotaie e dei mezzi che servono a fermare queste su quelle costituisce l'armamento delle vie ferrate. L'armamento è stabilito sul ballast e, fatta eccezione delle rotaie, trovasi generalmente coperto dalle materie costituenti il ballast stesso.

Nel capitolo III della prima parte del volume il quale tratta dei lavori generali d'architettura civile, stradale ed idraulica già si è detto in che cosa consistono le inghiaiate, le selciate, i lastricati ed i ballast, e quali sono le norme per l'eseguimento e per la manutenzione di queste importanti opere.

105. Limiti di pendenza delle strade. — Il profilo longitudinale fatto sull'asse di una strada qualunque consta generalmente di una linea poligonale, avente alcuni lati orizzontali, alcuni in salita, alcuni in discesa; e la buona costituzione di una strada nel senso longitudinale dipende principalmente dalla pendenza dei tratti inclinati, e dalla ragionata combinazione di questi con quelli orizzontali.

La pendenza dei tratti inclinati deve stare al disotto di un certo limite dipendente dalla struttura e dai motori destinati a percorrerli, e si può ritenere che nelle ordinarie circostanze questo limite debba essere: del 5 per 100 per le strade carreggiabili con inghiaiata: del 4 per 100 per le strade carreggiabili selciate; del 5 per 100 per le strade carreggiabili lastricate; del 1 per 100 per le strade ferrate di pianura; del 2,5 per 100 per le strade ferrate di montagna; del 7 per 100 per le strade ferrate di montagna con guida centrale, come quella stabilita dal signor Fell per la traversata del Moncenisio; e del 2,5 per 100 per le strade ferrate vicinali in pianura.

Non è da dirsi che gli indicati limiti di pendenza siano effettivamente gli estremi e che in alcune eccezionali circostanze non si possano costrurre brevi tratti di strade aventi pendenze maggiori. Nelle strade di montagna, con inghiaiata, ben di frequente s'incontrano alcuni tronchi con pendenza del 7 per 100. Per le strade selciate si può andare fino al 5 per 100; e fino al 4 per 100

nelle strade lastricate. Lungo la ferrovia Torino-Genova si ha l'esempio di un tratto colla pendenza del 3,5 per 100; e nella strada a guida centrale del signor Fell si trova in qualche sito la straordinaria pendenza del 8,5 per 100.

L'influenza delle forti pendenze nelle strade ferrate si fa sentire assai più nei tronchi in galleria che in quelli a cielo scoperto, e lungo la strada Torino-Genova si è riconosciuto che i convogli, i quali ascendono una livelletta a cielo scoperto colla pendenza del 5,5 per 400, sovente non possono avanzare che a grande stento, salendo una livelletta colla pendenza del 2,87 per 400 in galleria. Questo fatto, derivante dall'umidità che costantemente si trova nelle gallerie e che mantiene un eccessivo grado di levigatura alla superficie superiore delle rotaie, ha indotto i costruttori ad adottare nelle gallerie pendenze limiti minori di quelle che adottano nei tratti a cielo scoperto e di attenersi alle pendenze massime del 0,8, del 1,6, del 2,4 e del 2,8 per 100 nelle gallerie di quelle strade per le quali rispettivamente si ammettono a cielo scoperto le pendenze limiti del 1, del 2, del 3 e del 5,5 per 100.

Nelle strade carreggiabili con inghiaiata, per dare un facile scolo alle acque che sovente si raccolgono nei solchi lasciati dalle ruote, si usa da molti costruttori evitare i tratti perfettamente orizzontali, facendo in modo che nessuna livelletta presenti una pendenza minore del 0,5 per 100.

106. Norme per la distribuzione delle pendenze. — I tratti inclinati delle strade carreggiabili, quand'anche non abbiano pendenze maggiori del 5 per 100, stancano le bestie da tiro allorquando per considerevoli lunghezze si presentano totalmente in salita od in discesa. Perciò conviene evitare, per quanto è possibile, la continuità delle salite e delle discese quantunque dolci, procurando di interpolarle con tratti orizzontali o quasi orizzontali che diano campo alle bestie di prendere fiato, quando anche per ottenere questo debbasi di alcun poco accrescere la pendenza dei tratti inclinati. Di più è sempre opportuno di regolare le pendenze in modo che diminuiscano andando in alto, per raggiungere lo scopo di minorare la fatica agli animali, di mano in mano che vanno scemando le loro forze col lungo tirare in salita.

In tutte le stazioni per strade ferrate, affinchè riesca facile il fermarvi i convogli, è necessario che sia orizzontale o quasi orizzontale un tronco di strada della lunghezza di 500 a 500 metri.

Nelle gallerie e nelle trincee è necessario di convenientemente provvedere allo scolo delle acque che in esse si raccolgono; e, quando queste opere devono estendersi a considerevoli lunghezze e che le acque vi possono affluire in grande quantità, conviene generalmente, se pur si può fare senza troppo grandi sacrifizii, assegnare loro due diverse pendenze dal mezzo verso le estremità.

107. Limiti di lunghezza dei raggi delle risvolte. — L'andamento planimetrico dell'asse di una strada presentasi generalmente siccome composto di tratti rettilinei convenientemente raccordati da linee curve o risvolte. Le risvolte delle moderne costruzioni stradali sono quasi sempre archi circolari, ed il loro raggio non deve essere al di sotto di un certo limite. Questo limite si può fissare di 25 metri per le strade carreggiabili, di 500 metri per le strade ferrate ordinarie e di 150 per le strade ferrate vicinali. Nella strada con guida centrale del signor Fell si ha l'esempio di risvolte aventi appena il raggio di 40 metri.

Gli indicati limiti inferiori dei raggi delle risvolte non sono assoluti. Si trovano esempli numerosi di strade carreggiabili con risvolte aventi il raggio di 20 metri; sulle strade ferrate ordinarie si venne sovente al raggio di 200 metri per le risvolte poste presso le stazioni dove, per le fermate, deve essere rallentata la velocità dei convogli; e per le strade ferrate vicinali, in cui non vuolsi andare con grande velocità ed in cui occorrono veicoli speciali, si può discendere fino al limite inferiore di 100 metri.

Allorquando nelle strade ferrate è necessario costrurre due curve vicine, tangenti ad una comune direzione rettilinea, è necessario fare in modo che il tratto rettilineo interposto alle due curve abbia almeno la lunghezza di 60 metri; e questo affinchè un convoglio abbia di già abbandonata una delle due curve quando incomincia a passare sull'altra.

- 108. Considerazioni generali sulla determinazione della direzione di una strada. — L'ingegnere incaricato di fissare l'andamento di una strada accuratamente deve badare:
- 1° Di passare per il maggior numero possibile di luoghi abitati, pei centri d'industria e di commercio;
- 2° Di scegliere, per quanto le esigenze lo permettano, la linea più breve;
- 5° Di schivare le balze ed i dirupi che esigono salite molto ripide;
- 4° Di scegliere un'esposizione favorevole, cercando, segnatamente nei paesi montuosi, che la strada risulti difesa dai venti settentrionali e ben soleggiata;

div

5° Di tenersi lungi dai fondi paludosi e dai terreni bassi, soggetti ad inondazioni;

6° Di allontanarsi dai luoghi in cui si verificano scaturigini o

filtrazioni d'acqua;

7° Di evitare i terreni facili a franare;

8° Di porsi al riparo delle valanghe nei paesi montagnosi;

9° Di premunirsi contro il possibile rialzamento di terreno al passaggio dei coni di deiezione;

10° Di procurare che risultino della minore entità possibile

gli sterri e gli interri;

11° Di scegliere con avvedutezza i punti più convenienti pel passaggio facile e meno dispendioso dei corsi d'acqua e delle vallate.

Nelle diverse circostanze della pratica riesce quasi sempre impossibile di poter contemporaneamente soddisfare a tutte le accennate condizioni. Sta all'ingegnere il sapere in ogni caso adottare il partito più conveniente per giungere allo scopo colla minor spesa possibile, senza pregiudizio della comodità della strada. Dovendosi poi necessariamente passare su fondi paludosi e su terreni bassi, soggetti ad inondazioni, su terreni attraverso ai quali si verificano scaturigini e filtrazioni d'acqua e su terreni soggetti a venir coperti da valanghe o da materie portate dai corsi d'acqua scorrenti sui loro coni di deiezione, con ogni cura bisogna eseguire le opportune opere di consolidamento e di difesa contro i guasti che alla strada potrebbero derivare.

109. Considerazioni generali sulla determinazione del punto più basso di una catena di montagne. — Allorquando una strada deve attraversare una catena di montagne, e che non si giudica conveniente una galleria, per soddisfare alla seconda ed alla decima delle condizioni espresse nel precedente numero, bisogna procurare che essa passi per il punto più basso della catena di montagne che vuolsi superare, e per la determinazione di questo punto possono servire le seguenti considerazioni di geografia fisica.

Attentamente osservando la configurazione generale di un continente o d'un'isola, si riconosce che, partendo dalla riva del mare il suolo si rialza gradatamente verso l'interno fino alla sommità abcdef (fig. 120) di una serie di montagne di primo ordine, oltre la quale sommità declina sensibilmente fino all'opposta riva. Segue da ciò che la configurazione generale di un continente si può considerare come costituita da due superficie di pendenza contraria, dette versanti primarii, che s'intersecano superiormente secondo uno spigolo sagliente, come abcdef che ha il nome di displuvio pri-

mario e che è la linea di divisione delle acque. Così, andando dalle spiaggie di Livorno e Civitavecchia verso l'interno dell'Italia, si vede il suolo innalzarsi fino all'Apennino, ed abbassarsi di nuovo fino all'opposta spiaggia a Rimini ed Ancona. La linea costituente la sommità dell'Apennino è in tal caso il displuvio o la linea di divisione delle acque che scorrono al Mediterraneo da una parte, all'Adriatico dall'altra.

Ciascuna delle indicate superficie di pendenza generale si scompone in versanti secondarii, i quali sono determinati da catene di secondo ordine, i cui displuvii, detti displuvii secondarii, orizzontalmente trovansi rappresentati in ag, ah, cik, dlm, dln, fo, fp. Queste catene di secondo ordine, perpendicolari od oblique alla catena di primo ordine, gradatamente abbassandosi, tendono al mare; due a due presentano, l'una verso l'altra, un versante secondario; ed i versanti secondarii che così ne risultano vanno ad incontrarsi nei punti più bassi secondo linee qrs, qrt, uvx, uvy, zαβ, zαγ, δεη e δεθ, dette impluvii primarii. Gli impluvii primarii rappresentano le linee che seguono le acque scorrendo lungo le linee di massima pendenza dei due versanti che s'intersecano secondo il displuvio primario abcdef. Il complesso delle acque, le quali vanno al mare passando in ciascuno degli accennati impluvii primarii, prende il nome di fiume; e l'assieme di due versanti secondarii riunentisi in un impluvio costituisce, colla parte del versante primario che intercettano, una valle di primo ordine. Cosi, il versante orientale dell'Apennino si scompone in tanti versanti secondarii, che formano più valli di primo ordine tendenti al mare, come quelle del Montone, del Rabbi, del Bidente, del Savio, ecc.

I versanti secondarii alla loro volta si decompongono in versanti terziarii determinati da catene di terzo ordine, che servono di displuvii fra i versanti terziarii opposti, e che si abbassano gradatamente tendendo all'impluvio principale. Così, considerando il versante secondario il cui displuvio è ag ed il cui impluvio è qrs, si decompone esso nei versanti terziarii i cui displuvii sono orizzontalmente proiettati in $\pi \rho$ e $\tau \varphi$, i quali gradatamente si abbassano fino all'impluvio primario qrs.

L'intersezione dei versanti terziarii, due a due, determina nuovi impluvii, ossia impluvii secondarii, i quali fanno capo all'impluvio primario. L'acqua, che scorre in un impluvio secondario e che si getta in un impluvio primario o fiume, costituisce un affluente; ed il complesso di due versanti terziarii riunentisi in un impluvio

secondario forma una valle di secondo ordine. Così, i due versanti terziarii, di displuvii $\pi\rho$ e $\tau\phi$ e proiettantisi nella figura $\pi\rho\phi\tau$, s'intersecano secondo l'impluvio secondario $\zeta\xi$. Quest'impluvio termina all'impluvio primario qrs; le acque che scorrono nel primo e che si portano nel secondo costituiscono un affluente; e nella parte di superficie terrestre proiettata in $\pi\rho\phi\tau$ si ha una valle di secondo ordine.

La valle del Po è una valle di primo ordine, perchè secondo il suo impluvio scorre un fiume lungo la pendenza del versante primario che dalle Alpi scende all'Adriatico; e la valle del Tanaro è di secondo ordine, perchè il suo impluvio trovasi percorso dall'affluente Tanaro, che si scarica nel fiume Po, seguendo la pendenza del versante secondario che dall'Apennino scende all'impluvio della valle del Po.

I versanti terziarii alla loro volta si decompongono, dando origine a valli di terzo ordine; da queste si passa a quelle di quarto ordine, e così via via fino al più piccolo burrone solcato dal più

piccolo ruscello.

La riunione di tutte le valli percorse da un fiume e da tutti i suoi affluenti costituisce un bacino fluviale, ed il complesso dei bacini di tutti i fiumi, che si scaricano in uno stesso mare, forma un bacino marino. Così, il bacino dell'Adriatico comprende tutti i bacini fluviali dei fiumi, che vi hanno foce, dalla terra di Bari fino all'Albania.

Premesso questo, ecco quali sono i principii stabiliti dal signor Brisson per la determinazione del punto più basso di una catena di montagne.

- 4° Il displuvio o cresta di una catena di montagne, senza aver nulla di assolutamente geometrico, sia nel senso orizzontale sia nel senso verticale, è presso a poco rettilineo nel suo assieme.
- 2º Il displavio o cresta di una catena di montagne è inclinato nel medesimo senso del rispettivo implavio; così, considerando il displavio qualunque ag cui corrisponde l'implavio qrs si deve dire che il primo discende da a verso la linea AB, perchè il secondo discenda da s verso la stessa linea.
- 5° Se un displuvio è incontrato in un medesimo punto da due o più displuvii, questo punto è ad un massimo d'altezza. Questa circostanza si presenta in a, c, f e Z.
- 4° Se, come avviene în c' ed în e', un displuvio è incontrato în uno stesso punto dalle direzioni di due compluvii situati sui versanti opposti, il detto incontro è un punto di minima altezza.

 5° Se, come succede in τ' , un displuvio è incontrato da una parte da un altro displuvio e dall'altra da un compluvio, ha luogo nel punto d'incontro un'inflessione orizzontale, senza nulla avere di rimarchevole nel senso verticale.

6° Se due compluvii hanno per una certa lunghezza il loro corso parallelo, ma in senso opposto, vi ha un punto di minima altezza sul displuvio posto nell'intervallo che separa l'origine dei due compluvii. Così, per essere i due compluvii rt ed α sensibilmente paralleli per una certa lunghezza ed inclinati in senso opposto, vi deve essere un punto di minima altezza nell'intervallo ψ del displuvio ci posto fra i detti compluvii.

 7° Se due compluvii, dapprima paralleli divergono poi in direzioni opposte, vi ha un punto di minima altezza nel sito in cui il prolungamento dei due compluvii incontra il displuvio. Così, siccome i due compluvii yv ed η , ε , sensibilmente paralleli nei tratti yy' ed $\eta\eta'$, divergono in direzioni opposte y'v ed η' , vi deve essere un punto di minima altezza nel sito l' in cui il displuvio ld è incontrato dalla direzione $y'\eta'$.

I riferiti principii non devono essere presi nello stretto ed assoluto senso geometrico, ma in modo piuttosto ampio; e, correggendo col pensiero quanto vi può essere di assoluto nell'applicazione ai varii casi speciali, egli è certo che tali principii saranno per essere di grande aiuto nello studio dei progetti per la costruzione di strade attraverso catene di monti.

110. Profili trasversali. - Quella linea, la quale definisce la direzione di una strada, che in ogni caso deve essere determinata in modo da soddisfare alle prescrizioni che vennero date nei precedenti numeri 105, 106, 107, 108 e 109, e che si può considerare siccome giacente nel mezzo di quella zona di terreno convenientemente apparecchiata, la quale costituisce il suolo stradale, chiamasi asse. La superficie superiore di un tronco qualunque di strada poi si può immaginare generata da una linea piana di forma regolare, la quale si muove mantenendosi col suo punto di mezzo sull'asse stradale, non variando d'inclinazione e conservandosi in un piano verticale, perpendicolare alla superficie cilindrica a generatrici verticali, avente per direttrice l'asse medesimo. La forma della linea generatrice della superficie superiore di una strada, la qual linea costituisce il suo profilo trasversale, deve essere tale da permettere il comodo passaggio sulla strada non che il libero scolo delle acque, e varia collo scopo, col genere di struttura e colla località in cui la strada vuol essere costrutta.

Per le strade con inghiaiata, destinate all'ordinario carreggio, la superficie superiore suol essere quella detta a schiena, il cui profilo trasversale ordinariamente componesi : di un arco circolare o di un arco ellittico ACB (fig. 121) colla corda AB orizzontale e colla saetta CD avente lunghezza compresa fra 1/70 ed 1/30 di detta corda, secondo il maggiore o minore grado di unione e di levigatezza che sarà per prendere il suolo stradale; di due rette A E e BF, egualmente lunghe ed inclinate, la prima da A verso E e la seconda da B verso F con pendenza di 1/50 ad 1/50, secondo la maggiore o minore facilità con cui le terre lasciano passare le acque senza assorbirle e senza convertirsi in fango. La superficie generata dall'arco ACB, che chiamasi carreggiata, è quella sulla quale deve aver luogo il passaggio dei grossi quadrupedi e dei veicoli : e le due superficie laterali generate dalle rette A E e B F, le quali superficie costituiscono i marciapiedi, sono quelle riservate al passaggio dei pedoni. La larghezza della strada vuol essere proporzionata al verisimile concorso che su essa potrà verificarsi : pubblici regolamenti determinano in generale i limiti di questa larghezza; e si può ritenere che, quando vuolsi il ricambio di veicoli che marciano in direzioni opposte, la larghezza della carreggiata deve essere almeno di 4 metri. Nelle strade di montagna, l'indicato limite di larghezza della carreggiata si riduce talvolta a 5 metri in qualche tratto parziale, in vista di qualche grave ostacolo ed a scanso di eccessiva spesa: a condizione però che ciò non succeda sulle risvolte. e che di tanto in tanto, e a vista l'una dall'altra, si formino delle piazzette più larghe, ove senza pericolo possa farsi il ricambio delle vetture. La larghezza dei marciapiedi varia secondo l'importanza della strada alla quale appartengono, e si può ritenere che essa debba generalmente essere compresa fra metri 0,75 e 1,25. - Il fondo dell'incassatura nella quale si stabilisce l'inghiaiata è generalmente costituito in modo da essere rappresentato in sezione trasversale da due linee rette HG ed HI, condotte pel punto H, preso di metri 0,25 a metri 0,30 verticalmente al disotto del punto di mezzo C dell'arco ACB, ed inclinate in guisa da risultare $\overline{AG} = \overline{BI}$ di circa metri 0.20. Nelle terre argillose e cretose si aumenta in generale di metri 0.05 a 0,08 l'altezza dell'inghiaiata tanto nel mezzo quanto sui fianchi; e, sia sulle rocce, sia sulle opere d'arte, il fondo dell'incassatura si mantiene orizzontale ad una profondità di metri 0,40 sotto il margine interno dei marciapiedi.

Per le strade di montagna con inghiaiata, che sono poco lar-L'Ante di fabbricare. Costruzioni civili, ecc. — 17 ghe, che trovansi in rialzo da una parte, in iscavo dall'altra e per le quali occorre di impedire le alterazioni del ciglio esterno o del greppo inferiore coll'invitare le acque appiè del greppo superiore, per quindi deviarle verso qualche punto di scarico, si può adottare la superficie stradale a tetto, impiegando per linea di profilo una sola retta AB (fig. 122) inclinata all'orizzontale BC dal ciglio esterno B verso il ciglio interno A ed avente pendenza di 1/25 ad 1/15. — La sezione trasversale nel fondo dell'incassatura dell'inghiaiata è generalmente una retta EF parallela ad AB con distanza di metri 0,25 da questa.

Per le strade col suolo selciato o lastricato nell'interno di paesi e di città, viene generalmente adottata la superficie a schiena, ed allora fra la carreggiata e ciascuno marciapiede si lascia una specie di canaletto, destinato a ricevere ed a condurre le acque in appositi condotti. La figura 123 rappresenta il profilo trasversale della superficie superiore di tali strade, e la figura 124 rappresenta una disposizione in cui i marciapiedi trovansi elevati sul suolo stradale, la qual disposizione, nelle contrade di difficile circolazione, procaccia comodità e sicurezza alle persone a piedi. In queste strade la saetta CD della careggiata si può assumere di 1/50 ad 1/35 o di 1/60 ad 1/40 della corda AB, secondochè esse sono selciate o lastricate. In quanto ai marciapiedi, non devono essi avere larghezza inferiore a metri 0,75; potendosi, devesi portare questa larghezza almeno a metri 1,20; e le loro pendenze da E verso A e da E verso F può essere di 4/60 ad 4/50 o di 4/70 ad 4/60, secondochè trattasi di strade selciate o di strade lastricate.

Le strade nell'interno di paesi e di città, ed in genere quelle poste fra fabbricati, si costruiscono talvolta a culla, ossia si fanno inclinate da entrambi i lati verso il mezzo e con un profilo trasversale costituito, per quanto si riferisce alla carreggiata, da tre rette AB, CD e BC (fig. 125), orizzontale ed assai breve quella di mezzo ed egualmente inclinate le altre due con pendenza di 1/35 ad 1/25 se il suolo stradale è fatto con ghiaia, di 1/45 ad 1/35 quando è costituito di ciottoli e di 1/60 ad 1/45 quando è lastricato. Per quanto si riferisce ai due marciapiedi EA ed FD, devono essi trovarsi inclinati de E verso A e da F verso D e la loro pendenza può essere da 1/40 ad 1/50 se sono inghiaiati, da 1/50 ad 1/40 se sono selciati e da 1/60 ad 1/50 se sono lastricati.

In molte città le strade presentano una struttura mista di ciottoli e di lastroni. Questi si impiegano per i marciapiedi e per istabilire

uno o più binarii di rotaie; quelli si adoperano per la formazione del suolo delle liste intermedie. La figura 126 rappresenta il profilo trasversale della superficie superiore di una di queste strade : le due rette AB e CD, lievemente inclinate verso l'asse stradale, costituiscono il profilo dei due marciapiedi, e le due rette BE e DF quello di due strisce selciate, aventi pendenza un po' maggiore di quella dei marciapiedi. Dopo le dette strisce vengono le due rotaie, costituite da robuste lastre di pietra, le quali hanno i loro profili in EG ed FH, e fra una rotaia e l'altra trovasi una striscia selciata di larghezza costante, con superficie concava e presentante per profilo un arco circolare GIH di piccola saetta. In quest'ultima parte della strada si trovano di tanto in tanto le lastre forate, pei cui fori vengono a passare le acque piovane onde portarsi nei condotti sotterranei che servono al loro smaltimento. La distanza che abitualmente assegnasi alle rotaie da mezzo a mezzo è di metri 1,40 e di metri 0,60 la larghezza dei lastroni di cui sono formate. La larghezza dei marciapiedi, se pure è possibile, non deve essere minore di metri 0,75; e ciascuna delle parti selciate, comprese fra un marciapiede ed una rotaia, deve possibilmente avere larghezza non minore di metri 0,80. - Nelle vie molte larghe si pongono ordinariamente due binarii paralleli di rotaie, e la superficie stradale che rimane fra un binario e l'altro si fa generalmente a schiena. La larghezza di questa superficie non deve essere inferiore a metri 1,20.

La superficie superiore delle strade ferrate, quando si faccia astrazione del loro armamento, talora si presenta quasi piana ed orizzontale; ma più sovente un tantino inclinata dalle rotaie verso i margini ed a schiena fra le due rotaie di un medesimo binario, non che fra un binario e l'altro in quelle vie che hanno due binarii. La sezione trasversale delle strade ferrate è generalmente quale risulta dalla figura 127. La larghezza AB alla superficie superiore dal ballast deve essere almeno di metri 5,40 nelle vie ferrate ad un solo binario, e di metri 6,70 in quella a due binarii. La proiezione orizzontale AC della scarpa AP del ballast si fissa generalmente di metri 0,60; e la proiezione orizzontale DE del marciapiede DF difcilmente si assume inferiore a metri 0,45. L'altezza GH del ballast nel suo mezzo è ordinariamente di metri 0,50; e alle due rette HF ed HI suolsi assegnare la pendenza di circa 1/100.

In alcune località il ballast viene incassato fra due banchine di terra, in guisa da essere la sezione trasversale della strada quale risulta dalla figura 128. In questo caso la larghezza \overline{AB} alla superficie superiore del ballast deve essere almeno di metri 3,50 nelle vie ferrate con un solo binario, e di metri 6,80 in quelle con due binarii. La larghezza \overline{CD} dell'incassatura sul suo fondo si può anche ridurre a metri 2,50 o a metri 5,80, secondochè trattasi d'una via ferrata ad un solo binario o di una via ferrata a due binarii; la profondità \overline{GH} dall'incassatura deve essere di metri 0,50; la larghezza superiore \overline{AE} di ciascuna delle due banchine laterali non deve essere inferiore a metri 0,45, e la sezione trasversale del fondo dell'incassatura è quasi sempre costituita da due rette HC ed HD, inclinate da H verso C e verso D ed aventi pendenza di circa 1/100.

Si è finora parlato del profilo trasversale della parte centrale delle strade, ed importa ora di accennare al modo di completarlo, dipendentemente dal trovarsi queste costruzioni in rialzo oppure in iscavo.

Per le strade le quali devono passare ad una certa altezza sulla superficie naturale del suolo, si va dal ciglio superiore A (fig. 129) al sottostante terreno mediante una superficie inclinata o scarpa AB, tanto meno inclinata all'orizzonte quanto più le terre sono facili a scoscendere. Nella formazione dei rilevati per strade, si ha generalmente l'avvertenza di non impiegare quelle terre di cattiva qualità le quali possono renderli mal fermi, e quindi ordinariamente si assegna alle loro scarpe quell'inclinazione la quale corrisponde a 3 di base per 2 di altezza. Dovendosi poi costrurre rilevati su terreni con superficie inclinata in senso inverso della scarpa, sono necessarii fossi longitudinali ai loro piedi, per dar scolo alle acque, che in tempi di pioggia arrivano dai rilevati e dalle adiacenti campagne.

In molte circostanze conviene di ingrandire le basi dei rilevati, nell'intento di diminuire la pressione riferita all'unità di superficie sul sottostante terreno, e generalmente si raggiunge lo scopo mediante banchine aventi larghezza non minore di metri 0,50, e adottando per conseguenza il profilo risultante dalla figura 130.

Nelle strade incassate, ossia in trincea, si pone lateralmente un fosso ABCD (fig. 131) colle sponde laterali a scarpa; e la sponda del fosso posta dalla parte del terreno scavato si prolunga da D in E per formare la scarpa dello scavo. Quando lo scavo è un po' profondo si lascia una banchina DF (fig. 132) per separare la sponda inclinata del fosso da quella della trincea; e quando la profondità è tale che le pietruzze e le acque, cadendo dalla sommità G siano per arrivare in F con velocità tale da poter disgre-

gare il terreno e danneggiare la scarpa, si lasciano di tanto in tanto delle banchine, come vedesi in HI, KL ed FD (fig. 133), Per rapporto alle scarpe da adottarsi nella costruzione delle strade in trincea, si può ritenere che dalla maggior parte dei pratici si seguono queste regole; che per le terre sabbiose e sciolte conviene una scarpa di 3 di base per 2 di altezza; che per le terre ordinarie può bastare una scarpa di 1 di base per 1 di altezza.; che per le terre argillose asciutte può essere sufficiente la scarpa di 4 di base per 5 di altezza; che le terre argillose umide esigono una scarpa di 2 e talvolta anche di 5 di base per 1 di altezza; che pei terreni schistosi teneri basta la scarpa di 1 di base per 2 di altezza; che per le rocce di mediocre consistenza si può adottare la scarpa di 1 di base per 4 di altezza; e finalmente che nelle trincee in rocce dure convengono le scarpe con 1 di base per 10 di altezza. Le dimensioni dei fossi, che accompagnano le strade in trincea, dipendono dalla quantità d'acqua alla quale devono essi dar sfogo in tempi di abbondanti pioggie; ed è solo in via di approssimazione che si può ritenere dover essere di metri 0,35 a metri 0,45 la loro larghezza al fondo e di metri 0,35 a metri 0,75 la loro profondità. - Quando sulle scarpe di una strada in trincea si lasciano più banchine, si fa in modo che queste si trovino a distanze verticali di 3 a 4 metri l'una dall'altra, e generalmente si assegna loro una media larghezza di metri 0,75. Alle banchine assegnasi generalmente una lieve inclinazione verso l'esterno della trincea, ossia da H verso I, da K verso L e da F verso D. Talvolta la detta inclinazione si lascia in senso opposto, ossia verso il terrapieno, ed allora su ciascuna banchina si scava un fosso, destinato a raccogliere le acque che cadono sulla parte di scarpa ad essa superiore. Le acque poi le quali vengono a raccogliersi in tali fossi sono portate a quelli che corrono al piede delle scarpe, mediante cunette disposte secondo linee di maggior pendio, cosicchè ciascuno dei fossi situati sulle banchine è diviso in 2 tronchi fra due cunette successive, e ciascuno di questi tronchi deve avere una lieve pendenza verso la cunetta posta al suo estremo.

Si presentano talvolta alcune circostanze locali che non permettono l'estendersi delle scarpe, ed in questi casi si ha ricorso ai muri di sostegno, i quali presso a poco si dispongono: come appare dalla figura 154, quando trattasi di sostenere la strada; e come risulta dalla figura 155 quando è quistione di sostenere il terreno sovrastante alla strada.

^{111.} Norme per lo studio del progetto di una strada — Prima

di accingersi al tracciamento di una strada qualunque, è necessario procurarsi una mappa oppure una carta topografica esatta del paese fra i due estremi che deve congiungere. Su questa carta si segna dall'uno all'altro dei detti estremi una linea retta, ed osservasi quali sono i luoghi abitati nelle adiacenze di questa linea per cui conviene far passare la strada, e quali sono le vicende di terreno che su essa si presentano, dipendentemente dalle direzioni delle catene di montagne, dalle posizioni delle vallate e dagli andamenti dei corsi d'acqua.

In seguito a questo primo esame, si può segnare sulla carta una linea poligonale, la quale approssimativamente sia l'andamento da seguirsi, procurando, nel segnare questa linea, di soddisfare al maggior numero possibile delle condizioni del numero 108 e di non eccedere i limiti stabiliti ai numeri 105 e 107, per quanto si riferisce alle pendenze delle livellette del profilo longitudinale ed ai raggi delle risvolte, che converrà adottare pel raccordamento dei successivi tratti rettilinei.

Dopo questo studio al tavolino, si viene alle prime operazioni di campagna; planimetricamente ed altimetricamente si rilevano alcuni punti rimarchevoli della linea immaginata; e per raggiungere lo scopo si fa un'operazione di camminamento, o meglio, una triangolazione trigonometrica (Operazioni topografiche, Parte terza) in cui, assieme a molti altri, siano vertici i detti punti.

Coi dati presi sul terreno riesce facile instituire i calcoli che conducono a trovare: le distanze orizzontali dei successivi punti considerati sull'indicata linea poligonale; gli angoli degli allineamenti determinati dalle linee rette da cui due a due trovansi successivamente uniti; e le differenze di livello degli stessi punti. Dopo di ciò, si può dire che trovansi stabilite le posizioni planimetriche ed altimetriche di alcuni punti principali del terreno destinati a trovarsi su l'asse stradale; che il totale andamento da tracciarsi è diviso in tronchi parziali dall'uno all'altro di tali punti; e che solo rimane da ultimarsi il progetto col parziale sviluppo dell'andamento e del profilo di ciascun tronco.

Considerando uno qualunque dei tronchi parziali componenti l'intiero andamento situato fra i due estremi della strada da progettarsi, sono per esso note la distanza orizzontale delle sue estremità e la loro differenza di livello. Se adunque si divide questa differenza di livello per l'indicata distanza orizzontale, si ha nel quoziente la pendenza della retta la quale unisce le indicate due estremità; e questa pendenza può essere al di sotto o al di sopra dei

limiti che vennero stabiliti nel numero 105. Nel primo caso, qualunque andamento si segni fra i due punti considerati, riesce sempre possibile un profilo longitudinale che non ecceda le pendenze limiti. Nel secondo caso è imperiosa necessità scegliere un tale andamento fra i detti due punti, che il quoziente della loro differenza di livello per la lunghezza orizzontale dell'andamento che fra essi si trova sia minore o tutto al più eguale alla pendenza limite che, in conformità di quanto venne detto nel citato numero 105, si crede conveniente di poter adottare. Tenendo conto delle accidentalità del terreno fra i detti punti, riesce facile rettificare sulla carta topografica il primo tracciamento, per ottenerne un secondo che più del primo si approssimi al definitivo.

Dopo di ciò si va sul terreno, e per ciascuno dei tronchi componenti l'intiera linea da tracciarsi, si segna con picchetti numerati una linea che proceda dall'uno all'altro dei punti estremi con un'inclinazione presso a poco costante. Di questa linea si fa il rilevamento planimetrico, la livellazione longitudinale, e contemporaneamente si rilevano parecchie sezioni trasversali, seguendo i metodi che vennero svolti nel volume che tratta delle operazioni topografiche.

Le operazioni di rilevamento planimetrico ed altimetrico che così si eseguiscono sul terreno per ciascuno dei tronchi, permettono di disegnare in una conveniente scala la planimetria di quella linea che credesi conveniente di assumere per determinare la direzione della strada, il profilo longitudinale ed i profili trasversali per la zona di terreno alla quale vennero estese le indicate operazioni. Fatto questo, seguendo i metodi stati svolti nel capitolo secondo della prima parte del volume riferentesi alle operazioni di geometria pratica applicata all'arte del costruttore, riesce facile trasformare i diversi gomiti rettilinei, che si riscontrano sull'andamento planimetrico dell'asse stradale, in altrettante risvolte, e segnare sul profilo longitudinale e sui profili trasversali le corrispondenti linee di progetto, onde ricavare dai risultanti disegni le operazioni da eseguirsi nei singoli punti per la costruzione della strada.

Dopo di ciò, trovandosi compiutamente determinato sul disegno l'andamento della strada da costruirsi, torna agevole il riportarlo sul terreno, coi metodi che vennero svolti nel citato volume sulla geometria pratica applicata all'arte del costruttore; e questo tracciamento tutto al più potrà subire qualche lieve variazione dipen-

dentemente da alcune peculiari circostanze che si potranno manifestare nell'esecuzione del progetto.

Nelle strade di pianura è quasi sempre possibile sviluppare l'andamento della strada presso la superficie naturale del suolo. Nella strada di montagna invece, ben di frequente questo riesce impossibile, ed è necessario ricorrere a ripieghi onde ottenere una strada sicura e comoda. Questi ripieghi possono essere varii, e principalmente meritano di essere menzionati: gli andamenti sviluppati a zig-zag onde aumentare la lunghezza di qualche tratto, naturalmente troppo breve in confronto della sua altezza; le profonde trincee e gli alti rilevati per scemare la naturale elevazione dei colli e dei monti e le depressioni delle bassure; i muri di sostegno per sostenere la strada o per difenderla contro gli scoscendimenti su ripide coste, i viadotti gettati attraverso le vallate e le bassure di qualunque sorta, per sollevarsi sul loro fondo; i trafori scavati nelle viscere delle montagne affine di evitare il bisogno di ascendere sulle loro cime.

Combinando i risultamenti ottenuti col parziale sviluppo di ciascun tratto, si compie il progetto di un'intiera linea stradale, la quale generalmente si deve studiare in diversi modi, sviluppandola in varie guise, onde fermarsi a quel progetto che in seguito ad un minuto esame comparativo si giudicherà il migliore sotto tutti i rapporti di comodità, di sicurezza, di solidità e di ben intesa economia.

Una volta determinata sul terreno quella linea poligonale che, in seguito a raccordamento dei diversi lati mediante risvolte, si reputa doversi assumere per asse stradale o per linea assai prossima a quest'asse, invece di rilevare in planimetria ed altimetria questa linea non che più sezioni trasversali ad essa collegate, si può fare il piano quotato di una zona di terreno convenientemente estendentesi a dritta ed a sinistra di questa linea, ed impiegare nella formazione di questa linea gli utili e spediti procedimenti della celerimensura (Operazioni topografiche, Parte quarta). Da questo piano quotato con tutta facilità si possono dedurre al tavolino il profilo longitudinale e quanti profili trasversali si credono necessarii, per studiare il progetto della strada in modo conveniente alle esigenze delle diverse località.

Nel fare gli studii pel tracciamento di una strada, non bisogna dimenticare le indennità da corrispondersi ai proprietarii dei terreni da occuparsi. Segue da ciò, che si rende necessario di planimetricamente rilevare a dritta ed a sinistra dell'asse stradale le linee divisorie delle diverse proprietà, onde poter costrurre il loro piano con sopra quello della strada da eseguirsi. Da questo piano riesce agevole dedurre il quantitativo dell'area occupata a ciascun proprietario, per quindi stabilire la conveniente indennità.

Allorquando si deve dare il progetto di una strada attraversante località per le quali non si ha una regolare carta topografica, è necessario supplirvi con un'ispezione minuta dei luoghi, dopo la quale non riesce malagevole tracciare quella linea poligonale, che con qualche approssimazione si può considerare siccome determinante l'andamento dell'asse stradale. Appoggiandosi dopo su questa linea, si continua l'operazione come già si è detto in questo numero.

142. Argomenti da trattarsi nel seguito di questa seconda parte. — Le nozioni che vennero date in questo capitolo, giudizio-samente applicate, in ogni caso possono condurre l'ingegnere costruttore al tracciamento di strade, per le quali non manchino le generali condizioni di comodità, di sicurezza, di solidità e di ben intesa economia. Quanto venne detto nei capitoli II e III della prima parte del volume sui lavori generali d'architettura civile, stradale ed idraulica, pone in grado di ottenere in ogni caso resistenti suoli stradali, e solo rimane a dirsi qualche cosa sulle opere d'arte il cui studio è del dominio dell'Architettura stradale, e principalmente sui muri di sostegno, sulle gallerie, sui ponti e sui viadotti.

CAPITOLO II.

Muri di sostegno.

143. Scopo dei muri di sostegno. — I muri di sostegno costituiscono quelle importanti opere d'arte stabili, che si rendono necessarie tuttavolta che è quistione di impedire gli scoscendimenti di terrapieni, alle cui scarpe non si può assegnare quell'inclinazione che corrisponde al naturale declivio delle terre. Nell'architettura stradale ben di frequente si presenta la necessità della costruzione di queste opere, quando trattasi di stabilire una via su ripide coste montane, entro terreni soggetti a scoscendimenti, in riva ai corsi d'aqua e sulle sponde dei laghi e del mare.

I muri di sostegno si devono costrurre con tali dimensioni da essere capaci di resistere alla spinta delle terre che contro essi trovano appoggio: e, allorquando la loro altezza e la loro lunghezza sono un po' considerevoli, riescono opere grandemente costose. In vista di questo, gli ingegneri costruttori, conformando i loro progetti alle esigenze delle particolari circostanze, devono procurare di dare tali forme a questi muri, da ottenere la maggiore diminuzione di spesa, senza scemare la loro resistenza alla spinta delle terre.

414. Principali tipi di muri di sostegno. — I muri di sostegno si possono essenzialmente ridurre a tre distinti tipi: a quelli senza contrafforti; a quelli con contrafforti interni, ed a quelli con contrafforti esterni. Questi tipi poi presentano diverse varietà, di cui vengono qui indicate le principali.

I muri di sostegno senza contrafforti possono avere la loro faccia contro terra, detta faccia interna, verticale, inclinata od anche a riseghe, e l'altra faccia, chiamata faccia esterna, verticale oppure inclinata. Le figure 436, 437, 438, 439, 440, 441, 442, 443 e 444 rappresentano le sezioni trasversali di alcuni di questi muri nei nove distinti casi delle pareti esterna ed interna verticali, della parete esterna verticale e della parete interna inclinata, della parete esterna a scarpa e della parete interna a riseghe, della parete esterna ed interna inclinate in senso opposto, della parete esterna inclinata e della parete interna a riseghe, delle pareti esterna ed interna inclinata nello stesso senso, delle pareti esterna ed interna curve e parallele, e finalmente della parete esterna curva e della parete interna con riseghe.

I muri di sostegno con contrafforti interni presentano per la massima parte della loro lunghezza sezioni trasversali identiche a quelle dei muri senza contrafforti, ma di distanza in distanza, e generalmente a distanze eguali, hanno dalla parte del terrapieno robusti massi murali che costituiscono appunto i contrafforti. Questi contrafforti ammettono per sezione orizzontale un rettangolo, oppure un trapezio, oppure una figura mistilinea, costrutta nell'intento di raccordare le loro facce laterali alle facce interne del muro a cui sono solidamente uniti. Nelle figure 145, 146 e 147 si hanno le sezioni orizzontali in tre diversi muri di sostegno con contrafforti interni, e nelle figure 148, 149, 150 e 151 si hanno le sezioni trasversali corrispondenti al mezzo dell'intervallo che trovasi fra un contrafforte e l'altro per quattro diversi muri; il primo con faccia esterna verticale, il secondo con sola faccia esterna inclinata, il terzo con faccie esterna ed interna inclinata, e finalmente il quarto con faccia esterna a superficie curva.

In questi ultimi tempi venne apportata un'importante modificazione ai muri di sostegno con contrafforti interni, e questa sta nel rilegarli mediante uno o più ordini di archi, detti archi di scarico, come risulta dalla figura 152 in elevazione di quella faccia del muro che trovasi contro terra, in sezione orizzontale appena al di sopra del livello delle fondazioni, ed in sezione trasversale secondo il piano verticale determinato dalla retta X'Y' passante pel mezzo dell'intervallo esistente fra due contrafforti successivi. Per questi muri con archi di scarico, la faccia esterna può essere verticale oppure a scarpa, ed i contrafforti devono sempre avere sezione rettangolare per la facile costruzione dei detti archi.

I muri di sostegno con contrafforti esterni presentano anche per la massima parte della loro lunghezza sezioni trasversali identiche a quelle dei muri di sostegno senza contrafforti; di distanza in distanza e verso la faccia esterna, trovansi rinforzati da robusti massi murali costituenti i contrafforti, i quali generalmente sono equidistanti; e questi contrafforti quasi sempre ammettono una sezione orizzontale rettangolare. La sezione orizzontale di questi muri, appena al di sopra del livello delle fondazioni, è adunque quale risulta dalla figura 155; e nelle figure 154 e 155 si hanno le sezioni trasversali secondo il piano verticale determinato dalla retta XY (fig. 155), passante pel mezzo dell'intervallo esistente fra due contrafforti successivi, per due muri di sostegno con contrafforti esterni quali più di frequente si costruiscono.

Alcune volte i contrafforti esterni si rilegano mediante archi, e così si ottengono muri di sostegno i quali congiungono alla robustezza una certa eleganza di forma. Nella figura 456, in elevazione, in sezione orizzontale secondo il piano determinato dalla retta UV, ed in sezione verticale secondo il piano determinato dalla retta XY passante pel mezzo dell'intervallo esistente fra due contrafforti successivi, si ha la rappresentazione di uno di questi muri. Talvolta le parti esistenti fra un contrafforte e l'altro si fanno a guisa di archi aventi la loro direttrice orizzontale colla concavità verso l'esterno, e questo nell'intento di dar loro quella forma che meglio conviene per resistere all'azione delle terre che agiscono contro di esse.

Conosciuti i principali tipi di muri di sostegno, importa passare ad una estimazione della loro convenienza relativa ed alla determinazione delle loro dimensioni.

445. Equazioni per dedurre una delle dimensioni della sezione trasversale di un muro di sostegno. — La spinta R_m (fig. 457), che un terrapieno esercita contro un muro costrutto per impedire

gli scoscendimenti, ammette generalmente una componente orizzontale Q_m , ed una componente verticale V_m . Il punto d'applicazione dell'indicata spinta trovasi in un determinato punto C della parete contro la quale il terrapieno agisce, ad una distanza $\overline{H}\,C = z_m$ dal piede B della parete medesima. Segue da ciò : che la componente orizzontale Q_m della spinta tende a produrre scorrimento del masso ABDE sulla sua base BD situata al livello della più alta risega di fondazione, e rovesciamento dello stesso masso attorno allo spigolo esterno proiettato nel punto D; che la componente verticale V_m ed il peso P dell'indicato masso ABDE si oppongono, tanto allo scorrimento, quanto al rovesciamento; e finalmente che queste forze verticali producono una pressione sulla base BD, la qual pressione generalmente non trovasi ripartita con uniformità sull'indicata base.

Affinchè non possa aver luogo scorrimento del muro sulla sua base BD, deve essere verificata l'equazione di stabilità

$$Q_{m} = \nu f(V_{m} + P) \tag{1},$$

nella quale si deve assumere il coefficiente di stabilità » variabile fra 4/5 e 2/5, ed eguale a 0,57 il coefficiente d'attrito f della muratura posta alla base del muro di sostegno con quella costituente lo strato più alto delle fondazioni. Il valore del coefficiente f si può portare a 0,76 quando le terre si mettono dietro il muro dopo che le sue malte hanno fatto buona presa.

Per assicurare al muro la voluta stabilità sotto il rapporto della resistenza al rovesciamento, se indicasi con a la lunghezza della perpendicolare \overline{DH} abbassata dal punto D, rappresentante lo spigolo attorno al quale può verificarsi il rovesciamento, sulla direzione della forza V_m , e con b la distanza \overline{DI} fra il punto D ed il punto d'applicazione D del peso D, vale l'equazione

$$Q_{m}z_{m} = n^{vr}(V_{m}a + Pb)$$
 (2),

nella quale il valore del coefficiente di stabilità n^{v} si deve anche prendere siccome variabile fra 4/5 e 2/5. Il prodotto $Q_{m}z_{m}$ è il momento rovesciante, ed il binomio $V_{m}a + Pb$ rappresenta il momento resistente al rovesciamento.

Le quantità Q_m , V_m e z_m si calcolano in ogni caso particolare coi metodi che vennero svolti nel capitolo XIV del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, e le quantità P, a e b si esprimono in funzione delle dimensioni cognite del muro e di un'unica dimensione incognita della sezione

retta. Espresse le indicate sei quantità in funzione dei dati del problema e della dimensione incognita, si sostituiscono esse nelle equazioni (4) e (2). La prima di queste equazioni conduce allora a trovare un primo valore dell'incognita, e la seconda un altro valore generalmente diverso dal primo. Di questi due valori dell'incognita devesi adottare quello che assegna maggiore grossezza al muro.

Una volta determinate, come si è detto, le dimensioni di un muro di sostegno, bisogna accertarsi se la massima pressione riferita all'unità di superficie sulla base BD non eccede il limite della pressione riferita all'unità di superficie che, per generale consentimento dei pratici, si può far sopportare alla muratura, affinchè si trovi essa in buone condizioni di stabilità. Perciò, indicando con d la distanza $\overline{\rm DF}$ del centro di pressione sulla base DB, scrivasi l'equazione dei momenti di tutte le forze applicate al muro ABDE, supposto che, all'appoggio sottostante alla base DB, siasi sostituita la sua reazione. Quest'equazione risulta

$$Q_m z_m - V_m a - Pb + (V_m + P)d = 0$$
,

dalla quale immediatamente ricavasi

$$d = \frac{V_{m} a + P b - Q_{m} z_{m}}{V_{m} + P}$$
 (3).

Trovato il valore di d, rimane determinato il centro di pressione F; ed essendo nota la forza premente diretta normalmente a BD, giacchè il suo valore viene dato da V_m+P, riesce facile la ricerca della massima pressione riferita all'unità di superficie che generalmente ha luogo sullo spigolo proiettato in D. Questa ricerca poi si fa coi procedimenti che vennero svolti nell'articolo II del capitolo IV del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni. Dividendo la massima pressione riferita all'unità di superficie, che così si ottiene, pel relativo coefficiente di rottura per pressione, si ha il coefficiente di stabilità; ed il muro si ritiene siccome convenientemente stabile quando questo coefficiente di stabilità risulta minore di 1/10.

116. Muri pieni con scarpa esterna. — I muri pieni con scarpa esterna e con parete interna verticale (fig. 159) riescono generalmente preferibili a quelli aventi ambedue le pareti verticali (fig. 156), giacchè, con egual grado di stabilità, quelli risultano più economici di questi. Per rendersi ragione di quest'economia,

basta osservare che la scarpa esterna, avendo per effetto di orizzontalmente allontanare dallo spigolo esterno D (fig. 139) della base il punto d'applicazione C della spinta orizzontale ed il centro di gravità del masso murale ABDE, aumenta il braccio di leva della resistenza, e quindi, a pari stabilità, il peso o, ciò che torna lo stesso, la sezione retta di un muro con scarpa esterna è minore e più economica di quella di un muro con pareti verticali.

La scarpa dei muri di sostegno con parete esterna verticale varia generalmente fra 1/4 ed 1/10, e si diminuisce fino ad 1/20 in quei casi nei quali la parete esterna troppo inclinata è d'incomodo e produce uno sgradevole effetto allo sguardo. In quanto alla grossezza di questi muri alla sommità, si deve essa dedurre convenientemente applicando le equazioni (1) e (2) del precedente numero.

Chiamando

h l'altezza AB del muro al di sopra della sua base DB,

x la sua grossezza EA in sommità ed

y la sua grossezza DB alla base, espresse in metri,

s la scarpa della faccia esterna, ossia il rapporto $\frac{\overline{\mathrm{DF}}}{\overline{\mathrm{EF}}}$ della pro-

iezione orizzontale alla proiezione verticale della retta inclinata \overline{ED} , Π' il peso del metro cubo di muratura espresso in chilogrammi, da assumersi come risulta dalla tavola del numero 7, considerando una lunghezza di muro eguale all'unità, ed intendendo che le componenti Q_m e V_m della spinta si riferiscano ad una parte di terrapieno pure lungo l'unità, e che siano espresse in chilogrammi, si ha: che il peso del masso murale, rappresentato in ABFE, vien dato da

$$\Pi'hx;$$

che il peso dell'altro masso proiettato nel triangolo EFD è espresso da

$$\frac{1}{2}\Pi'sh^2;$$

che il braccio del primo peso, applicato nel centro di superficie G del rettangolo ABFE, vale

$$\overline{DK} = \overline{FK} + \overline{DF} = \frac{1}{2}x + sh;$$

e che il braccio del secondo peso, applicato nel centro di superficie q del triangolo rettangolo FED, è

$$\overline{DI} = \overline{DH} + \overline{HI} = \frac{1}{2}\overline{DF} + \frac{1}{3}\overline{HF} = \frac{2}{3}\overline{DF} = \frac{2}{3}sh.$$

Venendo ora alla determinazione delle quantità P, a e Pb, che entrano nelle equazioni (1) e (2) del numero precedente, si ottiene

$$P = \Pi' h \left(x + \frac{1}{2} s h \right) \tag{1},$$

$$a = y = sh + x \tag{2},$$

$$Pb = \Pi' h \left[\left(\frac{1}{2} x + sh \right) x + \frac{1}{3} s^2 h^2 \right]$$
 (3).

I quali valori, sostituiti nelle dette equazioni del numero precedente, conducono a

$$Q_{m} = \nu f \left[V_{m} + \Pi' h \left(x + \frac{1}{2} s h \right) \right]$$
 (4),

$$Q_{m} z_{m} = n^{vi} \left\{ V_{m}(sh + x) + \Pi' h \left[\left(\frac{1}{2} x + sh \right) x + \frac{1}{3} s^{2} h^{2} \right] \right\} (5).$$

Ponendo in queste equazioni i noti valori di ν , n^{ν} , f e II', nonche i valori di Q_m , V_m e z_m , convenienti alla natura delle terre ed al profilo della superficie superiore del terrapieno, si deducono due distinti valori della grossezza x, ed il maggiore di questi due valori è quello da adottarsi nella pratica.

Trovata la grossezza x del muro alla sommità, si determina la sua grossezza y alla base, ponendo

$$y = x + sh$$
.

Se poi si vuole la distanza d del punto d'applicazione della pressione sulla base DB dal punto D, basta calcolare le quantità P, a e Pb, ponendo nelle loro espressioni, date dalle equazioni (1), (2) e (5), il determinato valore di x; e quindi dedurre d coll'applicare la formola (5) del numero precedente.

Ottenuto il valore di d, osservasi: che la base premuta DB, per

la parte di muro lunga l'unità, è un rettangolo di larghezza y e di lunghezza 1 metro; che la totale pressione N, che ha luogo normalmente a questa base, viene data da

$$N = V_m + P;$$

e che, nell'ipotesi di $d < \frac{1}{2}y$ e $> \frac{1}{3}y$, la massima pressione K riferita all'unità di superficie sullo spigolo D, si ottiene colla formola (num. 30)

$$K = 2\left(2-3\frac{d}{y}\right)\frac{N}{y}$$

Se poi $d<\frac{1}{3}y$, il valore di K viene dato da

$$K = \frac{2}{3} \frac{N}{d}$$
.

Il valore di K si divida pel coefficiente di rottura per pressione R', riferito al metro quadrato, conveniente alla muratura di cui è formato il muro. Quando questo quoziente trovasi minore di 1/10, si deve ritenere che il dedotto valore di x corrisponde ad un muro di sostegno posto in buone condizioni di stabilità; diversamente è necessario aumentare il valore di x fino ad ottenere che il citato quoziente sia eguale o minore di 1/10.

Il signor ingegnere civile J. Foy, in un'interessante memoria sulla costruzione economica dei muri di sostegno, che trovasi inserta nel giornale di C. A. Oppermann (Nouvelles Annales de la Construction, anno 1865), supponendo di 46° 50′ l'angolo d'attrito delle terre, assumendo di 1600 chilogrammi il peso del metro cubo di terra, e di 2200 chilogrammi il peso del metro cubo di muratura, trascurando l'attrito della terra contro la muratura, supponendo il terrapieno terminato superiormente da un piano orizzontale, e determinando la grossezza in sommità del muro a scarpa colla condizione che presenti la stessa resistenza di un muro a pareti verticali, avente la sua grossezza eguale a 0,30 dell'altezza, ottenne la seguente tavola, nella quale, per varie inclinazioni della faccia esterna, si ha la grossezza del muro alla sommità e la superficie della corrispondente sezione retta in funzione dell'altezza.

SCARPA esterna del muro	GROSSEZZA del muro alla sommità	SUPERFICIE della sezione retta e volume per ogni metro corrente di muro
1 4	0,0830.4	0,2080 . 12
1 5	0,1214 . h	0,2214 . h2
1 6	0,1483.h	0,2316 . h ²
i i i i i i i i i i i i i i i i i i i	0,1683. h	0,2397 . h2
1/8	0,1835 . h	0,2460 . h2
1 9	0,1957.h	0,2511 . h ²
1/10	0,2055.h	0,2555 . h ²
11 10x,0	0,2205 . h	0,2622 . h ²
15	0,2358:h	0,2691 . h ²
1/20	0,2513.h	0,2764 . h2
Muro verticale	0,3000 . h	0,3000 . h2

Da questa tavola risulta: che le superficie delle sezioni rette dei muri con scarpa esterna, o, in altri termini, che i loro volumi per metro corrente, sono tanto più piccoli quanto più la scarpa è grande; che il muro verticale, siccome quello al quale corrisponde maggior volume, è meno economico dei muri a scarpa.

Quantunque la scarpa della faccia esterna sia tanto più utile quanto più è grande, pure ben di rado si assume maggiore di quel limite, che viene determinato dalla condizione di non arrivare in sommità ad una spessezza inferiore a metri 0,36.

117. Muri pieni con scarpa interna. — Si presentano alcuni casi, nei quali è una necessità il mantenere verticali le pareti esterne dei muri di sostegno; per cui, non potendosi adottare una scarpa esterna si ricorre al ripiego di una scarpa interna, ossia di una scarpa posta dalla parte delle terre da sostenersi (fig. 137).

La scarpa da assegnarsi alla parete interna di questi muri si può assumere variabile fra 1/4 ed 1/10, ed il calcolo, per la determinazione della grossezza alla loro sommità, si fa con procedimenti in tutto analoghi a quelli che già vennero indicati nel precedente numero.

Il signor ingegnere J. Foy, nella già citata pregievole memoria e colle ipotesi indicate sul finire del precedente numero, calcolò la seguente tavola, nella quale, per inclinazioni ben di frequente usate nella pratica, si hanno, in funzione dell'altezza h, la grossezza del muro alla sommità e la superficie della corrispondente sezione retta.

SCARPA interna del muro	GROSSEZZA del muro alla sommità	SUPERFICIE della sezione retta e volume per ogni metro corrente di muro
1/4	0,1663 . h	0,2913 , h2
1 5	0,1944 . h	0,2944 . h ²
1/6	0,2127 . h	0,2960 . h ²
1 7	0,2257.h	0,2971 . h2
1 8	0,2352 . h	0,2977 . h2
<u>t</u>	0,2427.4	0,2982 . h2
1/10	0,2486.4	0,2986 . h2
Muro verticale	0,3000 . h	0,3000 . h2

Questa tavola fa vedere che i muri con scarpa interna non presentano una cubatura notevolmente minore di quello con pareti verticali, e che per conseguenza il loro impiego non risulta di apprezzabile vantaggio. Di questo risultato è possibile rendersi ragione a priori, osservando che la scarpa interna porta la massima parte del masso murale e quindi il suo centro di gravità dalla parte

dello spigolo D.

118. Muri pieni con riseghe. — Invece dei muri di sostegno con scarpa interna, si costruiscono ben di frequente quelli con riseghe interne (fig. 158). Quest'ultima forma è più razionale della prima, giacche il peso della terra che s'appoggia su ciascuna risega concorre col peso del muro ad allontanare il suo centro di gravità dallo spigolo D della base, ciò che costituisce quanto più importa per arrivare ad una sezione economica.

La larghezza delle riseghe varia generalmente fra metri 0,15 e 0,50, e quasi sempre si pongono esse a distanze eguali nel senso

verticale.

Considerando il caso di un muro con due riseghe e chiamando c l'altezza AL di ciascuna risega,

d la sua sporgenza LM, espresse in metri,

II il peso in chilogrammi del metro cubo di terra,

e attribuendo alle lettere h, x, y e II' i significati che già loro vennero dati nel numero 116, si ha: che i pesi dei massi murali rappresentati in ACDE, MFCL ed OBFN, supposti lunghi 1 metro, sono rispettivamente

$$\Pi'hx$$
,
$$\Pi'(h-c)d$$
,
$$\Pi'(h-2c)d$$
;

e che i momenti di questi pesi rispetto allo spigolo proiettato nel punto D ammettono i valori

$$\frac{1}{2} \Pi' h x^{2},$$

$$\Pi' (h-c) \left(x + \frac{1}{2}d\right) d,$$

$$\Pi' (h-2c) \left(x + \frac{3}{2}d\right) d.$$

Le riseghe sopportano il prisma di terra ALMNOS, il quale si può immaginare scomposto nelle due parti ALMT e TNOS. I pesi di queste parti sono rispettivamente

ed i loro momenti, rispetto alla orizzontale proiettata nel punto D, risultano

$$\Pi c d \left(x + \frac{1}{2}d\right),$$

$$2\Pi c d \left(x + \frac{3}{2}d\right).$$

Se ora si prende BS per parete spinta, le tre quantità P, a e P b, che trovansi nelle equazioni di stabilità (1) e (2) del numero 115, sono date da

$$P = \Pi' [h(x+2d) - 3cd] + 3\Pi cd,$$

$$a = 2d + x,$$

$$Pb = \Pi' \left[\frac{1}{2} h x^2 + d(2h - 3c)x + d^2 \left(2h - \frac{7}{2}c \right) \right]$$

$$+ \Pi c d \left(3x + \frac{7}{2}d \right),$$

e le citate equazioni di stabilità, applicate al caso particolare, diventano

$$Q_{m} = \nu f \left\{ V_{m} + \Pi' [h(x+2d) - 3cd] + 3 \Pi cd \right\},$$

$$Q_{m} z_{m} = n^{\nu i} \left\{ -\frac{1}{2} h x^{2} + d(2h - 3c)x + d^{2} \left(2h - \frac{7}{2}c\right) \right\}.$$

$$+ \Pi c d \left(2x + \frac{7}{2}d\right)$$

Queste equazioni, stabiliti i valori di c, d, h, ν , f, n^n , Π , Π' e calcolati i valori di Q_m , V_m e z_m applicando la teoria sulla spinta delle terre, conducono a due distinti valori dell'incognita x, ed il maggiore di questi due valori è quello che conviene adottare.

In quanto al valore II del peso del metro cubo di terra, si può

esso assumere quale risulta dalla seguente tavola.

NATURA DELLE TERRE								Peso del metro cubo			
Terra vegetale		-			70	-	1	000			Cg 1450
Terra argillosa											1650
Terra argillosa	umida .									200	1900
Sabbia terrosa	7				1/2			1			1700
Sabbia pura	15.21.	1					100				1900

Avuta la grossezza x del muro alla sommità, si ottiene la sua grossezza y alla base mediante la semplicissima formola

$$y=2d+x$$

e quindi, procedendo precisamente come nel numero 116, si può dedurre la distanza d del punto d'applicazione della pressione sulla base DB dal punto D, non che la massima pressione K riferita all'unità di superficie.

Il metodo seguito per calcolare la grossezza x da darsi al muro rappresentato nella figura 158, il quale nell'intiera altezza \overline{B} \overline{S} presenta soltanto due riseghe, evidentemente conviene anche pei muri aventi nella loro altezza un numero qualunque di riseghe.

Il signor ingegnere J. Foy, nella già citata memoria, considera i muri di sostegno con riseghe interne siccome muri aventi una scarpa interna, determinata dalla retta fittizia ab passante pel mezzo di ciascuna risega: tiene conto del peso della terra insistente alla detta scarpa e quindi proiettata nel triangolo abc; e, non allontanandosi dalle ipotesi state indicate nel numero 116, giunge alla seguente tavola, che propone siccome conveniente pei muri del tipo di quello rappresentato nella figura 138.

SCARPA della retta passante pei mezzi delle riseghe	GROSSEZZA del nuro alla sommità	SUPERFICIE della sezione retta e volume per ogni metro corrente di muro
1/4	0,0763.h	0,2013. h ²
3 · ·	0,1222 . h	0,2222 . h2
1/6	0,1527.h	0,2360 . h ²
1 7	0,1740.h	0,2454 . h2
1 8	0,1901 h	0,2526 . h ²
1 9	0,2024 . h	0,2579 . h ²
a al gre 1/10 o fa 1/2	0,2148. h	0,2648 : 1/2
Muro verticale	0,3000 . h	0,3000 . h ²

Confrontando questa tavola con quella dei due numeri precedenti, si vede che i muri di sostegno con riseghe interne, quando si tenga conto del peso della terra che su esse si trova, sono assai più convenienti di quelli con scarpa interna, e che presso a poco si trovano, per rapporto all'economia, nelle condizioni dei muri di sostegno con scarpa esterna.

Qualora non vogliasi tener conto del peso delle terre insistenti alle riseghe, seguendo il metodo di sostituire al profilo delle riseghe quello della retta inclinata che passa pei mezzi delle riseghe stesse, evidentemente si arriva ai risultamenti ottenuti nel precedente numero. È però opinione della maggior parte dei costruttori, che si debba tener conto dell'indicato peso, giacchè le terre insistenti alle riseghe in realtà aumentano il momento di stabilità.

119. Muri pieni con profili curvi. — Si adoperano alcune volte, per sostenere le terre, muri curvi, aventi sezioni trasversali quali risultano dalle figure 143 e 144. Questa disposizione è vantaggiosa, giacchè con essa ottiensi lo scopo di allontanare il centro

di gravità del muro dallo spigolo, rappresentato nel punto D, attorno al quale può avvenire il rovesciamento, e quindi di aumentare il momento resistente.

È da notarsi in un muro curvo, che se l'angolo EOD è un po' aperto, la verticale del suo centro di gravità tende a sortire dalla base dalla parte delle terre. In questo caso, se le terre non sono sufficientemente compatte, si formano fra queste ed il muro dei vuoti; il muro cerca di porsi in equilibrio sul terrapieno; e quindi si manifestano rotture, screpolature o almeno ondulazioni molto sensibili sulla superficie dell'opera. Per ovviare a quest'inconveniente si presentano molti mezzi, e riescono utili quello delle riseghe interne (fig. 144) e quello delle pietraie poste fra la terra ed il muro. Queste pietraie consistono in muri a secco che si fanno dietro i muri di sostegno propriamente detti, e che contro terra presentano una parete verticale oppure a scarpa, che loro assicurano un piano d'appoggio fisso.

Anche pei muri con profili curvi, analogamente a quanto già si è insegnato potersi fare per quelli aventi profili rettilinei, si può procedere al calcolo della loro grossezza in sommità. Supponendo che le due facce di un muro di sostegno siano due superficie cilindriche a generatrici orizzontali, aventi per direttrici i due archi circolari concentrici DE e D'E' (fig. 143), che il centro di questi archi sia il punto O situato sull'orizzontale determinata dal punto E, e che siano note ed espresse in metri l'altezza $\overline{AD} = h$ del muro e la proiezione orizzontale EA = c dell'arco DE, riesce facile calcolare l'angolo DOE=z, il raggio OE=R e la lunghezza L dell'arco E D.

Fatto questo calcolo preliminare, se chiamasi x il raggio OE' ed L' la lunghezza dell'arco E'D' corrispondente all'ampiezza a. e quindi dato da

$$L' = \frac{\alpha}{180^0} \pi x, \tag{1},$$

si ha: che le superficie dei settori OED ed OE'D' vengono rispettivamente date da

$$\frac{\mathbf{L}'x}{2}$$
;

che, essendo G e G' i centri di superficie dei detti due settori, F ed F' le loro proiezioni su OE, i momenti degli stessi settori rispetto all'orizzontale passante per D sono

$$\frac{LR}{2} \left(R\cos \alpha - \frac{2}{3} \frac{R^2}{L} \sin \alpha \right),$$

$$\frac{L'x}{2} \left(R\cos \alpha - \frac{2}{3} \frac{x^2}{L'} \sin \alpha \right).$$

Supponendo ora che la parete contro la quale si esercita la spinta del terrapieno sia la E'H di altezza $\overline{E'H} = \overline{AD} = h$, e trascurando ogni deduzione, per quanto spetta al piccolo peso della parte di muro rappresentata in DID' al di sotto del piano orizzontale DH, le tre quantità P, a e Pb risultano

$$P = \frac{1}{2} \Pi'(L'x - LR)$$
 (2),

$$a = x - R \cos \alpha$$
 (3),

$$Pb = \frac{1}{2} \Pi' \left[R(L'x - LR) \cos \alpha - \frac{2}{3} (x^3 - R^3) \sin \alpha \right]$$
 (4),

e le equazioni di stabilità (1) e (2) del numero 115 diventano

$$Q_m = \nu f \left[V_m + \frac{1}{2} \Pi'(L'x - LR) \right],$$

$$Q_{\rm m} z_{\rm m} = n^{\rm vi} \left\{ \begin{array}{l} V_{\rm m} \left(x - {\rm R}\cos\alpha\right) \\ + \frac{1}{2} \, \Pi' \left[\, {\rm R} \left({\rm L}' \, x - {\rm L} \, {\rm R} \right) \cos\alpha - \frac{2}{3} \left(x^3 - {\rm R}^3 \right) \, {\rm sen} \, \alpha \, \right] \right\}. \label{eq:Qm}$$

Come risulta dall'equazione (1), il valore di L' è un monomio contenente la prima potenza di x, per cui la penultima equazione è del secondo grado e l'ultima del terzo grado. Risolvendo queste due equazioni, si ottengono due distinti valori di x, la differenza fra i trovati valori di x ed il raggio R dà due diversi valori per la grossezza del muro, ed il maggiore di questi valori è quello che conviene adottare nella pratica.

Ottenuta la grossezza x, si sostituisce il suo valore nelle formole (1), (2), (3) e (4) determinatrici di L', di P, di a e di Pb; i valori

risultanti per le tre ultime quantità si pongono nella formola (5) del numero 115, la quale somministra la distanza d del punto d'applicazione della pressione che si verifica sul giunto orizzontale DH. Trovata la distanza d, riesce agevole la determinazione della massima pressione riferita all'unità di superficie sullo spigolo proiettato nel punto D, procedendo precisamente come si disse nel numero 116.

Il signor ingegnere J. Foy, supponendo sempre verificate le ipotesi ammesse nel dedurre la tavola numerica del numero 116, trovò i risultati contenuti nella seguente tavola:

ANGOLI «	GROSSEZZA del muro	SUPERFICIE della sezione retta e volume per ogni metro corrente di muro		
30°	0,150 . h	0.1635 . h ²		
20	0,186 . h	0,1959 . 1/2		
$\overline{AE} = \frac{1}{10} \overline{AD}$	0,230.h	0,2370 . h ²		

Dai pochi numeri contenuti in questa tavola risulta come i muri curvi siano più convenienti, per rapporto all'economia di materiale, di tutti i muri finora considerati. Essi però esigono maggior mano d'opera, e ben sovente questa ne eleva di tanto il costo da far perdere il vantaggio che essi presentano sul risparmio di muratura.

La risoluzione delle equazioni di stabilità da impiegarsi per la determinazione della grossezza di un muro curvo, e principalmente di quella che si riferisce al rovesciamento, conduce sovente a calcoli lunghi e presentanti una certa difficoltà, per cui, invece di dar mano alla risoluzione diretta del problema avente per iscopo di trovare la grossezza di un muro di sostegno curvo, si può incominciare dal fare il suo progetto, e procedere quindi alla verificazione della sua stabilità, col calcolare i tre coefficienti di stabilità v, nº ed nº, relativi allo scorrimento, al rovesciamento ed alla pressione. Il muro si dirà convenientemente stabile quando il secondo coefficiente si trova eguale o assai prossimo alla frazione 2/5, il primo minore della frazione 2/5 ed il terzo minore della frazione 1/10. Qualora

i detti coefficienti di stabilità non risultino come ora si è detto, è necessario modificare il progetto del muro, nuovamente dedurre i valori degli indicati coefficienti, e così continuare finchè si ottengono convenienti valori dalle relative condizioni di stabilità.

420. Muri con contrafforti interni. — I muri con contrafforti interni, ai quali si riferiscono le figure 145, 146, 147, 148, 149, 150 e 151, ben di frequente nella pratica vengono impiegati, e presentano i seguenti principali vantaggi; non interrompono esternamente la regolarità del muro di sostegno; i contrafforti, quando siano ben rilegati al muro di cui fanno parte, allontanano il centro di gravità della massa resistente al rovesciamento dallo spigolo attorno al quale questo tende manifestarsi; rompono il prisma della più gran spinta, il quale quasi non esercita il suo effetto che nell'intervallo compreso fra i contrafforti.

Molte sono le disposizioni che si possono impiegare per rilegare i contrafforti al muro, e la più comune è quella di grosse pietre le quali contemporaneamente penetrano in questo ed in quelli. I contrafforti con base rettangolare (fig. 145) sono i più usati e quasi sempre i più vantaggiosi. Quelli con base trapezia (fig. 146), oppure con base costituita da linee rette e da due quadranti, presentando una larghezza piuttosto grande dove si collegano col muro, danno forse un'unione più sicura; ma, a parità di volume, devono risultare meno resistenti al rovesciamento di quelli con sezione rettangolare, giacchè il loro centro di gravità trovasi più vicino allo spigolo attorno al quale tende manifestarsi il fenomeno del rovesciamento. - Il Belidor ha suggerito di fare i contrafforti con grossezza maggiore contro terra che contro il muro, e questo nel duplice intento di portare il centro di gravità più lungi dallo spigolo attorno al quale tende a farsi il rovesciamento, e di meglio fermare il muro nel masso di terra. Questi contrafforti però non sono molto impiegati, perchè sono soggetti a staccarsi dal muro in seguito ad un minore assettamento che generalmente subiscono. Qualunque sia la disposizione che vuolsi adottare nella costruzione dei contrafforti, il signor Mary raccomanda di ben collegarli al muro mediante tiranti in ferro.

Nei muri con contrafforti, bisogna procurare che la parte compresa fra due contrafforti successivi non venga ad inflettersi sotto l'azione della spinta delle terre, e, per questo motivo, i contrafforti non devono essere posti a distanze troppo grandi l'uno dall'altro. I contrafforti distanti da asse ad asse di 4 metri, aventi la larghezza di 1 metro, e quindi comprendenti intervalli estendentisi

per 3 metri, vennero riconosciuti vantaggiosi in parecchi importanti muri di sostegno, ai quali, per la parte compresa fra due contrafforti successivi, si assegnò una grossezza media compresa fra 1/4 ed 1/6 dell'altezza.

Premesso questo, si consideri il caso del muro di sostegno rappresentato nella figura 148 e, attribuendo alle lettere h e Π' i significati che loro vennero dati nei precedenti numeri, si chiamino

c la grossezza DB del muro,

D la distanza fra asse ed asse di due contrafforti successivi,

l la larghezza di ciascun contrafforte,

h' la sua altezza CF ed

x la sua grossezza, espresse in metri.

Considerando la parte di muro compresa fra le sezioni trasversali determinate dalle rette MN e PQ (fig. 145), passanti pei mezzi di due contrafforti successivi, evidentemente si ha: che il peso del masso murale proiettato in NQSU vale

$\Pi'Dhc;$

che il peso del complesso dei due mezzi contrafforti, i quali sono proiettati in UTVM ed RSPX, vien dato da

$\Pi'lh'x;$

e che i momenti di questi pesi rispetto alla retta $\mathbf{D}\,\mathbf{D}'$, ossia rispetto alla retta, che nella figura 148 trovasi proiettata nel punto \mathbf{D} , sono rispettivamente

$$\frac{\Pi' \, \mathrm{D} \, h \, c^2}{2} \, .$$

$$\Pi' l h' \left(c + \frac{x}{2} \right) x.$$

Ciò premesso, coi procedimenti svolti nel capitolo XIV del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, ottengonsi: la componente orizzontale $Q_{\tt m}'$ della spinta che ha luogo contro la parete verticale orizzontalmente proiettata in TR (fig. 145); la componente orizzontale $Q_{\tt m}''$ della spinta che ha luogo contro il complesso delle due pareti verticali di proiezione orizzontale VM ed XP; le componenti verticali $V_{\tt m}'$ e $V_{\tt m}''$ delle stesse spinte; e le

altezze z_m' e z_m'' dei punti d'applicazione delle indicate spinte sulla base DC (fig. 148). I valori di Q_m , di V_m e di $Q_m z_m$, da porsi nelle equazioni (1) e (2) del numero 115 per applicarle al caso in quistione, sono dati da

$$Q_{m} = Q_{m}' + Q_{m}''$$
 $V_{m} = V_{m}' + V_{m}''$ (1),

$$Q_{m}z_{m} = Q'z_{m}' + Q''z_{m}''$$
 (2),

ed i valori di P, V_ma e Pb, da sostituirvisi nelle stesse equazioni, risultano

$$P = \Pi'(Dhc + lh'x)$$
 (3),

$$V_{m} a = V_{m'} c + V_{m''} (c + x)$$
 (4),

$$P b = \Pi' \left[\frac{D h c^2}{2} + l h' \left(c + \frac{x}{2} \right) x \right]$$
 (5).

Ponendo i trovati valori di Q_m , di V_m e di P nell'equazione (1) ed i valori di $Q_m z_m$, di $V_m a$ e di P b nell'equazione (2) del citato numero 115, si ottengono le due equazioni di stabilità relative allo scorrimento ed al rovesciamento. Queste equazioni conducono a due diversi valori di x, ed il maggiore di questi due valori è quello che corrisponde alla sporgenza da darsi ai contrafforti.

Invece di proporsi come scopo del calcolo la determinazione della sporgenza x dei contrafforti, conviene talvolta assumersi questa sporgenza, e determinare una delle tre quantità D, l e c quando sono note le altre due.

Viene ora la quistione di determinare la massima pressione riferita all'unità di superficie sullo spigolo rappresentato nel punto D, onde accertarsi se il muro presenta la richiesta stabilità sotto il rapporto della resistenza alla pressione. Perciò, una volta determinata l'incognita del problema, si calcolano, mediante le formole (3), (4) e (5), i valori delle quantità P, V_m a e Pb, e, unitamente ai valori di V_m e di $Q_m z_m$, si pongono nella formola (3) del numero 145. Questa formola dà il valore di d, ossia la distanza del punto d'applicazione H della pressione che ha luogo sulla base DC dal detto spigolo rappresentato nel punto D.

Trovato il valore di d, importa determinare il centro di superfi-

cie G della figura piana MNQPXRTV (fig. 145), cercando la sua distanza GK dalla retta DD'. Questa distanza, che si può indicare colla lettera Δ, si ottiene prendendo i momenti dei rettangoli NQSU, UTVM ed SRXP rispetto alla retta DD', e quindi si ha

$$\Delta = \frac{\frac{1}{2} \operatorname{D} e^{2} + l \left(c + \frac{x}{2} \right) x}{\operatorname{D} c + l x} \tag{6}.$$

Se ora si fa la differenza Δ -- d, si ottiene in questa differenza la distanza del centro di pressione H dal centro di superficie G, ossia l'ordinata del punto H per rapporto ad una retta xx' condotta pel punto G parallelamente a DD'. La superficie Ω della figura piana MNQPXRTV viene data da

$$\Omega = Dc + tx \tag{7}$$

ed il momento d'inerzia I' della stessa figura rispetto all'asse xx', si ottiene mediante la formola

$$I' = \frac{1}{3} \left[D \Delta^3 + (D - l)(c - \Delta)^3 + l (x + c - \Delta)^3 \right]$$
 (8).

Se per il punto G si conduce una perpendicolare y y' alla retta x x', questa perpendicolare passa per il centro di pressione H; e di più, le due rette x x' ed y y' danno le direzioni dei due assi principali centrali d'inerzia per la detta figura M N Q P X R T V. Se adunque si applica la prima delle equazioni determinatrici di V, che vennero date nel numero 134 (Resistenza dei materiali e stabilità delle costruzioni), e se osservasi che la lunghezza m è nulla per essere il punto H sull'asse y y', si ha

$$V = \frac{I'}{\Omega(\Delta - d)} \tag{9}.$$

Questo valore di V rappresenta la distanza dell'asse neutro dal centro di superficie G, contata questa distanza sulla parte Gy' di Gy, ossia a partire da G dalla parte opposta a quella verso la quale trovasi il punto H. Il valore di V può essere maggiore o minore della retta \overline{GI} la cui lunghezza è $c-\Delta+x$.

Nel caso in cui si ha

$$V > c - \Delta + x$$

l'intiera base MNQPXRTV trovasi premuta, e, chiamando N la somma delle forze verticali che agiscono sulla detta base, data da

$$N = V_m + P \tag{10},$$

la massima pressione K, riferita all'unità di superficie sullo spigolo DD', viene data (Resistenza dei materiali e stabilità delle costruzioni, num. 134) dalla formola

$$K = \frac{N}{\Omega} \left(1 + \frac{\Delta}{V} \right) \tag{11}.$$

Per trovare il valore numerico di K, una volta dedotto il valore di d colla formola (3) del numero 115, si calcolano successivamente Δ , Ω , Γ , Γ ed N mediante le formole (6), (7), (8), (9) e (10), e si sostituiscono gli ottenuti valori di N, Ω , Δ e Γ nell'ultima equazione.

Nel caso in cui

$$V < c - \Delta + x$$

si ammette che non abbia luogo pressione sull'intiera figura MNQPXRTV. Segue da ciò che, ritenuta la non convenienza di tener conto della coesione e dell'aderenza dei materiali, giacchè queste resistenze possono venire meno col tempo, si presenta la quistione di separare nell'indicata figura la parte premuta da quella non premuta. Per questa ricerca, osservasi che la retta di separazione deve essere parallela all'asse xx', e che la sua distanza dal centro di pressione H viene data (Resistenza dei materiali e stabilità delle costruzioni, num. 136) dalla formola

$$y_{i} = \frac{\sum \omega y^{2}}{\sum \omega y} \tag{1},$$

nella quale y_4 rappresenta la domandata distanza, ω un elemento qualunque superficiale della parte premuta, ed y l'ordinata del centro dello stesso elemento per rapporto alla retta cercata. Ora, essendo Y la distanza di questa retta dalle DD', si ha

$$y_1 = Y - d$$

$$\Sigma \omega y = \int_{0}^{Y} Dy \, dy - \int_{0}^{Y-c} (D-l) y \, dy$$

$$= \frac{1}{2} l Y^{2} + c (D-l) Y - \frac{1}{2} c^{2} (D-l),$$

$$\Sigma \omega y^{2} = \int_{0}^{Y} Dy^{2} \, dy - \int_{0}^{Y-c} (D-l) y^{2} \, dy$$

$$= \frac{1}{3} l Y^{3} + c (D-l) Y^{2} - c^{2} (D-l) Y + \frac{1}{3} (D-l) c^{3}.$$

Se ora questi valori di y_4 , $\Sigma \omega y$ e $\Sigma \omega y^2$ si pongono nell'equazione (I), si ottiene un'equazione contenente la sola incognita Y e determinante per conseguenza la retta parallela a DD', la quale separa la parte premuta dalla parte non premuta nella base MNQPXRTV.

Supponendo che sia $\Sigma\Sigma'$ (fig. 158) la retta determinata col prendere $\overline{Ki} = Y$, essa dà, siccome base premuta, la figura mNQpxRTv. Il centro di superficie G' di questa figura si ottiene calcolando, come già si fece pel valore di Δ , la distanza $\overline{KG'} = \Delta_4$ data

$$\Delta_{4} = \frac{\frac{1}{2} D c^{2} + l (Y - c) \left(c + \frac{Y - c}{2}\right)}{D c + l (Y - c)}$$
(12),

e trovando la sua superficie Ω, mediante la formola

$$\Omega_4 = D c + l(Y - c) \tag{13}.$$

La distanza del centro di superficie G' della base premuta dell'asse neutro $\Sigma \Sigma'$ è $\overline{G'i}$, il suo valore V_i viene adunque dato da

$$V_{i} = Y - \Delta_{i} \tag{14};$$

e la massima pressione K, riferita all'unità di superficie sullo spigolo DD', si ottiene sostituendo nella formola (11) il valore di N dato dalla (10), e ponendo rispettivamente invece di Ω , Δ e V i valori di Ω_1 , Δ_1 e V₁ dati dalle formole (12), (13) e 14.

Ottenuto il valore della massima pressione K, riferita all'unità di

superficie sullo spigolo DD', si divide essa pel coefficiente di rottura R", riferentesi alla muratura di cui è formato il muro di sostegno, e si conchiude che l'opera è stabile quando il detto quoziente risulta minore di 1/10.

Può darsi che la retta che separa la parte premuta da quella non premuta cada nella base DD'C'C del muro continuo, ed è così facile di riconoscere quando questo avviene e di determinare la massima pressione sullo spigolo DD', che si crede sufficiente di avvertire la possibilità del caso, senza aggiungere spiegazioni.

Semplificando i calcoli nella deduzione di Q_m , di V_m , di $Q_m z_m$ e di $V_m a$, ed operando in favore della stabilità, si può supporre che le terre spingano agendo direttamente sulla parete rettangolare proiettata orizzontalmente in US (fig. 145). Alcuni costruttori poi, partendo dall'idea che i contrafforti abbiano per effetto di rompere il prisma di massima spinta e di ottenere che esso operi solamente nell'intervallo compreso fra due contrafforti successivi, invece di tener conto della spinta che esso esercita sulla totale parete verticale, compresa fra mezzo e mezzo di due contrafforti vicini, tengono conto solo di quella che si verifica nel loro intervallo qual'è quella che ha luogo sulla parete orizzontalmente proiettata in TR. Si deve però osservare che questo metodo riesce a danno della stabilità, se le terre che trovansi dietro i contrafforti esercitano su essi qualche spinta, come è probabilissimo.

Alcuni ingegneri, nel calcolo delle dimensioni dei muri di sostegno con contrafforti interni, ben di frequente procedono come segue: calcolate le componenti orizzontale e verticale Qm e Vm, non che l'altezza zm del punto di applicazione della spinta, che ha luogo sulla parete murale rappresentata nella retta US, cercano di ottenere che, tanto il muro continuo USQN, quanto il complesso dei due mezzi contrafforti RSPX e TUMV, presentino tali dimensioni, che ciascuno di essi sia capace di resistere all'azione della detta spinta. Perciò al solo muro pieno rappresentato in USON applicano le equazioni (1) e (2) del numero 115, assumendo equali all'unità i due coefficienti di stabilità v ed nº, e deducono la grossezza da darsi a questo muro; dopo al complesso dei due mezzi contrafforti RSPX e TUMV, supponendo che il rovesciamento possa aver luogo attorno allo spigolo esterno DD' della base del muro, applicano le stesse equazioni (1) e (2) del citato numero 115, coll'assumere ancora eguali all'unità i valori dei due coefficienti di stabilità v ed nº, e così determinano uno dei due elementi, larghezza o sporgenza dei contrafforti, quando preventivamente viene

fissato il valore dell'altro. Questo modo di procedere semplifica generalmente i calcoli per la determinazione delle dimensioni dei muri di sostegno con contrafforti; pone la parte di muro compresa fra due contrafforti successivi in tali condizioni che, anche mancando in qualche parte il suo perfetto collegamento coi contrafforti, pure essa presenta le condizioni richieste per lo stretto equilibrio; e nell'intiero muro trovasi un conveniente grado di stabilità, giacchè può esso sopportare l'azione d'una spinta doppia dell'effettiva.

Il signor ingegnere J. Foy, supponendo sempre verificate le ipotesi ammesse nel dedurre la tavola numerica del numero 116, ed assumendo di metri 4 la distanza fra asse ed asse dei contrafforti e di metri 1 la larghezza di questi, nei due casi della grossezza del muro continuo verticale eguale ad 1/4 e ad 1/6 della sua altezza, calcolò la sporgenza da darsi ai contrafforti per altezze di 5, 6, 9, 12 e 15 metri, non che il volume medio della muratura per ogni metro corrente; e, siccome i risultati ottenuti dall'ingegnere Foy possono riuscire di grande utilità nella pratica, si crede conveniente di riportarli nella tavola che immediatamente segue.

della grossezza del muro coutinuo all'altezza ALTEZZE del muro continuo e dei contrafforti		GROSSEZZA del muro continuo	SPORGENZA dei contrafforti	volume medio della muratura per metro corrente		
min III	m	m	m	me		
1712110	5,00	1,25	0,825	7,275		
1	6,00 9,00	1,50 2,25	0,900 1,485	10,476 23,571		
4	12,00	3,00	1,980	41,904		
M Sugar	15,00	3,75	2,475	65,475		
Tonyan	5,00	0,833	1,795	6,425		
Un by	6,00	1,000	2,154	9,252		
$\frac{1}{6}$	9,00	1,500	3,231	20,817		
6	12,00	2,000	4,308	37,008		
-519	15,00	2,500	- 5,385	57,825		

I numeri contenuti in questa tavola mettono in evidenza come, diminuendo la spessezza del muro continuo, va aumentando la sporgenza dei contrafforti, ma come diminuisce il volume medio del muro per ogni metro corrente. Conviene dunque diminuire di quanto è possibile la grossezza del muro continuo, ma la diminu-

zione non deve essere tale che questo muro s'incurvi sotto l'azione della spinta delle terre. Pei muri, i cui contrafforti distano di 4 metri da asse ad asse e che hanno la larghezza di 1 metro, si può ritenere che il limite inferiore della grossezza da darsi al muro continuo è di 1/6 della sua altezza.

121. Muri di sostegno con contrafforti ed archi di scarico. — Questi muri presentano notevoli vantaggi su quelli con soli contrafforti interni. Le vôlte (fig. 152), caricate di terra, potentemente concorrono, in un coi contrafforti, ad allontanare il centro di gravità del muro dallo spigolo esterno della base; contribuiscono a rompere il prisma di massima spinta operante sul muro continuo fra due contrafforti successivi; e servono di ritegno per impedire che questo muro pieghi sotto l'azione della spinta delle terre. Affinchè però queste indicazioni teoriche vengano realizzate, è necessario usare molte cure nell'esecuzione della muratura, ed operare la congiunzione più intima possibile fra il muro, i vòlti ed i contrafforti.

Alcuni dati, che l'esperienza indica come convenienti e che si adottano nella pratica corrente, sono: di metri 5,50 la distanza fra asse ed asse di due contrafforti successivi; di metri 1,50 la larghezza di ciascun contrafforte; di metri 0,56 a 0,60 la grossezza uniforme dei vôlti; di metri 2,90 il raggio del loro intrados; di metri 2 a 2,20 la distanza della generatrice più alta dell'intrados dell'arco più basso della base del muro; pure di metri 2 a 2,20 la distanza fra la generatrice più alta dell'intrados di un arco e la stessa generatrice dell'arco successivo, ossia la distanza verticale fra i diversi ordini di archi di scarico; e finalmente di almeno metri 0,50 la profondità della generatrice più elevata dell'estrados dell'arco più alto, sotto il piano orizzontale passante per la sommità del muro.

Premesso questo, si consideri il caso di un muro a scarpa esterna con contrafforti e vôlti di scarico; si attribuiscano alle lettere II, II', h, s, D ed l'i significati che loro già vennero dati nei precedenti numeri 116, 118 e 120, e si chiamino

x la grossezza AC del muro continuo alla sommità ed

y la sporgenza EF di ciascun contrafforte.

Immaginando i piani verticali M'N' e P'Q', perpendicolari alla lunghezza del muro e passanti pei mezzi di due contrafforti successivi, si ha: che il peso della parte di muro continuo rappresentata in ACEB vale

 $\Pi' D h x$ (1);

che il peso dell'altra parte di muro continuo proiettata in ABD è

$$\frac{1}{2}\Pi' D s h^2 \tag{2};$$

che il peso dei due mezzi contrafforti esistenti fra i detti piani risulta

$$\Pi' lh'y$$
 (3),

dove h' rappresenta l'altezza media GH, misurata in corrispondenza della faccia laterale di un contrafforte, quando la faccia superiore IK è inclinata; che, essendo A la somma delle aree delle sezioni rette LNQO ed RTXU degli archi di scarico portati da due contrafforti successivi, il peso di questi vale

$$\Pi' A y$$
 (4);

e che, essendo A' la somma delle aree delle figure piane OQTR ed UXZbdcaY, rappresentanti le sezioni rette nei prismi di terra sostenuti dagli archi di scarico portati da due contrafforti successivi, il peso di questa terra vien dato da

$$\Pi A'y$$
 (5).

Per quanto spetta alle aree A ed A' riesce facile il determinarle, quando sono note tutte le dimensioni del muro, eccettuate le due che vennero indicate colle lettere x ed y. Questa determinazione può essere fatta o esattamente con procedimenti numerici, oppure approssimativamente impiegando il metodo della scomposizione in trapezii ed applicando le formole che vennero date nei numeri 74 e 75 del volume il quale tratta della geometria pratica applicata all'arte del costruttore. Quando i contrafforti sono superiormente terminati da un piano inclinato, quell'area, la quale costituisce la sezione retta del masso di terra posto al disopra del più alto vôlto di scarico, si può intendere limitata sopra ciascun contrafforte dalle rette a Y e b Z, condotte nel detto piano alle altezze \overline{ea} ed \overline{fb} , eguali alla già definita altezza media \overline{G} \overline{H} .

I momenti dei pesi dati dalle espressioni (1), (2), (3), (4) e (5), per rapporto allo spigolo di base rappresentato nel punto D, sono rispettivamente

$$\Pi' D h x \left(\frac{1}{2}x + sh\right),$$

$$\frac{1}{3} \Pi' D s^2 h^3,$$

$$\Pi' l h' y \left(sh + x + \frac{1}{2}y\right),$$

$$\Pi' A y \left(sh + x + \frac{1}{2}y\right),$$

$$\Pi A' y \left(sh + x + \frac{1}{2}y\right).$$

Considerando il piano verticale rappresentato in Fg come parete spinta, riesce agevole trovare (Resistenza dei materiali e stabilità delle costruzioni, cap. XIV) le componenti orizzontale e verticale Q_m e V_m della spinta che le terre esercitano contro il muro, non che l'altezza z_m del punto d'applicazione di questa al disopra della base DF. In quanto poi ai valori di P, $V_m a$ e Pb, vengono essi rispettivamente dati dalle formole

$$P = \Pi' \left[Dh \left(x + \frac{1}{2}sh \right) + y(lh' + A) \right] + \Pi A' y,$$

$$V_{\Xi} a = V_{m} \left(sh + x + \frac{1}{2}y \right),$$

$$P b = \begin{cases} + \Pi' \left[Dh \left[x \left(\frac{1}{2}x + sh \right) + \frac{1}{3}s^{2}h^{2} \right] \right] \\ + y \left(sh + x + \frac{1}{2}y \right)(lh' + A) \right] \end{cases}$$

$$+ \Pi A' y \left(sh + x + \frac{1}{2}y \right)$$

Ponendo i valori noti di Q_m , V_m , P, z_m , $V_m a$ e Pb nelle equazioni (1) e (2) del numero 415, si ottengono quelle due equazioni che servono a dare due distinti valori di x quando si conosce y, o

viceversa due distinti valori di y quando si conosce x. Il maggiore dei trovati valori della x o della y è quello che conviene adottare nella pratica.

La verificazione della stabilità del muro, sotto il rapporto della resistenza alla massima pressione, che si verifica sullo spigolo rappresentato nel punto D, deve essere effettuata precisamente coi procedimenti che sono indicati nel precedente numero.

Quando la parete esterna del muro è verticale, convengono i ragionamenti già fatti, e le formole convenienti a questo caso sono quelle già dedotte, modificate col porre in esse s=0.

Il signor ingegnere Foy, ritenendo tutte le ipotesi già stabilite nel numero 116, per quanto si riferisce alla natura delle terre, all'attrito della terra contro la muratura, alla forma della superficie superiore del terrapieno, ed alla condizione per porre l'equazione dei momenti di rotazione attorno allo spigolo rappresentato in D, diede in apposite tavole le principali dimensioni di alcuni muri di sostegno con contrafforti e vôlti di scarico; nel fare i suoi calcoli suppose che i contrafforti distassero da asse ad asse di metri 5,50, che fosse di metri 1,50 la larghezza di ciascun contrafforte, di metri 0,60 la spessezza dei vôlti, di metri 2,20 la distanza di questi vôlti nel senso verticale, di chilogrammi 1900 il peso medio del metro cubo del masso costituito dai contrafforti, dai vôlti e dalle terre da questi sopportate; e finalmente considerò i muri alti 5, 6, 9, 12 e 15 metri, cui corrispondono rispettivamente due, due, tre, cinque e sei ordini di archi.

when the states of the La missing weeks traderily by

SCARPA della parete esterna	ALTEZZA del muro	GROSSEZZA del muro continuo alla sommità	SPORGENZA dei contrafforti	VOLUME MEDIO della muratura per metro corrente
TO RUSTES	m	m	m	m
HE ALTERNA A	5,00	1,00	0,90	7,07
	6,00	1,20	0,96	9,68
0	9,00	1,80	1,27	21,11
shade are	12,00 15,00	2,40 3,00	1,60	37,83
in all the	13,00	3,00	1,93	58,37
nds alla	5,00	0,93	1,00	6,95
	6,00	1,18	1,00	9,66
0	9,00	2,01	1,00	21,96
	12,00	2,87	1,00	40,07
315 In 31	15,00	3,74	1,00	63,03
on living	5,00	0,50	0,93	5,89
4	6,00	0,60	1,02	8,03
10	9,00	0,90	1,34	17,33
10	12,00	1,20	1,68	31,07
tone marin	15,00	1,50	2,02	47,74
es l	5,00	0,47	1,00	5,90
1	6,00	0,61	1,00	8,04
11000	9,00	1,15	1,00	18,26
10	12,00	1,75	1,00	33,84
	15,00	2,32	1,00	52,98

Paragonando fra di loro i risultamenti contenuti in questa tavola, si vede che si ottiene la maggiore economia di muratura nel terzo caso, ossia in quello in cui è questione di un muro con scarpa esterna di 1/10 e colla parte continua, rilegata dai contrafforti e dai vôlti di scarico, avente la grossezza in sommità eguale ad 1/10 dell'altezza. Le proporzioni meno economiche sono quelle che corrispondono a contrafforti colla sporgenza costante di 1 metro. Questa sporgenza, che è conveniente per muri alti da 5 a 6 metri, non lo è più quando l'altezza aumenta, giacchè la grossezza della parte continua risulta troppo grande in un col volume della muratura.

422. Muri di sostegno con contrafforti esterni. — I muri di sostegno con contrafforti esterni riescono grandemente economici per rapporto al risparmio di muratura che essi permettono di fare,

giacche, essendo rappresentato nel punto D (fig. 154 e 155) lo spigolo attorno al quale tende manifestarsi la rotazione per rovesciamento sotto l'azione della spinta delle terre, la massa principale del muro di molto trovasi allontanata dal detto spigolo. Segue da ciò, che i bracci di leva del peso del muro e della componente verticale della spinta delle terre divengono molto grandi e quindi, con una sezione assai piccola, si può ottenere un sufficiente momento di stabilità. Di più, i contrafforti esterni non tendono a staccarsi dal muro continuo per effetto della spinta delle terre, la quale opera anzi in modo da mantenere costantemente questo applicato a quelli. La curvatura nel senso orizzontale, per le parti di muro comprese fra due contrafforti successivi, è il solo inconveniente da temersi; e, per opporvisi, conviene che i contrafforti non siano molto distanti fra di loro. L'esperienza ha dimostrato essere conveniente la distanza di 4 metri fra asse ed asse di due contrafforti successivi e convenire che sia di 1 metro la loro larghezza.

Un ripiego che si può adottare, per diminuire il pericolo della curvatura del muro continuo nel senso orizzontale, è quello di raccordarvi i contrafforti con prismi di muratura presentanti esternamente una superficie cilindrica con generatrici verticali, concava verso l'esterno ed avente per direttrice un quarto di circonferenza di circolo. Questa disposizione però non si vede guari adottata, perchè molto costosa per mano d'opera, e generalmente i contrafforti con sezione orizzontale rettangolare sono i soli che possono riuscire vantaggiosi nelle pratiche applicazioni.

Premesso questo, si consideri il caso di un muro di sostegno parallelepipedo con contrafforti esterni pure parallelepipedi, come risulta dalla figura 454, e siano

c la grossezza del muro continuo,

D la distanza fra asse ed asse di due contrafforti successivi,

l la larghezza dei contrafforti ed

x la loro sporgenza, espresse in metri;

si attribuiscano alle lettere h,h' e H' i significati che loro vennero dati nel numero 116 e nei numeri successivi, e s'instituiscano i calcoli relativi alla stabilità, per la parte di muro compresa fra i due piani verticali determinati dalle rette MN e PQ (fig. 153), perpendicolari alla lunghezza del muro e passanti per gli assi di due contrafforti successivi.

I pesi del muro continuo rappresentato in MPCG e del complesso dei due mezzi contrafforti proiettati in GFEN e CBAQ sono rispettivamente H'Dhc,

 $\Pi'lh'x;$

i momenti di questi pesi rispetto alla retta DD' risultano

$$\Pi' D h c \left(\frac{1}{2}c + x\right),$$

$$\frac{\Pi' l h' x^2}{2};$$

le componenti orizzontale e verticale Q_m e V_m della spinta delle terre contro la parete verticale rappresentata in MP, non che l'ordinata z_m del punto d'applicazione di questa spinta sul piano della base DE (fig. 154), si calcolano colle norme che vennero date nel capitolo XIV del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni; e finalmente i valori di P, di V_m a e di Pb vengono dati da

$$P = \Pi' (Dhc + lh'x),$$

$$V_{m} a = V_{m} (c + x),$$

$$Pb = \Pi' \left[Dhc \left(\frac{1}{2}c + x \right) + \frac{lh'x^{2}}{2} \right].$$

I valori di Q_m , V_m e P si pongano nell'equazione (1) del numero 115, i valori di $Q_m z_m$, $V_m a$ e P b si mettano nell'equazione (2) dello stesso numero, e si ottengono due equazioni le quali servono a dare due distinti valori di x. Il più grande di questi due valori è quello da adottarsi nella pratica.

Invece di risolvere il problema proponendosi di determinare la sporgenza dei contrafforti, è possibile assumersi preventivamente questa sporgenza e determinare il valore di c, ossia la corrispondente grossezza del muro continuo. Questa grossezza però non deve essere al di sotto di un certo limite, dipendente da ciò che il muro continuo non venga ad inflettersi fra due contrafforti successivi. La determinazione di questo limite è una quistione d'esperienza; e generalmente adottando distanza e larghezza dei contrafforti, quali vennero indicate in questo numero, si ha una conveniente

disposizione assegnando al muro continuo una grossezza che varii fra 1/5 ed 1/6 della sua altezza.

Per verificare se un muro di sostegno con contrafforti esterni è stabile per rapporto alla resistenza alla pressione, si segue un procedimento in tutto analogo a quello che già venne tenuto nel numero 120 per fare la stessa verificazione.

Il signor ingegnere Foy, sempre ritenendo le ipotesi state ammesse nel numero 116, calcolò le sporgenze da darsi ai contrafforti esterni ed il volume medio della muratura per metro corrente, per muri dell'altezza di 5, 6, 9, 12 e 15 metri ed aventi 1/6 dell'altezza per grossezza della parte continua. I risultati ottenuti sono quelli che trovansi nella tavola che segue.

ALTEZZA del muro	GROSSEZZA del muro continuo	SPORGENZA dei contrafforti	VOLUME MEDIO della muratura per metro corrente
m 5,00	m 0,833	m 0,833	mc 5,200
6,00	1,000	1,000	7,500
9,00	1,500	1,500	16,875
12,00	2,000	2,000	30,000
15,00	2,500	2,500	46,875

Confrontando i risultati contenuti in questa tavola con quelli che trovansi nella tavola del numero 120, pei muri la cui parte continua ha grossezza eguale ad 1/6 dell'altezza, si viene a conchiudere come, per rapporto al volume della muratura, i contrafforti esterni siano notevolmente più convenienti dei contrafforti interni. I contrafforti esterni però hanno l'inconveniente di occupare al di fuori del muro continuo un'area piuttosto ragguardevole, ciò che generalmente li rende poco convenienti per tutti quei muri che fiancheggiano le pubbliche vie. Un'altra causa, che contribuisce a rendere meno convenienti i muri con contrafforti esterni, sta nella diligentata mano d'opera che generalmente richiedono le loro spigolature; mentre in quelli con contrafforti interni, risultando queste spigolature invisibili, non è per esse necessaria una lavoratura accurata e perfetta.

Alcuni costruttori, nel calcolo delle dimensioni di un muro di sostegno con contrafforti esterni, usano considerare separatamente i contrafforti ed il muro continuo. Determinano la sporgenza di quelli in modo che siano nelle condizioni dello stretto equilibrio sotto l'azione della spinta delle terre; e quindi determinano la grossezza del muro continuo colla condizione che si trovi pure nelle condizioni dello stretto equilibrio sotto l'azione della stessa spinta. Così operando, si ottiene che l'intiero muro presenta una tale stabilità da essere 1/2 il relativo coefficiente di stabilità. Tanto pel calcolo dei contrafforti quanto pel calcolo del muro continuo, si suppone che la parete spinta sia quella parete del muro continuo la quale trovasi contro terra, ossia quella che nelle figure 454 e 155 trovasi rappresentata in E.G. Conviene osservare, che questo metodo sovente conduce a contrafforti esterni o troppo vicini o troppo larghi o troppo sporgenti, per cui non sembra molto vantaggioso nelle ordinarie circostanze della pratica.

di muri di sostegno. — Il signor ingegnere Foy, non scostandosi dalle ipotesi di cui si fece cenno nel numero 146 e nei numeri successivi, calcolò, in funzione dell'altezza h, il volume medio per ogni metro corrente di dodici principali tipi di muri di sostegno. In seguito, giustamente osservando che il volume non è il solo elemento che concorre ad aumentare il costo di un muro di sostegno, giacchè su questo notevolmente contribuiscono le difficoltà d'esecuzione e la mano d'opera più o meno accurata, calcolò pure, in funzione dell'altezza, il costo per ogni metro corrente degli stessi muri, prendendo per base i prezzi che erano in vigore nella città di Parigi nell'anno 1865. I risnltamenti dei calcoli instituiti dal signor ingegnere Foy sono quelli che trovansi nella tavola che segue, nella quale devesi esprimere l'altezza h prendendo per unità il metro.

INDICAZIONE DEI MURI	VOLUME MEDIO per ogni metro corrente	Costo per ogni metro corrente
	THE PROPERTY.	W. F. LEL
Muro senza scarpa, con contrafforti esterni paral- lelepipedi, distanti 4 metri da asse ad asse, e colla	And Just best and	ID OFFICE
grossezza del muro continuo eguale ad 1/6 dell'al-	WARREST TOWN	the party of the
lezza	0.208. 12	4,371 . h2
Muro con contrafforti interni, distanti metri 5,50 da	0,200.11	C - THE MENT OF THE
asse ad asse, e vôlti di scarico, colla scarpa esterna	Section in	The series of
di 1/10 e colla grossezza alla sommità eguale ad	The Publish And	
1/10 dell'altezza	$0,220 \cdot h^2$	4,706 . h2
Muro con contrafforti interni, distanti metri 5,50 da		At Many other
asse ad asse, e vôlti di scarico, colla scarpa esterna		100000000000000000000000000000000000000
di 1/10 e colla sporgenza dei contrafforti di 1 metro.	0,231. h2	4,858. h2
Muro curvo per cui la corda della sezione retta	- Ann	In roll 128
della superficie esterna ha la scarpa di 1/10.	0,237. 12	4,955 . h2
Muro pieno con scarpa esterna di 1/10	0,256 . h2	5,112. 12
Muro verticale con contrafforti interni parallelepi- pedi, distanti 4 metri da asse ad asse, e colla gros-	the street special	W BRAIC LEIV
sezza del muro continuo eguale ad 1/6 dell'altezza.	0.257 . h2	5,132 . h2
Muro verticale con contrafforti interni, distanti 4	0,401.4	0,102.11
metri da asse ad asse, raccordati al muro continuo	(121H)	DESCRIPTION OF THE PARTY OF THE
mediante superficie cilindriche, le cui direttrici	The waiting	e frontherson
sono quadranti circolari, e colla grossezza di que-	La constitue de	
st'ultimo eguale ad 1/6 dell'altezza	0,262. h2	5,253.h2
Muro con riseghe interne e colla scarpa esterna	MILESPEE BOAR	I slidete to
di 1/10	0,265 . h2	5,305 . h2
Muro verticale con contrafforti interni, distanti me-		Manual Street, Str. Str.
tri 5,50 da asse ad asse, e con vôlti di scarico,	to depend of	DUNE PROUBLE
colla grossezza del muro continuo eguale ad 1/6	0,267. h2	5,598 . h2
dell'altezza	0,201.12	3,000.11
tri 5,50 da asse ad asse, con vôlti di scarico e colla	State of the last	PARTITION AND THE
sporgenza dei contrafforti di 1 metro	0,275 . h2	5,713 . h2
Muro con scarpa interna di 1/10	0,299 . h2	5,933 . h2
Muro verticale	0.300 . h2	5,970 . h2

Questa tavola fa vedere che, per i dodici muri in essa considerati, la classificazione di convenienza in ordine al volume è pure quella che corrisponde al costo; ma che il rapporto fra il volume di ciascuno di essi e quello del muro parallelepipedo verticale è diverso dall'analogo rapporto fra il costo. Fra i dodici muri indicati nella tavola, il più conveniente è quello con contrafforti esterni; vengono dopo due sistemi di muri con contrafforti interni e vôlti di scarico, e quindi il muro a profilo curvo con tutti gli altri nell'ordine stesso con cui sono descritti nella tavola. In quanto al muro di sostegno parallelepipedo, chiaramente si vede che esso è il più costoso di tutti, e che è sempre possibile di sostituirvi un muro che, a stabilità eguale, permette di economizzare da 1/3 ad 1/4 della spesa necessaria alla sua costruzione.

Conviene osservare che il signor ingegnere Foy, nella deduzione

dei risultati contenuti nella precedente tavola, non tenne conto delle fondazioni, giacchè la loro entità non tanto dipende dal sistema di muro di sostegno che vuolsi adottare, quanto dalla natura del terreno.

124. Avvertenze da aversi nella costruzione dei muri di sostegno. - Le fondazioni di questi muri devono essere stabilite colle più minute cure, nell'intento di ottenere che esse somministrino una base immobile alla muratura sovrastante; giacchè la rotazione di un muro di sostegno attorno alla sua base esterna tanto più facilmente può manifestarsi, quanto più la fondazione è compressibile. Un movimento minimo nelle fondazioni è causa d'un corrispondente movimento nel muro sovrastante, e questo movimento diventa tanto più sensibile, quanto più grande è l'altezza del muro. Sovente si manifestano nei muri di sostegno notevoli deviazioni dalla verticale, le quali, anzichè a deficienza di grossezza, si devono attribuire a cedimenti ineguali, dovuti a mancanza di cure nelle fondazioni. Nei muri di sostegno molto lunghi, usano molti costruttori stabilire di distanza in distanza dei collegamenti in pietra da taglio. Questi collegamenti hanno il vantaggio di rendere più stabile la muratura e di aumentare la resistenza nei punti in cui si trovano.

Allorquando devesi costrurre un muro pel sostegno di terre acquitrinose, bisogna aver cura di praticare quelle disposizioni le quali servono a dare pronto scolo all'acqua che s'accumula dietro al muro medesimo. Si raggiunge lo scopo mediante fenditure o mediante barbacani in numero conveniente alla quantità d'acqua che si deve smaltire, e che si praticano a diverse altezze, ma di preferenza alla parte inferiore. Per impedire poi che si ostruiscano gli indicati mezzi di scolo, si dispongono alcune pietre a secco attorno di essi e dietro il muro. - In alcune circostanze, sempre per facilitare lo scolo delle acque dietro i muri di sostegno, si stabiliscono ai loro piedi apposite fogne longitudinali, che si riempiono di pietrame. Queste fogne raccolgono le acque attraversanti le terre poste dietro i muri di sostegno, e ad esse danno scolo per gli estremi od anche per canaletti trasversali, posti nel senso della grossezza dei muri e sboccanti in fossi longitudinali, posti al piede delle loro facce anteriori.

I muri di sostegno con scarpa esterna e quelli curvi generalmente si costruiscono, non per corsi orizzontali ma sibbene per corsi normali alla superficie della faccia esteriore. Questa disposizione, per essere i diversi corsi in discesa dall'esterno verso il ter-

rapieno, contribuisce alla stabilità della costruzione, e si opera in favore della stabilità allorquando si determinano le dimensioni di un muro di sostegno nell'ipotesi che la rottura possa avvenire su un giunto orizzontale, e che in seguito si costruisce per corsi coi giunti longitudinali normali alla sua faccia esterna.

125. Cenno di alcuni muri di sostegno stati impiegati in alcune eccezionali circostanze. - Parecchi ingegneri, nell'intento di opporsi ai grandi scoscendimenti ed ai grandi scorrimenti che talvolta si manifestano nei terreni argillosi, i quali vengono a terminare sulla sponda di un corso d'acqua, di un lago, del mare, non che in quelli nei quali viene aperta una trincea, invece di ricorrere a quelle opere di consolidamento destinate a togliere l'acqua costituente la causa principale della mobilità, usano stabilire potenti ritegni artificiali, capaci di opporsi ad ogni scorrimento, e quindi sufficienti a poter sostenere le straordinarie spinte che le masse in movimento esercitano contro di essi. Questi ritegni consistono generalmente in muri di sostegno con disposizioni, forme e dimensioni fnori dell'ordinario. Molti di questi muri vennero costrutti in Italia nei lavori per le ferrovie meridionali, ed ecco un breve cenno sulla forma e sulle dimensioni di alcuni dei principali.

Dovendosi costrurre la strada ferrata alla spiaggia del mare su un terreno in iscorrimento, nell'intento di mantenere questo in equilibrio e per impedire ogni movimento della strada, in alcune località si ebbe ricorso a robusti muraglioni, presentanti esternamente grandi contrafforti o speroni, arrotondati alle loro estremità e rilegati l'uno coll'altro mediante muri disposti secondo un andamento planimetrico foggiato ad arco di circolo. Nella figura 159. in proiezione orizzontale ed in sezione secondo il piano verticale determinato dalla retta XY, equidistante dai contrafforti fra cui si trova, si ha la rappresentazione di uno di questi muri. Esso presenta esternamente la scarpa di 1/5; la distanza fra asse ed asse di due contrafforti successivi è di 9 metri; alla sommità, è di 3 metri la larghezza di ciascun contrafforte, e di 5 metri la sua lunghezza, misurata secondo l'asse a partire dalla faccia interna del muro; la spessezza di quest'ultimo fra un contrafforte e l'altro è di 2 metri alla sommità; ed il raggio dell'arco AB è di metri 9,25. Non è però da dirsi che le indicate dimensioni siano state scrupolosamente adottate dappertutto, giacchè la distanza fra i contrafforti e le grossezze vennero modificate in più od in meno secondo le circostanze. Le fondazioni, che generalmente si eseguiscono con calcestruzzo, vennero spinte fino al terreno sodo ed in alcuni siti a più di 4 metri

sotto il livello del mare, e, ove si trovò necessario, non si trascurò lo stabilimento di robuste palificate.

Pel sostegno di estese coste in frana, in alcune località si trovarono convenienti i muri costituiti da pilastri inclinati con archi sovrapposti. Questi muri, come in proiezione orizzontale ed in sezione verticale secondo il piano determinato dalla retta XY appare dalla figura 161, consistono in robusti pilastri P, inclinati verso la costa in fiana, rilegati gli uni cogli altri da robusti archi A a tutta monta, coi loro piani di testa inclinati come le facce anteriori e posteriori dei pilastri stessi. Questi muri, verso la faccia anteriore, si elevano al disopra dell'estrados degli archi e per una parte terminano superiormente con una faccia piana normale all'accennata faccia anteriore, destinata a rimanere scoperta. La parte ab della faccia superiore, contro la quale vengono ad appoggiarsi le terre in frana, è foggiata a piani egualmente inclinati, colle loro intersezioni contenute in piani verticali, normali alla direzione dei muri stessi. Questi piani costituiscono come una serie di tetti a due falde, aventi i loro comignoli in corrispondenza degli assi dei diversi pilastri, e tutti contenuti nel piano stesso in cui trovasi l'indicata faccia che deve rimanere scoperta. Nell'intento di preservare queste costruzioni dai danni che vi potrebbe apportare l'umidità, è necessario coprirle superiormente con una buona cappa (Lavori generali d'architettura civile, stradale ed idraulica, num. 353, 354 e 355). In corrispondenza del mezzo di ciascun arco, ed al disopra dell'estrados di una quantità eguale alla spessezza della cappa, cadono le più basse intersezioni secondo le quali vengono ad intersecarsi i detti piani inclinati. Trovandosi il punto culminante dell'intrados degli archi verso terra assai prossimo al terreno stabile, si può fare per ognuno di essi una pietraia B, la quale, nel mentre impedisce alle terre di scorrere in basso, permette che abbia luogo lo scolo delle acque che sovente si presentano fra la falda in iscorrimento ed il sottostante terreno. - Per quanto spetta alle dimensioni principali dei detti muri, esse variano coi materiali che voglionsi impiegare nella loro costruzione e coll'importanza della frana. In molti casi, per muri alti circa 3 metri, si trovò conveniente di assegnare: la scarpa di 1/4 alle loro facce anteriori e posteriori; la larghezza di metri 2 e la lunghezza di metri 4 ai pilastri; la corda di 3 metri e la grossezza di circa 0,50 agli archi; l'altezza di circa metri 0,45 per andare dalla sommità dell'estrados degli archi al ciglio superiore dei muri; e la larghezza di metri 1,50 alla parte piana delle loro superficie superiori. Le fondazioni si devono spingere ad una più o meno grande profondità, secondo la minore o maggiore resistenza del suolo; importa raggiungere il terreno sodo; e, quando questo si trovi a grande profondità, è necessario di stabilirsi sopra di esso mediante palificate.

Dovendosi stabilire la via ferrata in una trincea aperta in terreni compressibili e mobili, si ebbe alcune volte ricorso ai muri di sostegno sui due lati, riuniti da un arco rovescio. La figura 160, in sezione orizzontale determinata dalla retta UV ed in sezione trasversale secondo il piano determinato dalla retta XY normale all'asse della strada, chiaramente fa vedere il progetto di una di tali opere. Il muro A, posto dalla parte verso la quale la superficie naturale del terreno va elevandosi, è rinforzato da contrafforti interni, rilegati da un ordine di archi a tutta monta, ed il muro B è semplicemente con scarpa esterna e con faccia interna verticale. Tanto nel muro A, quanto nel muro B vi sono frequenti fenditure per lo scolo delle acque; e, dove queste potrebbero essere otturate dal terreno, si trovano, fra esse ed i muri, ghiaie e pietre spaccate, come sul disegno vedesi indicato in C e D. L'arco rovescio E da una parte e dall'altra è contrastato fra i due muri A e B. - Le principali dimensioni di questi lavori variano evidentemente colla mobilità e colla compressibilità del terreno in cui devono essere stabiliti, non che colla qualità dei materiali che voglionsi impiegare nella loro costruzione. In alcune circostanze, costruendo i muri A e B coll'altezza di circa metri 2,50 sul livello delle rotaie e colla scarpa esterna di 1/3, si giudicò convenire: la grossezza costante di metri 1,50 pel muro A, e la grossezza di 1 metro alla sommità del muro B; la distanza di metri 4,50 fra asse ed asse, la larghezza di metri 1,50 e la sporgenza di metri 2,50 pei contrafforti del muro A; la grossezza di circa metri 0,40 per gli archi portati dai contrafforti; e finalmente la corda di metri 6,66, la saetta di metri 0,50 e la grossezza di metri 0,50 a 0,60 per l'arco rovescio.

CAPITOLO III.

Gallerie.

126. Gallerie per strade e condizioni principali alle quali devono soddisfare. — Fra i lavori, che devono far eseguire gli ingegneri addetti alla costruzione di strade, vi sono le gallerie, le quali consistono in quei sotterranei che in gran numero si trovano

lungo le vie ferrate attraversanti regioni accidentate e montagnose. Queste costruzioni, che prima dell'applicazione del vapore alle celeri comunicazioni si eseguivano in numero tanto limitato, da venire citate come meraviglie le poche escavazioni sotterranee state fatte per qualche strada o per qualche canale, sono al giorno d'oggi assai frequenti, e devesi questo alla necessità di condurre le ferrovie, per quanto si può, in linea retta od almeno secondo curve circolari di grandissimo raggio, all'impossibilità di poter superare pendenze eccedenti certi limiti, e talvolta anche ad esigenze di solidità e di sicurezza.

Le gallerie per strade devono soddisfare ad alcune essenziali condizioni, e queste si riducono: a presentare dimensioni convenienti al transito che in esse deve verificarsi; ad essere sufficientemente ventilate; ad avere quelle disposizioni che valgono a raccogliere le acque d'infiltrazione, che quasi sempre si trovano nei passaggi sotterranei; ad essere fornite di quelle altre disposizioni atte ad assicurare la vita del personale di sorveglianza al passaggio dei convogli sulle vie ferrate; e finalmente a presentare tale struttura da riuscire impossibili gli scoscendimenti ed i cedimenti.

127. Sezione retta della superficie interna di una galleria e sue principali dimensioni. - Questa sezione è generalmente una curva policentrica, ossia una curva composta di più archi circolari raccordati fra di loro (Geometria pratica applicata all'arte del costruttore, Parte prima, capitolo III). Immaginando in una di queste curve la retta orizzontale AB (fig. 162), posta al livello del suolo stradale, e quindi l'altra orizzontale EF distante dalla prima di circa 2 metri, conviene distinguere la parte EGF, la quale trovasi al di sopra dell'ultima indicata retta, dalle due parti EA ed FB che sono al di sotto. La prima delle accennate parti, che costituisce la direttrice della superficie d'intrados del vôlto della galleria, è generalmente una semi-ovale a cinque centri in una galleria per via ferrata ad un solo binario; può anche essere una semi-ovale, ma quasi sempre è una mezza circonferenza di circolo, in una galleria per via ferrata a due binarii. Le altre due parti EA e BF, le quali costituiscono le direttrici delle superficie interne dei due piedritti, sono generalmente due archi circolari.

Nelle gallerie per via ferrata ad un solo binario, si può ritenere: che la larghezza \overline{AB} al livello delle rotaie deve essere compresa fra metri 4,40 e metri 5; che la larghezza massima \overline{EF} , ossia la larghezza al livello dell'imposta del vôlto, deve stare fra metri 4,80

e metri 5,50; che l'altezza \overline{DC} della linea d'imposta EF sul livello delle rotaie si assume ordinariamente di metri 2; e che la saetta \overline{CG} del vôlto si prende quasi sempre di metri 5,50, cosicchè risulta di metri 5,50 la massima altezza interna \overline{DG} della galleria, a partire dal livello delle rotaie. — Nelle gallerie per via ferrata a due binarii, la larghezza \overline{AB} è quasi sempre compresa fra metri 7,60 e metri 8, e la larghezza \overline{EF} varia fra metri 8 e metri 8,50. In quanto all'altezza \overline{DC} , quasi sempre si conserva di 2 metri e si porta da metri 4 a metri 4,25 la saetta \overline{CG} del vôlto; cosicchè la massima altezza interna sul livello delle rotaie trovasi generalmente compresa fra metri 6 e metri 6,25.

Il problema di descrivere la curva direttrice della superficie interna di una galleria, quando già siansi fissate le larghezze AB ed EF, non che le altezze DC e CG, è indeterminato in tutti i casi in cui la curva EGF deve essere una semi-ovale, ed ecco con quale metodo si può giungere alla completa descrizione, nel caso in cui l'ultima indicata curva deve essere una semi-ovale a cinque centri, Sul mezzo C della massima larghezza EF si elevi la perpendicolare DX, e prendasi su essa il primo centro in un punto 04. Per 04 conducasi la retta O, U facente con O, X l'angolo acuto XO, U, e centrando in O, descrivasi l'arco GH che chiude il detto angolo. Fatto questo, sul prolungamento di HO, prendasi il secondo centro in un punto O., a partire da F si porti FK = 0, H, si tracci la retta KO, e nel suo mezzo L si elevi la perpendicolare LV incontrante la direzione EF nel punto O3. Unendo O3 con O2 si ottiene la direzione O3Y, la quale deve limitare l'arco HI descritto col centro in O, e con raggio O.H; e, se con centro in O3 si descrive un arco di raggio O3I, di necessità quest'arco passa per F, giacchè, avendosi per la fatta costruzione KF = 0, H = 0, I, ed essendo isoscele il triangolo $0_3 0_2 K$, risulta $\overline{0_3 F} = \overline{0_3 K} + \overline{KF} = \overline{0_3 0_2} + \overline{0_2 H} = \overline{0_3 0_2} + \overline{0_2 I} =$ 0. I. Il centro dell'arco FB deve trovarsi sulla direzione EF, e si determina esso tirando la corda FB, elevando una perpendicolare nel suo mezzo M e trovando il suo punto d'intersezione O coll'accennata direzione. I centri O4, O5 ed O' si trovano rispettivamente a fare simmetria ai centri 0, 0, ed 0 per rapporto alla verticale DX, e lo stesso ha luogo dei punti di raccordamento N e P per rapporto ai punti analoghi H ed I.

La curva GHIF è un quarto di ovale, avente \overline{CG} per semi-asse maggiore, \overline{CF} per semi-asse minore, e, fra i raggi e le ampiezze dei suoi archi, esistono le note relazioni che vennero date parlando

delle curve policentriche nel volume sulla geometria pratica applicata all'arte del costruttore. Segue da ciò, che all'accennata curva riescono applicabili tutte le considerazioni e tutti i calcoli che lungamente vennero svolti nel citato volume.

Nelle gallerie da aprirsi in terreni di dubbia resistenza, fra le estremità inferiori dei piedritti si stabilisce un arco rovescio, e la direttrice QR (fig. 165) della superficie interna di quest'arco è abitualmente un arco circolare, avente saetta non minore di 1/10 della corda.

Presentandosi il caso di dover aprire una galleria in terre di natura mobile, conviene assegnare ad essa la forma di un tubo, giacchè questa è la forma riconosciuta più vantaggiosa per resistere alle pressioni che le terre, quasi a guisa di liquidi, esercitano contro le sue pareti. La sezione retta della superficie interna della galleria può essere determinata assumendo \overline{AB} (fig. 164) eguale alla larghezza che essa deve avere al livello delle rotaie, elevando sul mezzo D di questa retta la perpendicolare DX, portando su essa una lunghezza \overline{DG} , rappresentante la minima altezza della galleria al disopra del livello dei regoli, e descrivendo la circonferenza di circolo passante pei tre punti A, B e G. La larghezza \overline{AB} si può assumere di metri 4,40 e l'altezza \overline{DG} di metri 5,50 nelle gallerie per via ferrata ad un solo binario; e portare invece \overline{AB} a metri 7,60 e \overline{DG} a metri 6 nelle gallerie per via ferrata a due binarii.

Invece di assegnare forma perfettamente circolare alla sezione interna di una galleria in terreni di natura mobile, si può adottare la forma ovale. Perciò, assunta di 2 metri l'altezza DC dell'imposta sul livello delle rotaie e fissata la totale altezza DG non che le larghezze AB ed EF in modo conveniente allo scopo per cui la galleria vuolsi costrurre, la sua sezione retta può esser composta di due semi ovali. Una EGF avente per semi-assi CG e CF e l'altra ESF di semi-assi CS e CF. Nelle gallerie per vie ferrate ad un solo binario le lunghezze EF, CG e CS si possono rispettivamente assumere di metri 5,50, di metri 3,50 e di metri 2,90; mentre nelle gallerie per vie ferrate a due binarii le stesse lunghezze possono rispettivamente essere di metri 8 ad 8,50, di metri 4 e di metri 5. In quanto poi alle curve EGF ed ESF si può ritenere: che si può fare la prima a cinque centri e la seconda a tre centri, quando trattasi di una galleria per via ferrata ad un solo binario; e che la prima può essere una mezza circonferenza od una semi-ovale a tre centri e la seconda una semi-ovale a tre od a cinque centri nel caso

di una galleria per via ferrata a due binarii. In quanto alla larghezza AB, non deve risultare minore di metri 4,40 nel primo caso o non minore di metri 7,60 nel secondo.

128. Rivestimenti delle gallerie. — Nell'aprimento di una galleria possono presentarsi tre principali circostanze: o si deve essa praticare in roccia dura, non alterabile al contatto dell'aria; o si deve scavare in una roccia la quale è soggetta a sfaldarsi in contatto dell'aria; oppure si deve aprire in sostanze terrose.

Nel primo caso è generalmente inutile ogni rivestimento alla parete della galleria, e tutto al più può essere necessario qualche rivestimento murale parziale (fig. 165) in quelle località in cui nasce il dubbio che possa avvenire qualche scoscendimento. La grossezza di questo rivestimento varia ordinariamente fra metri 0,30 e 0,50.

Nel secondo caso è necessario un rivestimento murale per difendere la roccia dal contatto dell'aria. Questo rivestimento può essere come quello rappresentato nella figura 162; presentare dalla chiave alle imposte una grossezza costante, compresa fra metri 0,30 e 0,40, ed una grossezza anche maggiore in quelle località nelle quali possono manifestarsi scoscendimenti; ed avere in corrispondenza di ciascun piedritto una grossezza crescente dalla sommità al piede, risultante dalla verticalità delle pareti ab e cd. Sovente anche la grossezza dei piedritti è costante ed eguale a quella del vôlto, come risulta dalla figura 166.

Nel terzo caso è indispensabile un robusto rivestimento di struttura murale, atto ad impedire lo scoscendere delle terre. La grossezza di questo rivestimento deve essere tanto maggiore, quanto più le terre sono soggette a franare e quanto più sono energiche le pressioni che esse esercitano contro un ritegno destinato ad impedire gli scoscendimenti; questa grossezza varia ordinariamente per il vôlto fra metri 0,50 e 0,80; che anzi, per alcune gallerie in terre mobili, le quali sono in corso di costruzione nell'Italia meridionale, si riconobbe insufficiente la grossezza di metri 1,50. Ai piedritti assegnasi generalmente grossezza variabile dalle loro sommità ai loro piedi, facendo in modo che ciascuna delle direttrici delle loro superficie contro terra sia costituita da un piccolo arco circolare ab (fig. 164) in prosecuzione di quello dell'estrados del vôlto e da una retta be tangente al detto arco nel punto b. All'arco rovescio TUIZ si assegna una grossezza costante, la quale si assume generalmente non inferiore ai 2/3 della grossezza del vôlto. I piedritti ben di frequente terminano ad un livello più alto di quello al quale trovasi la generatrice più bassa della superficie contro

terra dell'arco rovescio, come risulta dalle figure 163 e 164; e talvolta si affondano sotto il livello della definita generatrice, come risulta dalla figura 167.

In quelle gallerie nelle quali si trovano abbondanti acque, bisogna procurare di stabilire una specie di cappa sul vôlto, onde impedire le eccessive filtrazioni dal vôlto medesimo, principalmente quando le malte sono ancora fresche. Questa cappa fa sì che le acque discendono dietro i piedritti, nelle parti inferiori dei quali sono necessarie apposite fenditure, atte a scaricarle nei condotti di scolo, di cui si parlerà nel numero che segue. In alcuni casi, invece di fare la cappa del vôlto con materie cementizie, si ebbe ricorso a fogli di zinco, posti sull'estradosso, e si ottennero buoni risultamenti.

129. Condotti per lo scolo delle acque. — Nelle gallerie, quasi sempre gocciolano acque dal vôlto e dai piedritti, ed importa di raccogliere queste acque di scolo in appositi condotti, destinati al loro smaltimento. Questi condotti si possono stabilire contro i piedritti, oppure in corrispondenza degli assi delle gallerie.

Nella figura 162, 165 e 166 si vede, in sezione trasversale, quali disposizioni si danno ai condotti stabiliti contro i piedritti. La loro sezione interna è generalmente rettangolare, e più o meno grande, secondo la maggiore o minor quantità d'acqua che devono smaltire; quasi sempre hanno platea e sponda di struttura murale verso l'interno della galleria, e generalmente sono coperti con lastre di pietra. Quando non si hanno lastre di pietra, i condotti si coprono mediante piccole vòlte laterizie, aventi grossezza eguale a quella della dimensione media del mattone o del mattonetto, e nelle loro sponde si lasciano frequenti fenditure φ , per le quali esse ricevono le acque che devono esportare dalle gallerie.

I condotti situati in corrispondenza degli assi delle gallerie sono generalmente foggiati come in sezione trasversale risulta dalla figura 168, allorquando trovansi essi stabiliti sul fondo naturale dell'escavazione, come appare dalle figure 165, 164 e 167, in quei casi in cui il rivestimento è completato da un arco rovescio. Le sponde di questi condotti sono anche munite di frequenti fenditure φ , destinate a ricevere le acque le quali devono essere esportate.

Per le gallerie aperte in sostanze rocciose, si possono scavare i condotti di scolo nella roccia stessa, coprirli con lastre di pietra non perfettamente combacianti, e praticare alcuni fori alla sommità delle sponde appena sotto le lastre di coprimento.

Nelle gallerie per vie ferrate ad un solo binario senza arco rovescio, si pone generalmente un solo condotto di scolo al piede di un piedritto, verso il quale inclinasi il fondo hy (fig. 162, 165 e 166) dell'escavazione, assegnandogli una pendenza variabile fra 1/40 ed 1/50. Nelle gallerie per vie ferrate con due binarii, sovente si fa un solo condotto in corrispondenza dei loro assi, e talvolta se ne pongono due ai piedi dei piedritti. Quest'ultima disposizione è adottata anche nelle gallerie per vie ferrate con un solo binario, quando in esse abbondano le acque alle quali i condotti devono dare smaltimento.

Tanto per le gallerie di vie ferrate con un solo binario, quanto per quelle di vie ferrate con due binarii, si pone un solo condotto nel mezzo, allorquando i piedritti trovansi fra loro riuniti da un arco rovescio.

Le dimensioni dei condotti per lo scolo delle acque sono variabili colla portata che devono smaltire, e nelle gallerie per vie ferrate avviene quasi sempre: che la larghezza e l'altezza interna degli accennati condotti è di metri 0,40; che la loro platea ha la grossezza di metri 0,15 a 0,15; che le loro sponde hanno grossezza di metri 0,24 a 0,56; e che le lastre di pietra, da cui trovansi coperti, non hanno spessezza maggiore di metri 0,10, con una larghezza d'appoggio sulle sponde di metri 0,07 a 0,10. L'altezza Di del ballast (fig. 162, 165, 164, 165, 166, 167 e 168), in corrispondenza degli assi dei binarii di rotaie, deve essere compresa fra metri 0,50 e 0,55; e, per ottenere che le materie costituenti il ballast non vengano a portarsi nei condotti, passando per le fenditure o, è necessario porre innanzi a queste alcune pietre un po' grosse ed irregolari, le quali, trattenendo i materiali minuti del ballast, lascino passare le acque d'infiltrazione per gli interstizii fra esse esistenti.

Nelle gallerie un po' lunghe, importa di tanto in tanto accertarsi se i condotti di scolo funzionano regolarmente, come pure importa raccogliere le sostanze terrose che possono trascinare le acque ed estrarle, affinchè non vengano ad ostruirsi i condotti stessi. Al duplice scopo servono i pozzetti d'esplorazione, posti generalmente a distanze eguali di 100 od anche di 50 metri e foggiati come, in proiezione orizzontale ed in sezione longitudinale per l'asse di un condotto, appare dalla figura 169. Questi pozzetti hanno il loro fondo di circa metri 0,20 sotto quello dei condotti di cui fanno parte, e la loro bocca superiore è coperta con una lastra mobile di pietra, la quale quasi sempre è posta al livello del ballast. Togliendo la lastra che copre un pozzetto, si può riconoscere se l'acqua scorre liberamente nel condotto, e, estraendo tutte le

materie che trovansi sul fondo dei diversi pozzetti di uno stesso condotto, si provvede al suo spurgo.

450. Pozzi delle gallerie. — Per provvedere alla ventilazione nell'interno delle gallerie molto lunghe, servono quei pozzi, cui si dà generalmente il nome di pozzi di ventilazione. Questi pozzi sono quasi sempre alcuni di quelli stati aperti per la costruzione della galleria nella quale si trovano; le loro pareti sono convenientemente rivestite; e ben difficilmente il loro asse insiste a quello della galleria.

Nella figura 470, in sezione verticale secondo il piano determinato dalla retta RS ed in proiezione orizzontale della sezione prodotta dai piani determinati dalla spezzata TUVXYZ, si ha la rappresentazione di un pozzo e del suo congiungimento colla galleria. Il pozzo affondasi in A sotto il livello delle rotaie nella galleria, onde avere un serbatoio dell'acqua che gocciola dalle pareti del pozzo medesimo, non che delle acque piovane che possono entrare per la sua bocca superiore; e quest'acqua, elevatasi fino in a, per un condotto C perpendicolare all'asse della galleria, viene a portarsi nel condotto di scolo D. Un muro E serve di parapetto a chi, venendo dalla galleria principale e passando per la piccola galleria trasversale F, si presenta al pozzo. L'altezza della detta galleria trasversale è eguale a quella della galleria principale; ed il pozzo, rivestito di muratura per l'intiera sua altezza, presenta internamente una sezione orizzontale circolare. Superiormente e fuori di terra, la canna del pozzo, convertendosi in camino di ventilazione, prende la forma di scorza conica, come si vede in G; ed una griglia conica di ferro, nel mentre impedisce che nel pozzo si possano gettare pietre od altri corpi solidi, permette che si stabilisca una corrente d'aria fra esso e la galleria. Il diametro interno del pozzo e la profondità del serbatoio variano generalmente fra 2 e 3 metri. La scorza conica G, la quale sorge fuori terra alla sommità del pozzo, ha comunemente un'altezza compresa fra 3 e 5 metri; la scarpa della sua superficie esterna può variare fra 1/12 ed 1/15; e l'altezza della griglia metallica H può essere assunta fra metri 2 e metri 2,50. La sezione retta interna del condotto C, per cui le acque del serbatoio A passano nel condotto di scolo D, è generalmente quadrata con lato di metri 0,20 a 0,50, e la pendenza dello stesso condotto C è di circa 1/100. La larghezza della galleria trasversale F è quasi sempre eguale al diametro interno del pozzo, ed il rivestimento di questa, non che quello del pozzo, diflicilmente è inferiore a metri 0,56. È bene che la grossezza dellascorza del camino di ventilazione sia di metri 0,48, e che esso, invece di gravitare direttamente sulla canna del pozzo, abbia una fondazione a riseghe tutta sua propria, come risulta dalla figura. La superficie d'intradosso del vôlto della galleria trasversale viene generalmente raccordata colla superficie interna del pozzo, come si vede in I.

Le indicate dimensioni, quantunque assunte fra limiti assai estesi, non si devono ritenere siccome convenienti in tutti i casi. Nei terreni di natura mobile e producenti grandi pressioni sui rivestimenti, può essere necessario aumentare le grossezze di questi; mentre nella roccia consistente le dette grossezze si possono diminuire. Nella pietra dura ed inalterabile al contatto dell'aria si può anche far senza rivestimento. In quelle gallerie, nelle quali si è creduto conveniente di porre un arco rovescio fra i piedritti, è necessario adottare la medesima disposizione per le gallerie trasversali le quali servono al congiungimento della galleria principale coi pezzi. La forma della sezione orizzontale dei pozzi poi non deve essere esclusivamente la circolare, e si trovano numerosi esempli di pozzi con sezioni orizzontali ellittiche od ovali. Il raccordamento della superficie d'intrados di una galleria trasversale col relativo pozzo non è di assoluta necessità, giacchè riesce cosa facile costrurre il rivestimento nel luogo d'intersezione della superficie cilindrica a generatrici verticali, costituente la superficie interna del pozzo, colla superficie cilindrica a generatrici orizzontali, formante la superficie d'intrados della galleria trasversale.

Non tutti i pozzi, che sovente si fanno per l'esecuzione di una galleria, si mantengono aperti per la ventilazione, quando la galleria è costrutta. Sono alcuni pochi quelli che si conservano a quest'ultimo scopo, e gli altri vengono generalmente otturati, coprendoli con una vôlta a bacino, posta di pochi metri al di sopra del loro congiungimento colla galleria trasversale, e riempiendoli di terra al di sopra di questa vôlta.

431. Nicchie. — Affinchè al passaggio dei convogli nelle gallerie per vie ferrate possa il personale di sorveglianza, che per caso si trova in galleria, avere un sicuro ricovero, si lasciano nei piedritti sufficienti nicchie, col loro pavimento al livello del ballast, e coperte da una vôlta a botte a monta depressa.

Una di queste nicchie trovasi rappresentata nella figura 169 in sezione orizzontale secondo il piano determinato dalla retta XY ed in proiezione verticale sul piano determinato dalla retta UV, e, per quanto spetta alle dimensioni principali, si può ritenere: che

la larghezza \overline{AB} varia fra metri 1,80 e metri 2; che l'altezza \overline{AC} sotto l'imposta della vôlta che la copre si assume fra metri 1,75 e metri 2,20; che la massima altezza interna \overline{DE} è compresa fra metri 2,10 e metri 2,55; che la profondità \overline{AF} varia fra metri 1,25 e metri 1,50. I rivestimenti murali circondanti le nicchie hanno generalmente le stesse grossezze dei vôlti delle gallerie nelle quali si troyano.

Alcuni costruttori usano porre tutte le nicchie di una galleria in un solo piedritto, a distanza non maggiore di 50 metri l'una dall'altra; alcuni altri invece, mantenendo il limite massimo di 50 metri nelle distanze fra le sezioni rette di galleria in cui trovansi gli assi delle nicchie, usano disporle alternativamente, una su un piedritto e l'altra sull'altro; per guisa che le nicchie poste in uno stesso piedritto distano non più di 100 metri, e ad ogni nicchia di un piedritto corrisponde il mezzo della distanza che esiste fra due nicchie successive dell'altro piedritto. Sonvi poi altri costruttori, i quali su ambedue i piedritti fanno le nicchie a distanza non maggiore di 50 metri, disponendole in modo alternato; cosicchè, considerando le sezioni trasversali di galleria le quali corrispondono agli assi delle diverse nicchie, queste distano fra di loro non più di 25 metri. I pozzetti d'esplorazione, di cui si è parlato nel numero 129, si stabiliscono generalmente in corrispondenza delle sezioni rette di galleria determinate dagli assi delle nicchie.

152. Teste delle gallerie. — Le teste delle gallerie variano colle accidentalità della superficie del terreno nei luoghi in cui si trovano, ma si possono esse ridurre a tre tipi principali: alle teste con muri di risvolto; alle teste con muri d'ala; ed alle teste con muri in prolungamento.

Nella figura 171 trovansi rappresentate le metà dell'elevazione e della proiezione orizzontale di una testa di galleria con muri di risvolto. Fra le due spezzate ghik e lmno si ha la proiezione orizzontale del condotto di scolo C; ab è la proiezione orizzontale della linea d'imposta della superficie d'intrados del vôlto della galleria; e in onqpdc orizzontalmente proiettasi l'estremità del piedritto P. Al di sopra di questo piedritto ed al di sopra del vôlto, si eleva sulla fronte il muro di facciata F della galleria, il quale termina superiormente con un piano orizzontale ut. In continuazione del detto muro di facciata esiste il muro di risvolto R, la cui grossezza va generalmente diminuendo a misura che allontanasi dalla galleria. Nel passare dal muro di facciata al muro di

risvolto esiste ben di frequente un risalto; tanto l'uno, quanto l'altro degli indicati muri sono coronati con una copertina di pietra; e dietro questa esiste un fosso o, destinato a raccogliere le acque che dal sovrastante terreno vengono alla testa della galleria, ed a riversarle verso le estremità del muro di risvolto sulle scarpe laterali. La figura chiaramente fa vedere come si devono eseguire i lavori in terra agli imbocchi di una galleria con muri di risvolto. — Nelle ordinarie circostanze della pratica, la larghezza vx, del muro di facciata all'imposta del vôlto, suol essere di circa metri 1,25, e di circa I metro l'altezza yt del piano orizzontale, al quale termina il detto muro, sull'intrados del vôlto stesso. La grossezza qp ben di frequente suolsi assumere di metri 1,05, per guisa che, dando al muro di facciata un risalto di metri 0,25 sui muri d'ala, rimane per questi una grossezza rp di metri 0,80, che all'estremità sf si può portare a metri 0,50. La grossezza tz ed Ba delle copertine del muro di facciata e del muro d'ala sono rispettivamente di metri 0,30 e di metri 0,20, e la loro larghezza di circa metri 0,65 e 0,35. Al fosso \varphi si dà ordinariamente una profondità di circa metri 0,30, una larghezza sul fondo di circa metri 0,75 ed una pendenza, dal mezzo verso le due estremità dei muri d'ala, di metri 0,005 per metro. Le indicate dimensioni nulla hanno di assoluto e, per quanto spetta al muro di facciata ed ai muri d'ala, conviene tener conto delle massime spinte che le terre vi possono esercitare contro ed assicurarsi, coi procedimenti che vennero svolti parlando dei muri di sostegno, che sotto le azioni di queste spinte non sarà per venir meno la loro stabilità.

Allorquando una testa di galleria è fornita di muri d'ala, adottasi generalmente la disposizione che in elevazione ed in proiezione orizzontale vedesi rappresentata nella figura 172. Fra le due spezzate ghik ed lmno cade la proiezione orizzontale del condotto di scolo C; in ab si ha la proiezione orizzontale della linea d'imposta della superficie d'intrados del vôlto della galleria; ed in onqrpdc trovasi la proiezione orizzontale dell'estremità del piedritto P. Al disopra di questo piedritto ed al disopra del vôlto innalzasi il muro di facciata F, terminato al piano orizzontale ut e coronato da una copertina di pietra. Il muro d'ala A, intestato nel detto piedritto e nell'indicato muro di facciata, seguendo colla sua faccia superiore il naturale declivio delle terre, si abbassa partendo dal piano orizzontale in cui trovasi la faccia superiore della copertina. La sua faccia anteriore, ossia quella volta verso la strada, ha ge-

neralmente la scarpa di circa 1/10, e la faccia contro terra è inclinata, per ottenere che il muro d'ala sia più grosso al piede che alla sommità e che la grossezza al piede vada decrescendo partendo dalla fronte della galleria fino all'estremità del muro, ossia a misura che diminuisce l'altezza del muro stesso. Generalmente l'indicata faccia presenta diverse riseghe, a distanze eguali nel senso verticale ed aventi larghezza di circa metri 0.15. Quasi sempre all'estremità del muro d'ala se ne fa una parte coll'altezza costante di circa metri 0,50 al di sopra del suolo stradale. Come devono essere eseguiti i lavori in terra attorno all'imbocco di una galleria con muri d'ala, chiaramente lo dimostra la figura. Al piede del piano X vi deve essere il fosso o, destinato a raccogliere le acque che verrebbero a riversarsi sull'imbocco della galleria, e questo fosso termina presso il punto più alto dell'intersezione del piano Y col piano Z. - La grossezza del muro d'ala A è generalmente di metri 0,50 alla sua sommità, e la sua grossezza al piede, variabile da sito a sito, viene determinata dalla scarpa di circa 1/10 che suolsi assegnare alla sua faccia esterna e dalla scarpa, quasi sempre maggiore di 1/10, che abitualmente si dà alla sua faccia interna, ossia a quella contro la quale trovasi appoggiato il terrapieno e che ben sovente è tagliata a riseghe. La condizione, che il muro d'ala sia capace di resistere alla spinta delle terre che contro di esso hanno appoggio, è quella che in ogni caso può condurre a determinare la legge della variazione della sua sezione, affinchè si trovi esso in buone condizioni di stabilità. Per quanto spetta alle dimensioni principali della copertina, del muro di facciata del piedritto e del fosso posto dietro la copertina, valgono le osservazioni che vennero fatte parlando delle gallerie aventi teste con muri di risvolto.

Allorquando conviene ridurre le opere di sterro per le trincee che si presentano alle entrate delle gallerie, si adottano le teste con muri in prolungamento, di una delle quali si ha la rappresentazione, mediante mezza proiezione orizzontale e mediante mezza elevazione, nella figura 173. Il condotto di scolo C proiettasi orizzontalmente fra le due linee spezzate ghik ed lmno; ab è la proiezione orizzontale della linea d'imposta della superficie d'intrados del vôlto della galleria; in ongrpdc si ha la proiezione orizzontale del piedritto P; ed in qrst quella del muro di facciata F. In M vedesi il muro in prolungamento, il quale è solidamente intestato nel piedritto P e nel muro di facciata F e che non è altro fuorchè un muro di sostegno delle terre. — Le dimensioni del muro M si determinano colle norme

che vennero date nel precedente capitolo, e la grossezza da asseguarsi a questo muro è quella che stabilisce la lunghezza \overline{uq} che deve avere la parte ripiegata duqrp del piedritto P, onde ben effettuare l'unione del muro M col piedritto P e col muro di facciata F. Le dimensioni del muro di facciata e della copertina si possono ordinariamente assumere come già si è indicato parlando delle teste con muri di rivolto.

Non sempre le gallerie hanno le loro teste o con soli muri di risvolto, o con soli muri d'ala, o con soli muri in prolungamento, e non di rado le circostanze locali esigono che da una parte di una stessa testa si faccia un muro di risvolto e dall'altra un muro d'ala oppure un muro in prolungamento.

Non sempre le fronti delle gallerie presentano quella semplicità che risulta dalle figure 474, 472 e 473, e ben di frequente queste fronti sono decorate in modo conveniente alla loro destinazione e coronate da una cornice la quale tiene il luogo della copertina. Gli ingegneri addetti all'immediata direzione di questi lavori pongono generalmente un certo impegno nello studio degli imbocchi delle gallerie di qualche importanza, e, visitando i lavori delle strade ferrate, se ne vedono parecchi che sotto tutti i rapporti sono degni d'encomio.

153. Gallerie a cielo scoperto. — S'incontrano talvolta delle coste soggette a scoscendimenti, per cui, dovendosi stabilire una strada al loro piede, importa porla al riparo dei gravi danni che questi scoscendimenti vi potrebbero apportare. Per raggiungere lo scopo, servono le gallerie a cielo scoperto, così chiamate per trovarsi adossate alla terra solamente da un lato e perchè si costruiscono fuori terra.

Nella figura 174 si ha la rappresentazione di una di queste gallerie, mediante la sua proiezione orizzontale e mediante una sezione trasversale secondo il piano determinato dalla retta X Y. Essa consiste essenzialmente in due piedritti M ed M', rinforzati dagli speroni S ed S', ed in una vôlta a botte a tutta monta V. I piedritti si elevano in modo che, terminati da piani egualmente inclinati all'orizzonte, danno luogo a due pioventi raccordantisi verso la sommità dell'estrados del vôlto. Il piedritto M, posto dalla parte della costa soggetta a scoscendere, fra uno sperone e l'altro, presenta esternamente una superficie cilindrica a generatrici verticali, convessa verso la costa stessa; ed il piedritto M', è pure terminato fra due speroni successivi da una superficie cilindrica avente le sue generatrici verticali, ma concava verso l'esterno della galleria. Gli speratrici verticali, ma concava verso l'esterno della galleria. Gli speratrici verticali, ma concava verso l'esterno della galleria.

roni S', posti a valle, hanno grossezza maggiore degli speroni S situati a monte. Questi sono con riseghe, quelli invece presentano esternamente una faccia inclinata. L'intiera costruzione è coperta con una cappa, costituita generalmente da uno strato di buon calcestruzzo, e quella parte la quale trovasi sotto il livello del suolo stradale costituisce la fondazione della galleria, la cui forma trovasi abbastanza chiaramente indicata nel disegno.

Le gallerie a cielo scoperto devono soddisfare, per quanto concerne le dimensioni principali del loro interno, alle norme che vennero date nel numero 127, ed i piedritti possono presentare per profilo una linea verticale od anche una curva circolare. Per quanto si riferisce alle dimensioni dei piedritti, degli speroni e del vôlto, esse devono variare colla massa più o meno grande del terreno in iscorrimento; il complesso dell'opera deve trovarsi nelle condizioni di un potente muro di sostegno sotto l'azione dell'enorme spinta che la massa in iscorrimento vi produce contro; e le diverse parti devono essere capaci di sopportare gli sforzi che contro ciascuna di esse ha luogo. Per una galleria di via ferrata ad un solo binario, colla larghezza interna di 5 metri e colla massima altezza interna di 6 metri, si giudicò opportuno di assegnare: al piedritto M la massima grossezza ab di metri 1,50 e la minima grossezza cd di 1 metro; al piedritto M' la minima grossezza a'b' di 1 metro e la massima grossezza c'd' di metri 1,50; agli speroni S la distanza fra asse ed asse di metri 4,50, la grossezza ef di metri 1,50 e la sporgenza ce di metri 5 con due riseghe della larghezza di metri 0,50; agli speroni S' la distanza fra asse ed asse di metri 4,50, la grossezza e'f' di metri 2,00, la sporgenza c'e' al livello del suolo stradale di metri 2,50, e la sporgenza c'q = oc'' alla sommità di metri 1,25; la grossezza costante di 1 metro al vôlto; e la grossezza di metri 0,20 ad uno strato di calcestruzzo destinato a coprire l'intiero edifizio. Passando dalla parte di costruzione posta al disopra del suolo stradale alle fondazioni, alla parte sottostante agli speroni S' si fece subire un aumento di sporgenza di metri 0,50; fra uno sperone e l'altro si fece il vôlto V' della grossezza di 1 metro e colla monta di metri 1,25; e sotto si costrui il muro M" con scarpa esterna, grosso metri 0,90 sotto la chiave dell'arco V' e metri 1,80 al suo piede. Le altezze dello sperone S' e del sottostante sperone S", che gli serve di fondazione, sono ambedue di 6 metri.

CAPITOLO IV.

Ponti.

ARTICOLO 1.

Nozioni generali.

154. Ponti e loro distinzione relativamente ai materiali impiegati nel costruirli. — Allorquando una strada deve attraversare un fiume, un torrente od un altro minore corso d'acqua, importa provvedere a che, nè la strada si trovi interrotta od imbarazzata dalle acque, nè il corso di queste rimanga impedito o turbato dalla continuità della strada. Per ottenere lo scopo, sono necessarie apposite opere d'arte, le quali prendono il nome di ponti.

I ponti, considerati per rapporto ai materiali impiegati nella loro costruzione, si distinguono: in ponti di struttura murale; in ponti di legname; in ponti metallici. I ponti di struttura murale possono essere in pietra da taglio, in pietrame grezzo o lavorato, in mattoni, od anche riunire due o tutte tre le indicate strutture. I ponti di legname si costruiscono con legni di essenza forte, e soprattutto riescono vantaggiosi quelli di quercia e di larice rosso. I ponti metallici sono di ferro o di ghisa; quelli di ferro però sono più di frequente usati nelle moderne costruzioni, e l'impiego della ghisa viene unicamente serbato per la formazione di alcuni pochi pezzi speciali, soggetti a soli sforzi prementi e con forme difficilmente ricavabili dal ferro.

135. Generale conformazione dei ponti. — Un ponte, dovendo superiormente dar passaggio ad una strada e contemporaneamente lasciare libero sfogo alle acque del corso su cui si trova, necessariamente deve constare di arcate, o di travature sostenute da un conveniente numero di piedritti. Gli estremi di questi piedritti, ossia quelli aderenti alle sponde del corso d'acqua, prendono il nome di testate, o di spalle del ponte, e gli intermedii, sorgenti dal fondo dell'alveo, si dicono pile. Nei ponti di lunghezza non tanto grande esistono solo le spalle, ed il limite della lunghezza al di là del quale sono necessarie una o più pile, dipende principalmente dai mate-

riali che voglionsi impiegare nella costruzione dei ponti ed in parte anche da circostanze e da esigenze locali. Parlando dei ponti di varia struttura, si dirà dell'indicato limite non che delle distanze a cui conviene stabilire le pile nei ponti molto lunghi.

136. Condizioni generali pel buono stabilimento di un ponte. -Per bene stabilire il sito in cui conviene costrurre un ponte qualunque, bisogna osservare dove il corso d'acqua si presenta da lungo tempo sistemato, perchè altrimente, costruendolo in località in cui le condizioni dell'alveo sono mutabili, la stabilità dell'edifizio ad ogni momento può venire compromessa. In generale bisogna evitare di costrurre i ponti sulle risvolte dei corsi d'acqua che voglionsi attraversare, per la semplice ragione che i piedritti si troverebbero esposti ad urti laterali; e di più, finchè riesce possibile, conviene procurare che la direzione della strada sul ponte risulti normale a quella della corrente. Conviene ritenere che riesce sconveniente congiungere i tronchi di strada fra cui cade il ponte ed il ponte stesso mediante rampe un po' alte. Finalmente la fermezza naturale delle sponde in cui devono essere stabilite le spalle, non che la buona costituzione del fondo sul quale occorre elevare le pile, sono due condizioni che il costruttore deve avere ben presenti nel determinare la sede di un ponte; e, qualora imperiose esigenze impongano di stabilirlo in condizioni sotto questi rapporti sfavorevoli, importa accertarsi della possibilità di poter vincere in modo efficace gli ostacoli che la natura oppone.

137. Operazioni preliminari per lo studio di un progetto di ponte. - Quando, col soddisfare alle condizioni enunciate nel precedente numero, siasi fissata la località in cui un ponte vuol essere stabilito, conviene precisarne il sito, e per questo è necessario acquistare una conoscenza perfetta di tutte le accidentalità del letto, delle sponde e di tutte le attinenze del corso d'acqua, tanto nel senso planimetrico quanto nel senso altimetrico. Per raggiungere lo scopo, bisogna precedere ad un rilevamento accurato, onde dedurre da esso un piano atto ad indicare con esattezza la larghezza dell'alveo, le accidentalità del terreno e le direzioni dei due tronchi di strada che mettono capo al ponte. Mediante una livellazione longitudinale, occorre determinare la pendenza del corso d'acqua; e quest'operazione si deve ripetere in diverse epoche dell'anno, per conoscere, le variazioni che si possono manifestare nei periodi di escrescenza delle acque, sia nella pendenza stessa, sia nella maniera con cui essa si distribuisce. Oltre le livellazioni longitudinali, sono indispensabili alcune livellazioni trasversali, per dedurre i corrispondenti profili e per arrivare a conoscere con una certa precisione la forma della superficie del fondo; di più, è necessario che nelle dette operazioni di livellazione siano compresi alcuni punti dell'asse stradale, onde poter aver la posizione altimetrica della strada per rapporto a quella del corso d'acqua. Queste operazioni di rilevamento planimetrico ed altimetrico, da condursi a compimento colle norme che vennero date nel volume che tratta delle operazioni topografiche, sono quelle che permettono lo studio definitivo del progetto del ponte, quando, oltre il piano ed i profili trasversali delle località, siansi fatti gli opportuni sondaggi, diretti a studiare la natura del terreno, per adattarvi il conveniente sistema di fondazioni.

Determinata la posizione dell'asse di un ponte, la prima importante quistione da risolversi è quella di fissare la sua luce libera, ossia la larghezza dello spazio libero che è necessario lasciare sotto di esso, affinchè la corrente, in qualunque stato e principalmente nelle sue massime piene, possa per essa trovare uno sfogo regolare, senza compromettere la solidità dell'edifizio e conveniente al buon regime dell'acqua nel tronco superiore. Perciò, oltre i dati risultanti dalle operazioni di rilevamento di cui si parlò, è necessario procurarsi la portata del corso d'acqua in cui il ponte vuol essere stabilito, la quale portata può essere dedotta con tre diversi metodi.

Il primo metodo, che talvolta si applica quando devesi determinare la portata per stabilire un ponte sopra un fiume, sopra un torrente, sopra un rio ed in genere sopra un corso d'acqua soggetto a piene, consiste nel desumerla dalle acque scaricate dalle tributarie campagne, nelle più generali e copiose pioggie, su tutta l'estensione del tronco di alveo fra l'origine ed il sito in cui vuolsi collocare il ponte; e nel supporre che il volume d'acqua, che in un minuto secondo deve passare sotto il ponte sia eguale a quello che nello stesso tempo cade sulle dette campagne tributarie, diminuito di quella parte che viene assorbita dal terreno. Perciò, dette

A la superficie, in metri quadrati, delle campagne tributarie,

a quell'altezza, in metri, a cui si può stimare che si eleva l'acqua in un minuto secondo di dirottissima pioggia,

a' quella parte della detta altezza che si riferisce alla quantità d'acqua che nello stesso tempo viene assorbita dal terreno,

Q la massima portata, in metri cubi, del fiume, del torrente o del rio nel sito in cui vuolsi costrurre il ponte, si ha

$$Q = A(a'-a) \tag{1},$$

nella quale, quando non si conoscano i risultamenti di precise ed accurate osservazioni meteorologiche, si può assumere di metri 0.000002 l'altezza a-a'.

Il secondo metodo per ottenere la portata di un corso d'acqua qualsiasi, consiste nel rilevare accuratamente una sua sezione retta, non che la pendenza del suo fondo, ossia il rapporto fra la differenza di livello di due suoi punti e la loro distanza orizzontale. Nella scelta di questi due punti bisogna procurare che si trovino uno a monte e l'altro a valle della sezione considerata; che giacciano nel mezzo dell'alveo; e che sensibilmente il terreno presenti un solo pendio dall'uno all'altro. Invece di considerare due punti del fondo, riesce generalmente più comodo operare su due punti della superficie dell'acqua, i quali siano nel mezzo o almeno su una retta parallela all'asse della corrente. Se ora chiamansi

I la misurata pendenza del fondo o della corrente nella località in cui venne rilevata la sezione trasversale,

Ω l'area, in metri quadrati, di quella parte dell'accennata sezione per cui cammina l'acqua,

X la lunghezza, in metri, del perimetro bagnato, ossia di quella parte del perimetro della stessa sezione il quale resta sotto il livello dell'acqua,

v la velocità media dell'acqua, espressa in metri,

α e β due coefficienti numerici variabili colle sostanze fra le quali cammina l'acqua, si hanno le note relazioni

$$\frac{\Omega}{\chi} \mathbf{I} = \alpha \left(\mathbf{1} + \beta \frac{\chi}{\Omega} \right) v^2$$

$$Q = \Omega v$$
(2).

Per applicare la prima di queste equazioni, è necessario conoscere i valori dei coefficienti z e β , i quali in ogni caso pratico si possono dedurre dalla tavola che segue, comprendente i medii risultati di numerose ed accurate esperienze degli ingegneri Darcy e Bazin (Recherches hydrauliques entreprises par M. H. Darcy, continuées par M. H. Bazin, Première partie).

NATURA DELLE PARETI	VALORI	
NATON SECTION	di a	di β
Pareti molto liscie, come di cemento levigato, di legno piallato con molta cura, ecc Pareti unite, come quelle della pietra da taglio,	0,00015	0,03
della muratura, delle tavole e degli intonachi di cemento con sabbia	0,00019	0,07
e dei canali scavati entro rocce	0,00024 0,00028	0,25 1,25

La prima delle equazioni (2) serve a calcolare il valore della velocità media v, e la seconda dà la portata Q nel prodotto della detta velocità per l'area Ω .

Il terzo metodo, per dedurre la portata di un corso d'acqua, consiste: nel rilevarne accuratamente la sezione retta; nel calcolare l'area Ω di questa sezione; nel misurare con un galleggiante la velocità V al filone; nel calcolare, mediante apposita formola, la velocità media v; e nel moltiplicare l'area Ω per la velocità v. Per trovare la velocità media v, quando si conosce la velocità V al filone, può tornare utile la formola

$$v = \frac{V}{1 + 14 \sqrt{\alpha \left(1 + \beta \frac{\chi}{\Omega}\right)}}$$
 (3),

la quale, con sufficiente approssimazione per la pratica, trovasi confermata dalle esperienze degli ingegneri Darcy e Bazin.

Al terzo metodo appartiene ancora quello che si riduce a scomporre l'area della sezione retta considerata in parti più o meno estese, a ricavare per ciascuna di queste parti la velocità media corrispondente mediante opportuni strumenti idrometrici, a fare i prodotti delle aree parziali per le rispettive velocità medie ed a sommare tutti questi prodotti.

158. Determinazione della luce libera di un ponte. — Caso in cui la portata venne desunta dalle acque scaricate dalle campagne tributarie nelle più generali e più copiose pioggie. Oltre la portata è necessario procurarsi, mediante opportune operazioni di rilevamento, una sezione trasversale dell'alveo nella località in cui il ponte vuol

essere costrutto, non che la pendenza I dell'alveo stesso. Questa pendenza si ottiene facendo la differenza di livello di due punti posti nel mezzo dell'alveo, uno a monte e l'altro a valle della sezione rilevata, e dividendo questa differenza di livello per la loro distanza orizzontale.

Se ora dalla seconda delle equazioni (2) del numero precedente ricavasi il valore di v e se quindi si sostituisce nella prima, si ottiene l'equazione

$$\frac{\Omega}{\chi} 1 = \alpha \left(1 + \beta \frac{\chi}{\Omega} \right) \frac{Q^2}{\Omega^2} \tag{1},$$

la quale, potendosi sempre esprimere Ω e X in funzione della massima altezza dell'acqua nella sezione considerata, permette di dedurre quest'altezza, ossia di quanto si eleverà l'acqua sul fondo del finme, del torrente o del rio, nella località in cui il ponte vuol essere costrutto.

Nel caso della sezione retta rettangolare di larghezza orizzontale L, se chiamasi x la domandata altezza dell'acqua, si ha

$$\Omega = Lx$$
 $\chi = L + 2x$

i quali valori di Ω e di X, posti nell'equazione (1), conducono ad un'equazione del quarto grado determinatrice di x.

Per una sezione trapezia in cui l'angolo ABH (fig. 175), misurante l'inclinazione delle sponde all'orizzonte è γ , ed in cui la larghezza \overline{BC} sul fondo è L, se adottasi la lettera x per indicare l'altezza \overline{BG} del livello FE dell'acqua sul detto fondo, si ha

$$\Omega = (L + x \cot \gamma)x$$
$$\lambda = L + 2 \frac{x}{\sin \gamma}.$$

Ponendo ora questi valori di Ω e di $\mathbb X$ nell'equazione (1), si ottiene un'equazione dell'ottavo grado determinatrice di x.

In molti casi pratici l'altezza x dell'acqua non che le lunghezze $x\cot\gamma$ e $2\frac{x}{\sin\gamma}$, si riconoscono assai piccole in confronto della larghezza L. Quando questo avviene, tanto per la sezione rettangolare

quanto per la sezione trapezia, i valori di Ω e di % vengono dati da

det fande, e ut aun essa dadores dans

 $\Omega = Lx$

X=L,

i quali, sostituiti nell'equazione (1), apportano qualche semplificazione all'equazione determinatrice di x, che però risulta ancora del quarto grado.

Onando la sezione trasversale dell'alveo è irregolare ed anche quando è rattangolare e trapezia, si può seguire il seguente metodo pratico, per risolvere il problem adi determinare la massima altezza & dell'acqua, che in essa sarà per scorrere in tempi di generali e copiose pioggie. Si disegni, in iscala piuttosto grande, la sezione trasversale che venne rilevata nella località in cui vuolsi costrurre il ponte; su questa sezione si segni una orizzontale AB (fig. 176), che presumibilmente rappresenti il livello a cui saranno per giungere le acque nella detta sezione; si misuri l'area Ω della figura ACDB, scomponendola in trapezii e triangoli mediante perpendicolari abbassate dai suoi vertici su AB; si misuri la lunghezza X del perimetro ACDB; i valori di Ω e di X, unitamente a quelli noti di I, α e β, si pongano nell'equazione (1) e si ricavi il valore di O. Se questo valore di Q è eguale alla portata nota, data dalla prima equazione del numero precedente, la orizzontale AB definisce il livello a cui salirebbero le acque in tempi di piene nella località in cui vuolsi costrurre il ponte, nell'ipotesi che il volume d'acqua, che in ogni minuto secondo deve passare attraverso la sezione trasversale considerata, sia eguale a quello che nello stesso tempo cade sulle campagne tributarie. Se invece il valore di Q, che ricavasi dall'equazione (1), è minore o maggiore della portata nota, è necessario innalzare od abbassare la orizzontale AB; e così procedere, finchè, dopo alcuni tentativi, sì trova che il valore di Q, a cui conduce l'equazione (1), è eguale od almeno pochissimo differente dalla portata ottenuta, come si è detto nel numero precedente. Stabilita l'orizzontale AB, riesce facile trovare la massima altezza x dell'acqua, giacchè viene essa data dalla lunghezza della perpendicolare DE, abbassata dal punto più basso D del profilo ACDB sulla retta AB.

Determinato il livello a cui arrivano le acque nella località in cui il ponte vuol essere costrutto, importa conoscere quale velocità dell'acqua sul fondo è in procinto di produrre i primi segni di corrosione. Questa velocità limite evidentemente dipende dalla natura del fondo, e si può essa dedurre dalla seguente tabella.

NATURA DEL FONDO	VELOCITÀ limite per le corrosioni
Fango e terra imbibita d'acqua	. m
Argilla tenera	0,152
Sabbia	. 0,305
Ghiaia	0,609
Ciottoli	0,914
Pietre rotte quarzose	. 1,220
Ciottoli agglomerati e schisti teneri	1,520
Rocce stratiformi	1,830
Rocce dure	. 3,050

Fissata, mediante i dati contenuti nella precedente tavola, qual è la massima velocità che vuolsi dare all'acqua sul fondo nel passaggio sotto il ponte in epoche di piena, è necessario dedurre la velocità media corrispondente. Perciò, dette

u' la detta velocità massima sul fondo, espressa in metri,

v' la velocità media per la sezione corrispondente, ossia per la sezione quale verrà ristretta dal ponte,

 Ω' l'area, in metri quadrati, di quella parte della detta sezione ristretta per cui deve passare l'acqua,

X' la lunghezza, in metri, del suo perimetro bagnato, come risulta dalle formole che vennero stabilite da Bazin, si ha

$$v' = u' + 6 \sqrt{\frac{\Omega'}{\chi'}}$$
 (2).

I valori di Ω' e di \mathcal{X}' , che entrano in questa formola, non sono noti, ma sibbene sono funzioni della larghezza della luce libera del ponte, ossia della somma delle larghezze delle sezioni rette delle aperture esistenti fra i piedritti.

Nel caso in cui il profilo del fondo sotto il ponte si può ritenere siccome determinato da una retta orizzontale, se per ora trascurasi la piccola sopraelevazione di pelo necessariamente causata dal restringimento di sezione, e se chiamansi

y quella lunghezza che determina la luce libera ed

n il numero delle luci del ponte, si ha

$$\Omega' = xy$$

$$X' = y + 2nx,$$

e quindi l'equazione (4) diventa

$$v' = u' + 6 \sqrt{\frac{xy}{y + 2nx}} I.$$

Se ora si moltiplica la superficie Ω' per la velocità v', si ha la quantità d'acqua che per ogni minuto secondo deve passare sotto il ponte, e siccome questa quantità è già nota e vale Q, ottiensi la seguente equazione determinatrice di y

$$xy\left(u'+6\sqrt{\frac{xy}{y+2nx}}I\right)=0$$
 (3).

Quest'equazione è del terzo grado in y, e per risolverla conviene generalmente procedere per tentativi. Si dà prima ad y un valore che si giudica non lontano dal vero, generalmente inferiore ad L, e si calcola il valore numerico del primo membro. Se questo valore numerico è eguale a Q, l'assunto valore di y è quello da adottarsi per lunghezza della luce libera; se invece il detto valore numerico è minore o maggiore di Q, conviene aumentare o diminuire il valore di y. Continuando così, finchè si trova un tale valore di y che rende il primo membro della (3) eguale o assai prossimo al valore noto di Q, si può giungere per tentativi e con sufficiente approssimazione alla determinazione della luce libera del ponte.

Caso in cui la portata venne desunta in seguito al rilevamento preciso di una sezione attraversata dall'acqua nella località in cui il ponte vuol essere costrutto. Quando la portata del fiume, del torrente, del rio o del canale qualunque, sul quale vuolsi costrurre un ponte, venne desunta col secondo, oppure col terzo dei metodi di cui si fece cenno nel precedente numero, evidentemente il livello dell'acqua trovasi già determinato, e più non ha luogo la ricerca dell'altezza x. Si stabilisce la massima velocità u' che si può tollerare sul fondo, immediatamente si passa alla risoluzione dell'equazione (3) per rapporto ad y, e così si ottiene la domandata luce libera.

159. Innalzamento del livello dell'acqua, causato dalla costruzione di un ponte. — Un ponte, essendo generalmente un ostacolo posto attraverso un corso d'acqua, il quale ne diminuisce la sezione primitiva, oltre di far crescere la velocità dell'acqua nel passare sotto di esso, non può a meno che essere causa di una certa sopraelevazione di pelo, che importa determinare. Perciò, prendendo il metro per unità di lunghezza e dicendo

L la larghezza del corso d'acqua in una sezione presa nella località in cui vuolsi costrurre il ponte,

x l'altezza dell'acqua, e

v la velocità media nella stessa sezione,

y la larghezza della luce libera del ponte, ossia la larghezza della sezione ristretta,

m un coefficiente numerico e

z la sopraelevazione domandata, si ha l'equazione, tratta dal manuale pratico d'idraulica del Colombani,

$$z = 0.062 \cdot v^2 \left\{ \left[\frac{\operatorname{L} x}{m y (x+z)} \right]^2 - 1 \right\}$$
 (1).

Il valore di v, da porsi in quest'equazione, viene dato dalla seconda delle equazioni (2) del numero 437, ossia dal quoziente della portata Q per l'area Ω della sezione che si sarà determinata o rilevata, onde poter dedurre la luce libera y; per valore di L si può assumere una larghezza media dell'indicata sezione, ossia il quoziente dell'area Ω per x; e per valore del coefficiente m si può prendere un numero variabile fra 0,85 e 0,95. Il coefficiente 0,85 conviene pel caso in cui i piedritti del ponte presentano facce piane contro la corrente. Nei casi frequentissimi in cui queste facce sono arrotondate, si adotta il coefficiente 0,95.

L'ultima equazione si presta ad essere risoluta per approssimazioni successive. Si trascura innanzi tutto z in confronto di x nel secondo membro e ricavasi un primo valore z_4 di z. Il trovato valore z_4 si pone nel secondo membro in luogo di z, si ottiene un secondo valore z_2 più prossimo al vero valore di z, e così si con-

tinua, finchè trovansi due valori successivi dell'incognita, pochissimo differenti l'uno dall'altro e che non differiscono nei centesimi.

140. Asse di un ponte, assi delle luci. Distinzione dei ponti in retti ed obliqui. — Quella linea, la quale è determinata dai punti di mezzo della strada che passa su un ponte, costituisce ciò che generalmente chiamasi asse del ponte; cosicchè la direzione dell'asse di un ponte è determinata dal piano verticale passante per l'asse della strada, che su esso si trova, quando quest'asse è rettilineo, dalla superficie cilindrica a generatrici verticali, avente per direttrice lo stesso asse, quando è curvilineo.

Il piano verticale, passante ad eguale distanza fra le superficie vicine di due piedritti successivi, determina la direzione dell'asse della luce compresa fra gli stessi piedritti, e l'intersezione di questo piano verticale con un piano orizzontale, passante al livello delle acque, dà l'asse orizzontale della stessa luce all'altezza, cui giungono le acque.

Allorquando l'asse di un ponte ha una direzione perpendicolare alle direzioni degli assi orizzontali delle sue luci, si dice che il ponte è retto. Si ha invece un ponte obliquo, quando l'accennata condizione di perpendicolarità non trovasi verificata, ossia quando la direzione dell'asse del ponte è obliqua a quella degli indicati assi delle luci. I piedritti si dispongono sempre in modo da essere diretti colla loro lunghezza nel senso della corrente, cosicchè gli assi orizzontali delle luci sono pure diretti in questo senso, per cui si dice generalmente che i ponti sono retti od obliqui, secondo che le direzioni dei loro assi sono perpendicolari od oblique alle direzioni dei corsi d'acqua che attraversano.

141. Fondazioni dei ponti. — I ponti sono costruzioni che quasi sempre esigono opere di fondazione difficili e costose. Conosciuta la natura del fondo sul quale uno di tali edifizii vuol essere stabilito, è necessario scegliere quale dei varii sistemi di fondazioni idrauliche (Lavori generali d'architettura civile, stradale ed idraulica, Parte prima, capitolo V, articolo III) può convenire alla circostanza, e porlo in pratica nel miglior modo possibile. Le fondazioni su palificate sono frequentissime nella costruzioni dei ponti, e per la determinazione del limite di rifiuto x, a cui si devono assoggettare i pali, invece del metodo empirico generalmente seguito dai costruttori pratici, e già stato esposto nel numero 166 del volume che tratta dei lavori generali d'architettura civile, stradale ed idraulica, si può adottare la formola

$$x = \frac{n a P^2}{(P+R) (Q-n P)}$$
 (9),

nella quale, trovandosi espresse in metri le altezze ed in chilogrammi i pesi, si ha: che

(q) Questa formola per la prima volta venne data agli Allievi della Regia Scuola d'applicazione per gli ingegneri in Torino, nell'anno scolastico 1866-67, dall'autore di questo lavoro sull'arte di fabbricare. Le considerazioni ed i procedimenti per dedurla, sottoposti dallo stesso autore al giudizio autorevole della Reale Accademia delle Scienze di Torino, trovansi inserti negli atti dell'Accademia stessa, da cui venne desunto quanto segue.

Nell'operazione di piantare i pali per fondazioni, è sempre dato il peso che ciascuno di essi permanentemente ed in modo stabile deve sopportare, ed è questione di trovare fino a qual punto deve essere affondato, affinchè realmente sia capace di disimpegnare l'ufficio cui è destinato. Se fosse noto secondo qual legge varia la resistenza che il terreno oppone alla penetrazione di un palo a misura del suo affondamento, si potrebbe cercare di quanto deve essere la parte di palo da affondarsi, affinchè esso non venga poi a cedere sotto il peso di cui verrà caricato, allorquando sarà posto in opera. Questa legge però è ignota, e non si possono stabilire delle ipotesi che in tutti i casi valgano a rappresentarla in modo da condurre a risultati di pratica utilità per le molteplici varietà di terreno, pei diversi modi di stratificazione e per le svariate materie che la punta del palo può incontrare sul suo cammino. E giuocoforza di rinunciare alla soluzione diretta del problema, stando paghi di avere un indizio del sufficiente affondamento di un palo dal rifiuto che esso presenta, essia dalla quantità di cui esso si affonda nel terreno sotto le percosse di un maglio di peso noto e cadente da una determinata altezza, ad ogni volata di un dato numero di colpi.

Il rifiuto di un palo varia a misura che esso si affonda nel terreno e col cangiare della consistenza delle materie in cui penetra. Quando il rifiuto è piccolo, trovasi il palo assoggettato a potenti azioni, che all'istante della percossa si oppongono al suo affondamento, e quando il rifiuto giunge ad un certo limite di picciolezza, queste azioni possono vincere la resistenza del palo, danneggiarlo e romperlo. La conoscenza del rifiuto limite, a cui si possono assoggettare i pali per fondazioni, è adunque della massima importanza per ottenere palificate solide; ed ecco un metodo che può servire alla sua determinazione.

Se un palo per fondazioni deve permanentemente ed in modo stabile sopportare un dato peso, e se, in seguito a reiterate percosse di maglio, già di tanto trovasi affondato nel terreno da poter disimpegnare l'ufficio cui è destinato, è segno che la resistenza dovuta all'attrito delle terre contro la superficie convessa del palo, aumentata della resistenza alla penetrazione verticalmente opposta dal terreno contro l'estremità inferiore del palo stesso, supera il peso permanente, o, in altri termini, che questo vale la somma delle accennate resistenze, moltiplicata per un adatto coefficiente di stabilità. Percuotendo nuovamente questo palo, dando uno o più colpi di maglio sulla sua testa, ha luogo un nuovo affondamento, il quale costituisce appunto il rifiuto che vuolsi calcolare, ed il lavoro che il maglio fa, dal primo istante in cui

a è l'altezza, da cui il maglio viene a cadere sulla testa del palo; che

P è il peso del maglio; che

cade fino all'istante in cui comincia a trovarsi in riposo, si può considerare siccome trasformantesi:

1º Nel lavoro consumato dall'attrito che le terre esercitano contro la superficie convessa del palo;

2º Nel lavoro necessario a vincere la resistenza alla penetrazione che il terreno verticalmente oppone dal basso all'alto contro la testa inferiore del palo;

3º Nel lavoro perduto per l'urto prodotto dal maglio sulla testa del palo;

Ciò premesso, si chiamino:

a l'altezza da cui il maglio viene a cadere sulla testa del palo e

P il peso del maglio;

b la lunghezza della parte prismatica di palo, la quale trovasi immersa nel terreno;

R il peso dell'intiero palo, munito di puntazza e di cerchiatura in ferro, e

C il semi-perimetro della sua sezione media;

Il il peso del metro cubo di terra;

9 l'angolo d'attrito delle terre sopra sè stesse, e

9' l'angolo d'attrito delle terre sopra la superficie laterale del palo;

g la gravità;

Q il peso che il palo deve permanentemente ed in modo stabile sopportare;

n un coefficiente di stabilità, esprimente qual parte della somma della resistenza dovuta all'attrito e della resistenza dovuta alla difficoltà di penetrazione deve essere il peso Q, affinchè siavi quel grado di stabilità che importa avere nelle opere per fondazioni;

x il domandato rifiuto limite.

Considerando la superficie laterale di un palo siccome quella di un prisma col perimetro della sua sezione retta lungo 2 C, ed ammettendo che le terre, quando da esse venga estratto il palo, tendano a dividersi secondo piani due a due normali alle facce della detta superficie laterale e passanti per gli spigoli secondo cui esse s'incontrano, per quanto risulta dalle teorie sulla spinta delle terre (Resistenza dei materiali e stabilità delle costruzioni, num. 216, probl. I), la resistenza dovuta all'attrito che le terre esercitano contro la superficie cilindrica del palo vien espressa da

$$C\,\Pi\,b^2\,\frac{\cos\varphi\, {\rm sen}\,\varphi'}{\cos(\varphi+\varphi')}.\frac{\, {\rm tang}\,\psi-{\rm tang}\,\varphi}{{\rm tang}\,(\varphi+\varphi')\,{\rm tang}^2\,\psi+{\rm tang}\,\psi}\,,$$

nella quale

$$tang \, \phi = tang \, \phi + \frac{1}{\cos \varphi} \, \sqrt{\frac{tang \, \phi}{tang \, \phi + tang \, \phi'}} \tag{1}$$

Ponendo

$$\frac{\cos\varphi \sec\varphi'}{\cos(\varphi + \varphi')} \cdot \frac{\tan\varphi \psi - \tan\varphi}{\tan\varphi(\varphi + \varphi')\tan^2\varphi + \tan\varphi} = A \tag{2}.$$

la trovata espressione della resistenza dovuta all'attrito si riduce alla semplicissima formola

R è il peso dell'intiero palo, munito di puntazza e di cerchiature in ferro; che

Questa resistenza è applicata ai $\frac{2}{3}b$ a partire dalla sezione orizzontale del palo che trovasi al livello della superficie superiore del terreno, e diventa

$$AC\Pi(b+x)^2,$$

applicata ai $\frac{2}{3}(b+x)$ a partire dall'or accennato livello, quando la parte prismatica di palo che trovasi affondata nel terreno è b+x.

Ora, la resistenza dovuta all'attrito delle terre contro la superficie prismatica del palo, quando questo trovasi affondato della quantità (b + x'), essendo x' una innephezza minore di x, vale

$$A C \Pi (b + x')^2$$
;

lo spazio percorso dalla resistenza dovuta all'attrito delle terre contro la superficie laterale del palo, nel mentre dall'affondamento b+x' passa all'affondamento $b+x'+\mathrm{d}\,x'$, è

$$\frac{2}{3}(b+x'+\mathrm{d}\,x')\,-\frac{2}{3}(b+x')\!=\!\frac{2}{3}\,\mathrm{d}\,x'\,;$$

il lavoro elementare consumato dall'attrito per produrre l'affondamento dx' è

$$\frac{2}{5}$$
 A C II $(b + x')^2$ d x' ;

ed il lavoro totale, consumato dall'attrito medesimo nel mentre ha luogo il totale affondamento x, vien dato da

$$\frac{2}{5} \Lambda C \Pi \int_0^x (b+x')^2 dx' = \frac{2}{3} \Lambda C \Pi \left(b^2 x + b x^2 + \frac{1}{3} x^3 \right).$$

Affinchè il palo permanentemente ed in modo stabile possa sopportare il peso Q, si richiede che questo peso valga la somma della resistenza alla penetrazione che il terreno verticalmente oppone dal basso all'alto contro la sua testa inferiore e della resistenza dovuta all'attrito delle terre contro la sua superficie laterale, moltiplicata pel coefficiente di stabilità n; e quindi, chiamando T la detta resistenza alla penetrazione, quando il palo trovasi affondato nel terreno per la lunghezza b, si deve avere

$$n\left(\mathbf{T}+\mathbf{A}\,\mathbf{C}\,\Pi\,b^2\right)=\mathbf{Q};$$

d'onde

$$T = \frac{Q}{n} - A C \prod b^2.$$

Il lavoro necessario a vincere questa resistenza, nel mentre il palo si affonda della

Q è il peso che il palo deve permanentemente ed in modo stabile sopportare; e che

n è un coefficiente di stabilità esprimente quale parte della

quantità x, si calcola con un procedimento in tutto analogo a quello tenuto per troyare il lavoro corrispondente alla resistenza d'attrito. Essendo

$$\frac{\mathbf{Q}}{n} - \mathbf{A} \, \mathbf{C} \, \mathbf{H} \, (b + x')^2$$

la resistenza alla penetrazione, quando il palo trovasi immerso nel terreno per la lunghezza (b+x'), vien espresso da

$$\left[\frac{Q}{n} - A \operatorname{CH}(b+x')^2\right] \mathrm{d} x',$$

il lavoro elementare che questa resistenza consuma, nel mentre il palo subisce l'affondamento elementare dx', e quindi il lavoro totale speso per vincere la resistenza alla penetrazione mentre il palo si affonda della quantità x, ha per valore

$$\int_{0}^{x} \left[\frac{Q}{n} - \Lambda C \Pi (b + x')^{2} \right] dx' = \frac{Q}{n} x - \Lambda C \Pi \left(b^{2} x + b x^{2} + \frac{1}{3} x^{3} \right)$$

Per trovare il lavoro perduto a motivo dell'urto prodotto dal maglio sulla testa del palo, si osservi che, essendo $\frac{P}{g}$ la massa del maglio, $\frac{R}{g}$ quella del palo colla puntazza e colla cerchiatura in ferro, $\sqrt{2g\,a}$ la velocità del maglio all'istante in cui batte sulla testa del palo ed u la velocità che subito dopo prende il sistema costituito del palo e del maglio, vi deve essere equilibrio fra la quantità di moto impressa $\frac{P}{g}\sqrt{2g\,a}$ e le quantità di moto attuali $\frac{P}{g}\,u$ ed $\frac{R}{g}\,u$ rivolte in senso contrario, e che per conseguenza si ha l'equazione

$$\frac{P}{g}\sqrt{2ga} = \left(\frac{P}{g} + \frac{R}{g}\right)u,$$

d'onde

$$u = \frac{P\sqrt{2ga}}{P+R}$$

Ora, siccome il maglio ha la velocità $\sqrt{2ga}$ quando batte sulla testa del palo, e siccome alla fine della percossa tanto il maglio quanto il palo hanno la velocità u, la forza viva perduta nell'urto è

$$\frac{P}{g} 2 g a - \frac{P+R}{g} \cdot \frac{P^2 2 g a}{(P+R)^2} = \frac{2 a P R}{P+R},$$

somma della resistenza dovuta alla difficoltà di penetrazione deve essere il peso Q, e da non assumersi mai maggiore di 1/20.

Per applicare l'ultima formola, si diano ad a diversi valori com-

ed il lavoro corrispondente

$$\frac{\alpha PR}{P+R}$$
.

Il lavoro motore fatto dal maglio per produrre nel palo, la cui parte prismatica già trovasi affondata per la lunghezza b, il nuovo affondamento x è P(a+x), e questo lavoro deve eguagliare quello consumato dall'attrito che le terre esercitano contro la superficie convessa del palo, più quello necessario a vincere la resistenza alla penetrazione che il terreno verticalmente oppone dal basso all'alto contro la testa inferiore del palo, più ancora quello perduto per l'urto prodotto dal maglio sulla testa del palo. Segue da ciò, che fra i quattro lavori accennati si ha l'equazione

$$\begin{split} \mathrm{P}(a+x) &= \frac{2}{5} \, \mathrm{AC} \, \Pi \left(b^2 \, x + b \, x^2 + \frac{1}{3} \, x^3 \right) + \frac{\mathrm{Q}}{n} \, x \\ &- \mathrm{AC} \, \Pi \left(b^2 \, x + b \, x^2 + \frac{1}{5} \, x^3 \right) + \frac{a \, \mathrm{PR}}{\mathrm{P} + \mathrm{R}} \, , \end{split}$$

la quale, trasportando tutto in un solo membro, ordinando secondo le potenze decrescenti di x, e dividendo per A C Π , si riduce a

$$\frac{1}{9}x^3 + \frac{1}{3}bx^2 + \frac{n\,A\,C\,\Pi\,b^2 + 5\,n\,P - 5\,Q}{3\,n\,A\,C\,\Pi}\,x + \frac{a\,P^2}{A\,C\,\Pi\,(P + R)} = 0.$$

Quest'equazione del 3º grado può essere scritta sotto una forma assai comoda per essere risoluta per approssimazione. Perciò dividasi tutta l'equazione per b^3 e si lasc in un sol membro il termine che contiene il rapporto $\frac{x}{b}$. Così procedendo si trova

$$\frac{5 Q - 5 n P - n A C \Pi b^{2}}{5 n A C \Pi b^{2}} \cdot \frac{x}{b} = \frac{a P^{2}}{A C \Pi b^{3} (P + R)} + \frac{1}{5} \frac{x^{2}}{b^{2}} + \frac{1}{9} \frac{x^{3}}{b^{3}}$$
(3).

Osservando ora che x è sempre una lunghezza di molto inferiore a b, e che quindi i rapporti $\frac{x^2}{b^2}$ ed $\frac{x^3}{b^3}$ sono frazioni assai piccole, per una prima approssimazione, la quale è generalmente sufficiente nella pratica, si possono trascurare i due termini contenenti gli accennati rapporti, ed allora il valore di $\frac{x}{b}$ si può calcolare colla semplice formola

$$\frac{x}{b} = \frac{3 n a P^2}{b (P + R) (3 Q - 5 n P - n A C \Pi b^2)}.$$

Quando non si giudichi sufficientemente approssimato il valore di $\frac{x}{h}$ somministrato

presi fra la minima e la massima altezza da cui si può far cadere il maglio sulla testa del palo, variabili fra loro di un decimetro, di due decimetri, e tutto al più di cinque decimetri, e si calcolino i

dall'ultima formola, si sostituisca esso nel secondo membro dell'equazione (3), il quale secondo membro diventa allora tutto noto, e si ricavi il quoziente $\frac{x}{b}$ che trovasi nel primo membro. Sostituendo il secondo valore di $\frac{x}{b}$ nel secondo membro dell'equazione (3), si potrebbe trovare un terzo valore dell'accennato quoziente, ancora più esatto dei due primi e, continuando collo stesso metodo, spingere l'approssimazione fino a quel limite che può convenire di raggiungere. Nella pratica però sono sempre sufficientemente esatti i valori di x, somministrati dall'ultima equazione, e quindi dalla

formola

$$x = \frac{3 n a P^2}{(P + R)(3 Q - 3 n P - n A C \coprod b^2)}$$
 (4).

Per calcolare il rifiuto limite che devono presentare i pali per fondazioni, applicando le equazioni (1), (2) e (4), oltre i dati del problema, quali sono il peso P del maglio e l'altezza a da cui cade sulla testa del palo, le dimensioni di quest'ultimo, la lunghezza b della parte che già trovasi immersa nel terreno, il peso della puntazza e della cerchiatura in ferro, ed il peso Q, che il palo permanentemente ed in modo stabile deve sopportare, è necessario conoscere l'angolo d'attrito φ delle terre sopra sè stesse, ed il peso II della loro unità di volume, l'angolo d'attrito φ' delle terre sopra la superficie laterale del palo, il peso dell'unità di volume di palo ed il coefficiente di stabilità n.

Il peso n dell'unità di volume di terra, non che l'angolo d'attrito 9 delle terre fra di loro, sono elementi variabili dall'una all'altra qualità di terra, e mediamente, pei casi più frequenti della pratica, si possono ritenere i dati contenuti nella seguente tavola:

	Natura delle	te	rre				Peso di 1 ^{me}	Angolo 9
	-						-	
Terre	sabbiose	-		-			1700°s	34°
	asciutte e sciolte						1450	39
Terre	ordinarie						1500	45
	argillose asciutte						1650	55
Terre	argillose umide	, bill		110	13	1.00	1900	30

Il peso dell'unità di volume di palo varia dall'una all'altra qualità di legname. Per la quercia, pel larice rosso e per l'ontano si possono assumere i numeri medii registrati nella seguente tabella:

Qualit	à d	lel	leg	na	me				Peso di 1m
	-		-						-
Quercia									850°s
Larice rosso	105	121	15	1120	100	(181)	100	9.11	700
Ontano	100		4	1					600

Per quanto spetta all'angolo d'attrito ç' delle terre sulla superficie convessa del

corrispondenti rifiuti x. In apposita tavola a due colonne si marchino i diversi valori di a ed i corrispondenti valori di x, e questa tavola si consegni al capo-squadra incaricato di sorvegliare l'operazione del piantamento dei pali. Tutte le volte che il maglio cade da una delle altezze marcate nella prima colonna della tavola, il capo-squadra deve misurare direttamente il rifiuto presentato sotto un colpo di maglio e paragonarlo col rifiuto somministrato dal cal-

palo, non si hanno che i dati di poche ed incerte esperienze, le quali tenderebbero a far vedere, non doversi mai assumere il detto angolo maggiore di 20°.

Il coefficiente di stabilità n, trattandosi di opere che devono presentare una stabilità grandissima, non si deve mai assumere maggiore di 1/20.

Le formole stabilite per la determinazione del rifiuto che devono presentare i pali per fondazioni, si devono applicare nella pratica col seguente metodo. Supponendo il palo affondato nel terreno di quantità diverse, variabili fra loro di un metro, di mezzo metro od anche di un quarto di metro, si calcolino i rifiuti corrispondenti, affinche esso sia capace di sopportare permanentemente ed in modo stabile il peso di cui sarà caricato quando si troverà in opera, ed in una tabella a tre colonne si marchino le diverse profondità che nel fare i calcoli si supposero raggiunte dal palo, le altezze da cui cade il maglio quando il palo raggiunge queste profondità, ed i relativi rifiuti somministrati dall'applicazione delle formole. Questa tabella si consegni al capo squadra incaricato di sorvegliare l'operazione del piantamento dei pali, e, tutte le volte che un palo trovasi affondato nel terreno di una delle lunghezze marcate nella prima linea della tavola, misuri direttamente il rifiuto presentato sotto un nuovo colpo di maglio, e lo paragoni col rifiuto somministrato dal calcolo: se quello è maggiore di questo, è segno che il palo non è abbastanza affondato nel terreno; se quello è eguale o minore di questo, il palo trovasi già abbastanza affondato.

In quello che segue si hanno i risultati che si ottengono dall'applicazione delle formole (1), (2) e (4) pel caso in cui debbasi piantare un pale di larice rosso, nell'ipotesi che i dati del problema siano

$$\varphi = 45^{\circ}$$
, $\varphi' = 15^{\circ}$, $P = 600^{\text{Cg}}$, $R = 349^{\text{Cg}}, 612$, $Q = 25000^{\text{Cg}}$, $\Pi = 1500^{\text{Cg}}$, $C = 0^{\text{m}}, 5927$, $n = \frac{1}{20}$,

e supponendo che b, ossia la parte di palo affondata nel terreno, e che a, ossia l'altezza da cui cade il maglio, siano rispettivamente quelle registrate nella prima e nella seconda colonna della tavola qui sotto riportata.

L'equazione (1) dà

tang $\psi = 2,2559$;

l'equazione (2) conduce a trovare

A = 0.041526;

e finalmente dall'equazione (4) risultano i numeri registrati nella terza colonna per valori dei rifiuti che deve presentare il palo sotto le percosse del maglio pesante 600 chilogrammi, cadente dalle altezze a, affinchè, troyandosi affondato delle lun-

colo contenuto nella seconda colonna della tavola. Se quello è maggiore di questo, è segno che il palo non è abbastanza affondato nel terreno; se quello è eguale o minore di questo, il palo trovasi già abbastanza affondato.

Avviene ben di frequente nella pratica, e questo principalmente quando si impiegano batti-pali con maglio non molto pesante, che

ghezze b, permanentemente ed in modo stabile possa sopportare il peso di 25000 chilogrammi.

Lunghezze b	Altezza a	Rifuti corrispondenti		
delle parti di palo già affondate nel terreno	da cui cade il maglio	a.		
	The town of the	The state of the s		
410	2m	0m,0015186		
5	3	0 ,0022782		
6	or so and may a see o	0 ,0050383		
7	2	0 ,0015194		
S. s. manufactural in	Deport 36 Marons	0 ,0022797		
9	Ton your Ann als area	0 ,0030412		

L'essere il primo, il secondo ed il terzo rifiuto minori rispettivamente del quarto, del quinto e del sesto, si spiega col dire; che, conservandosi immutate tutte le altre circostanze, sui valori dei rifiuti contemporaneamente influiscono la resistenza d'attrito e la resistenza alla penetrazione; che, crescendo la prima resistenza, deve diminuire la seconda per porre il palo nella condizione di poter permanentemente ed in modo stabile sopportare il peso Q; e che la diminuzione di rifiuto per l'aumento della prima è minore dell'aumento di rifiuto per la diminuzione della seconda.

Le piccolissime diversità che esistono fra il primo ed il quarto, fra il secondo ed il quinto, fra il terzo ed il sesto dei riportati valori di x, mostrano ad evidenza come abbia poca influenza la lunghezza della parte di palo già immersa nel terreno sul valore del rifiuto, e quindi come generalmente si possa trascurare l'attrito delle terre contro la superficie laterale del palo. Allora non è più necessario il calcolo delle incognite ausiliarie ϕ ed A, ed il rifiuto x si determina colla formola semplicissima

$$x = \frac{n a P^2}{(P + R)(Q - n P)} \tag{5}$$

la quale risulta dalla (4) facendo in essa $\Lambda = 0$.

Applicando la formola (5) al caso particolare gia trattato, quando il maglio cade sulla testa del palo dalle altezze marcate nella prima colonna della tavola qui sotto riportata, si trovano, per valori corrispondenti dei rifiuti, i numeri marcati nella seconda colonna.

da cui cade il maglio	Rifluti corrispondenti
no a site and affront	of colorest when two a de-
2m	011,0015182
5	0 ,0022775
dente casuage o mis	0 0030364

il rifiuto il quale si verifica sotto un solo colpo di maglio è una quantità così piccola, da non potersi facilmente misurare per farne il confronto col rifiuto dato dal calcolo. Quando questo avviene, si misura il rifiuto corrispondente a volate di più colpi, per esempio di dieci, quindici, venti, venticinque o trenta colpi, si assume come rifiuto corrispondente ad un colpo il quoziente di quello che si verifica nell'intiera volata per il numero dei colpi che in essa vennero dati, e questo quoziente rappresenta quel rifiuto il quale deve essere paragonato a quello dato dal calcolo, per accertarsi se il palo trovasi sufficientemente piantato nel terreno.

ARTICOLO II.

Ponti di struttura murale.

142. Costituzione generale dei ponti di struttura murale. — Una o più arcate, sostenute da un conveniente numero di piedritti e accompagnate da tutte quelle disposizioni che si rendono necessarie onde far passare la strada al disopra e per dar libero corso alle acque al disotto di esse, costituiscono quanto vi ha di essenziale in un ponte di struttura murale.

Nella figura 177 si ha la rappresentazione di quanto importa considerare, ossia di una spalla, di un'arcata, della pila successiva e di una parte dell'arcata che vien dopo. Questa rappresentazione trovasi eseguita: mediante un'elevazione con sopra segnate in linee punteggiate le parti invisibili; mediante una mezza sezione orizzontale al livello delle fondazioni, secondo il piano determinato dalla retta QU; e mediante due mezze sezioni verticali normali all'asse della strada, una corrispondente al mezzo di una pila e determinata dalla retta VX, l'altra corrispondente al mezzo di un'arcata e determinata dalla retta YZ.

145. Pile, rostri e cappucci. — Ogni pila, come P (fig. 177), ha le sue facce verticali od anche leggiermente inclinate, e l'asse longitudinale di una sua sezione orizzontale è parallelo alla corrente. Nell'intento di ridurre gradatamente l'alveo della sezione superiormente libera alla sezione ristretta sotto il ponte, e di passare nuovamente da questa alla sezione libera nel tronco inferiore all'edifizio, ad ogni pila, tanto a monte quanto a valle, trovansi annesse due appendici, dette rostri o tagliacqua. La sezione orizzontale di questi rostri suole generalmente essere, o un semicircolo

di diametro eguale alla larghezza della pila, o un triangolo isoscele colla base ab (fig. 178) eguale alla detta larghezza e coll'angolo acb di 90° o almeno di 60°, o un triangolo mistilineo col lato rettilineo ab (fig. 179) pure eguale alla larghezza della pila, e coi lati curvilinei ac e bc circolari e dell'ampiezza di 60°. I rostri superiori, ossia quelli posti contro la corrente e conosciuti sotto il nome di antibecchi, mentre gli inferiori si dicono retrobecchi, servono anche a rendere obliqui e quindi di minore efficacia gli urti dei corpi trasportati dalle piene contro le pile del poute. Per ottenere che i rostri producano i vantaggi che da essi si attendono, importa elevarli fino all'altezza delle massime piene.

Le sommità dei rostri si coronano generalmente con cappucci conici C (fig. 177), piramidali o di altra forma conveniente al pronto scolo delle acque pluviali, affinchè non si arrestino a danneggiare i muri.

144. Spalle dei ponti, muri di risvolto e muri d'ala. — Ciascuna delle due spalle di un ponte è costituita da un robusto piedritto S (fig. 177), il quale parallelamente alla corrente, precisamente come le pile, presenta una faccia verticale od anche leggiermente inclinata. Quasi sempre ad ogni spalla trovansi addossati due semi-rostri P' coi relativi semi-cappucci C', i quali, oltre di presentare gli stessi vantaggi dei rostri e dei cappucci, contribuiscono alla decorazione del ponte.

Per lateralmente trattenere le terre contro le teste dei ponti vi sono i muri di risvolto R, i quali agiscono anche a guisa di contrafforti per rapporto alla spalla cui sono applicati. Questi muri, talvolta sono disposti secondo un andamento rettilineo, parallelo all'asse della strada sul ponte, tal'altra presentano un andamento curvilineo, leggiermente allargantesi verso il terrapieno. Sovente le spalle ed i muri di risvolto si costruiscono in modo da risultare raccordate le loro facce contro terra, come in sezione orizzontale appare dalla figura 180. Avvenendo di dover edificare spalle di ponte pel sostegno di arcate molto grandi, si usa rinforzarle con un contrafforte C, come in sezione orizzontale lo dimostra la figura 181; ed il complesso di una spalla e dei relativi muri di risvolto quasi sempre presenta verso terra uno o più ordini di riseghe. In alcune circostanze di spalle molto alte e destinate a sopportare grandi arcate, come in sezione secondo il piano verticale passante per l'asse del ponte appare dalla figura 182, fra i muri di risvolto si costruiscono uno o più archi di scarico a. I contrafforti, le riseghe e gli

archi di scarico contribuiscono ad aumentare la resistenza delle spalle dei ponti, pella ragione stessa per cui queste disposizioni riescono vantaggiose onde aumentare la resistenza dei muri di sostegno.

I muri di risvolto non si prestano a sostenere le scarpe della strada agli accessi di un ponte, e generalmente ciascuna di esse viene terminata con una porzione di cono D (fig. 177), appoggiato contro i detti muri. Queste porzioni di cono, le cui generatrici hanno l'inclinazione stessa delle rispettive scarpe, sono quarti di cono retto allorquando i muri di risvolto trovansi paralleli all'asse della strada ed orizzontale la superficie naturale del terreno su cui sono stabilite.

Nell'intento di minorare a poco a poco la luce di un ponte, onde diminuire gli effetti della contrazione ed anche per sostenere le scarpe della strada agli accessi, invece dei muri di risvolto, si usano sovente i muri d'ala. Questi muri fiancheggiano gli ingressi del ponte, le loro direzioni di necessità convergono verso la corrente, e la loro deviazione dall'asse stradale dipende principalmente dalla maggiore o minore lunghezza che le circostanze possono rendere necessario di assegnare a tali muri, non che dal maggiore o minore risalto delle spalle del ponte dalle sponde naturali del corso d'acqua. Si trovano numerosi ponti con muri d'ala, in cui le direzioni di questi coll'asse della corrente fanno angoli variabili fra 15° e 45°. L'altezza dei muri d'ala, come risulta dalla figura 183, che in proiezione orizzontale ed in elevazione rappresenta il muro d'ala A, è massima dove essi si congiungono alle fronti del ponte, minima verso il piede delle scarpe che sostengono. La superficie superiore di questi muri è una superficie piana che asseconda l'andamento della scarpa, e la superficie laterale alcune volte è verticale, ma più di frequente è inclinata colla scarpa variabile fra 1/5 ed 1/15. Talvolta si costruiscono anche muri d'ala le cui superficie laterali sono superficie rigate. Ben di frequente i muri d'ala piegano alla loro estremità inferiore, in direzione parallela all'asse della strada, come chiaramente risulta dalla citata figura. La grossezza dei muri d'ala alla loro sommità è generalmente compresa fra metri 0,40 e 0,60. In una stessa sezione la grossezza di questi muri aumenta dalla sommità al piede; e da una sezione all'altra cresce coll'avvicinarsi alla fronte del ponte, in modo anologo a quanto succede nei muri d'ala per teste di galleria (num. 432).

I muri d'ala si possono anche talvolta costrurre con direzione normale a quella dell'asse del ponte, nel quale caso prendono il nome di muri in prosecuzione. Questa disposizione però, siccome manifestamente contraria al regolare sfogo delle acque nei fiumi soggetti a grandi piene, generalmente deve essere abbandonata, e solamente può esservi ragione di adottarla pei ponti nell'interno di città, quando questi muri sono la prosecuzione di altri muri per sostegno delle sponde e dei sovrastanti arginali.

145. Muri andatori, timpani, cornici, parapetti ed occhi di ponte. — Quei muri (fig. 177), che superiormente alle arcate ed alle pile compiono le fronti dei ponti, elevandosi fino all'altezza o pressochè all'altezza del suolo stradale, chiamansi muri di facciata o andatori. Essi sono destinati a contenere il muramento massiccio che sempre si pone fra i fianchi delle arcate, non che il materiale che compone la strada sul ponte, e la loro grossezza ab suol essere di circa metri 0,40. La faccia b c è inclinata di circa 45°; e, quando la faccia c d è molto alta, si fa a scarpa di circa 1/6, oppure con riseghe larghe da metri 0,06 a 0,15, come appare dalla figura 184. Generalmente poi i muri andatori sono coronati da una cornice C", al disopra della quale trovasi il parapetto P". L'altezza del parapetto varia fra metri 0,90 ed 1 metro, e la sua grossezza è generalmente compresa fra metri 0,24 e 0,60. Quando poi importa usufruire tutta la larghezza fra le due fronti, si usano i parapetti di ferro o di ghisa.

Quei muramenti massiccii T, che trovansi fra i muri andatori e sui fianchi convessi delle arcate, prendono il nome di timpani. Nei ponti in cui le imposte vengono superate dalle massime piene delle acque, usasi traforare i timpani nel senso della larghezza del ponte in corrispondenza di ciascuna pila, e tali trafori si chiamano occhi di ponte. Le piene trovano per essi uno sfogo accessorio, il quale in parte compensa il restringimento causato dalle arcate al disopra delle imposte. In quanto poi alla forma degli occhi di ponte, o è tale da essere perfettamente circolare la loro sezione retta (fig. 185), oppure si presentano siccome piccole arcate impostate su piedritti più o meno alti (fig. 186) od anche direttamente sulle arcate fra cui si trovano (fig. 187).

146. Cappa, sfogatoi delle acque che cadono sopra un ponte e marciapiedi. — Per impedire che le acque, le quali trapelano attraverso il materiale necessario per raggiungere il suolo stradale, s'insinuino nella massa del muramento delle arcate e dei timpani e vi producano qualche deterioramento, si copre il tutto con una cappa c (fig. 177) (Lavori generali d'architettura civile, stradale ed idraulica, Parte prima, capitolo X, articolo II). Affinchè poi le acque non si fermino sulla superficie superiore di questa cappa e non siano causa di una dannosa umidità, si costruiscono i timpani in modo

che superiormente presentino delle superficie cilindriche, inclinate alternativamente l'una all'opposto dell'altra, in guisa che le generatrici più alte si trovino in corrispondenza dei mezzi delle arcate, e quelle più basse in corrispondenza dei mezzi delle pile. Dove esistono queste ultime vi sono come tante cunette, nelle quali di necessità devono radunarsi le acque arrivate alle adiacenti superficie inclinate, e d'onde avranno esito, mediante fori o sfogatoi f, lasciati nella grossezza del muramento e sboccanti verso le superficie d'intrados delle arcate laterali. I fori, di cui ora si è parlato, vengono generalmente somministrati da tubi di ghisa o di pietra, attraversanti i timpani e le arcate, e sporgenti di pochi centimetri dalle superficie d'intrados di queste ultime. Le cunette, nelle quali trovansi le origini dei detti tubi, si devono ridurre in modo che il loro fondo presenti una lieve inclinazione verso le indicate origini.

Non sempre per lo scolo delle acque adottasi la disposizione di cui si è parlato, e rappresentata nella figura 177. Sovente i timpani si costruiscono con muratura di poco costo od anche con calcestruzzo magro, e superiormente si terminano in modo che, fra due pile successive, la cappa presenti quattro piani inclinati, incontrantisi in corrispondenza del punto di mezzo della superficie d'estrados dell'interposta arcata. La figura 188, che è una porzione di sezione verticale passante per l'asse di un ponte, indica in modo sufficientemente chiaro questa disposizione per lo scolo delle acque. In T vi sono i due timpani adiacenti all'arcata A, dabce rappresenta la cappa, la di cui superficie superiore è costituita dai due piani inclinati rappresentati nelle rette ab e cb, dal piano inclinato xabcy e dal suo opposto. I due primi dei detti piani partono dalle orizzontali rappresentate nei punti a e c, poste nei piani verticali passanti per gli assi longitudinali delle due pile successive, fra cui trovasi l'arcata A, ed il punto b corrisponde al mezzo dell'estrados della stessa arcata, nella quale trovasi lo sfogatoio S, consistente in una pietra cuneiforme, traforata nel senso del suo asse e munita sulla sua faccia d'intrados d'una scanalatura circolare s, facente l'ufficio del gocciolatoio nelle cornici.

Al di sopra delle cappe si pongono quei rottami o quelle materie terrose permeabili all'acqua destinate a dare il necessario riempimento per raggiungere il suolo stradale, ed accuratamente bisogna badare di disporre in corrispondenza degli sfogatoi apposite pietre piatte, piuttosto grosse, che lascino trapelare le acque attraverso le fessure fra esse esistenti, ma atte ad impedire che le materie minute costituenti il riempimento, vengano ad ostruire gli sfogatoi.

Nei ponti per strade carreggiabili, sovente si pongono due marciapiedi laterali, i quali, per riuscire veramente utili, devono presentare larghezza non minore di 1 metro. Questi marciapiedi quasi sempre sono alquanto elevati sulla superficie superiore della carreggiata, e si può trar partito di quest'elevazione per convenientemente collocare gli sfogatoi. La figura 189, la quale rappresenta una porzione della sezione trasversale di un ponte nel mezzo di una sua arcata, fa vedere come le acque piovane cadute sulla carreggiata e sui marciapiedi possono essere scaricate sotto le arcate, in corrispondenza delle generatrici più alte delle loro superficie d'intrados, passando per fori verticali S situati al di sotto di incavature I, praticate nella cordonata C del marciapiede.

Sovente sotto i marciapiedi stessi si lascia un condotto C (fig. 190). Le acque cadute sul suolo stradale si raccolgono al piede del gradino di cui trovasi elevato il marciapiede sulla carreggiata; passando per appositi fori f, lasciati in numero sufficientemente grande nel piccolo muro che fiancheggia la carreggiata, si portano nel detto condotto C; e per gli sfogatoi S, situati in corrispondenza dei mezzi delle arcate, si scaricano al di sotto delle arcate medesime. Non occorre il dire che le pareti dei fori f, non che quelle del condotto C

e degli sfogatoi S devono risultare impermeabili all'acqua.

Alcune volte le acque che vengono a raccogliersi nel condotto C, mediante tubi leggiermente inclinati si portano a sboccare sulla fronte del ponte, dietro la quale trovasi il detto condotto. Questi tubi di scolo devono sortire di almeno un decimetro dalla fronte nella quale si trovano, affinchè le acque non la danneggino, ed è bene di collocarli in corrispondenza delle pile, oppure in corrispondenza della metà delle arcate, od anche in posizioni simmetriche rispetto a questa metà.

447. Suolo stradale sui ponti di struttura murale. — Il suolo stradale varia colla destinazione del ponte. In quelli per strade carreggiabili si adottano le inghiaiate, le selciate ed i lastricati; in quelli per strade ferrate, si stabilisce l'armamento sul ballast posto sulla cappa delle arcate o sopra un primo riempimento di rottami, e contenuto fra i muri andatori.

Sui ponti per strade carreggiabili quasi sempre si impiega la struttura selciata, siccome quella che è atta ad impedire che le acque s'insinuino fino alla superficie della sottostante cappa, ove la loro permanenza potrebbe produrre col tempo dei dannosi effetti. Sui ponti in vicinanza di popolate città, ben di frequente si adotta la struttura lastricata, oppure quella selciata con rotaie e marciapiedi.

Nella costruzione di alcuni ponti, di poco si elevarono i timpani, e, come appare dalla figura 191, la quale rappresenta una porzione di sezione longitudinale secondo l'asse di uno di tali punti ed una porzione di sezione trasversale in corrispondenza del mezzo di una pila, vennero costrutti fra i muri andatori alcuni piccoli vôlti a botte B, colle generatrici più alte del loro estrados al livello delle generatrici più alte dell'estrados delle arcate. Questi piccoli vôlti, la cui apertura non deve eccedere metri 0,75 o tutto al più 1 metro, servono a notevolmente diminuire il riempimento per raggiungere il suolo stradale, e tornano utili per allegerire il ponte. L'esperienza però ha dimostrato che gli urti dei veicoli su essi transitanti in breve tempo producono il loro dissesto, che possono ancora rendere qualche servizio nei ponti per strade carreggiabili, e che il loro uso deve essere proscritto nei ponti per vie ferrate.

148. Larghezza dei ponti di struttura murale, numero delle loro arcate, loro corde e loro saette. — La larghezza dei ponti varia coll'importanza e colla destinazione della strada che su essi deve passare. Per le strade carreggiabili si può ritenere che, volendosi il cambio delle vetture e due marciapiedi laterali pei pedoni, questa larghezza, misurata fra le facce interne dei parapetti, non deve essere inferiore a metri 5,50; per le vie ferrate ad un solo binario deve essere compresa fra metri 4,30 a metri 5; e per le vie ferrate a due binarii può variare fra metri 7,40 e metri 8. Nel dare il progetto di un ponte molto lungo conviene pensare alla sicurezza dei cantonieri che possono trovarsi su esso al passaggio dei convogli, e per questo, in corrispondenza di tutte o soltanto di alcune pile, assai opportunamente si aumenta la distanza fra le superficie interne dei parapetti, portandoli in risalto sulle fronti del ponte.

Generalmente si dà per regola che debba essere dispari il numero delle arcate dei ponti, e questo affinchè ne cada una ove suolsi trovare il filone dei corsi d'acqua con alveo regolare. Questa regola vedesi osservata in un grandissimo numero di ponti; ma tuttavia non scarseggiano gli esempi di quelli in cui trovasi un numero pari di arcate.

Per rapporto alle corde dell'intrados delle arcate, è da dirsi che le loro lunghezze necessariamente dipendono dalle particolari circostanze, che sono variabilissime e che non ammettono veruna regola generale e positiva. A questo proposito si possono solamente dare alcune massime fondamentali, le quali ad altro non giovano che a dare idee generali sul modo di contenersi nei diversi casi

pratici.

Le arcate di grande corda convengono pei maggiori fiumi soggetti ad alte escrescenze; le arcate di piccola corda invece s'addicono ai corsi d'acqua con placido corso ed in cui le piene non salgono a grandi altezze. Pei ponti da stabilirsi su terreni i quali presentano grandi difficoltà di fondazioni, importa minorare il numero delle pile ed aumentare per conseguenza le aperture delle arcate. Conviene anche diradare quanto più si può le pile, quando i ponti devono essere costrutti su impetuosi corsi d'acqua, trascinanti nelle piene masse di ghiaccio e grossi alberi svelti dalle montagne, i quali, venendo ad urtare or in una ed or in un'altra parte le pile éd i piedi delle arcate, vi producono o presto o tardi non lievi danni. Non devesi trascurare, ove sia d'uopo, la comodità della navigazione: e le arcate devono presentare tali aperture da non impedire il passaggio a quelle barche, le quali percorrono innanzi ed indietro la linea del corso d'acqua. Anche l'altezza del suolo stradale su quello delle acque massime influisce sulla corda delle arcate; imperocchè, ove tale altezza sia piccola, è necessario diminuire le corde delle arcate, se vuolsi che le loro imposte non si trovino troppo basse per rapporto al livello delle acque massime, e che non scemino soverchiamente i rapporti fra le monte e le corde. Finalmente le qualità della struttura e dei materiali da impiegarsi nella costruzione delle arcate notevolmente influiscono sulle aperture delle arcate stesse. Ove si può disporre di pietre da taglio molto resistenti, si possono adottare arcate di grande portata, mentre al contrario sarebbe imprudenza l'azzardare arcate molto ampie, ove i loro cunei non potessero presentare che una mediocre resistenza e dove, in difetto di buona pietra, fosse forza di preferire la struttura laterizia. Conchiudendo, si può dire : che nelle ordinarie circostanze le arcate dei ponti difficilmente hanno corde maggiori di 20 metri; che adottando la struttura laterizia, nel tronco di ferrovia Alessandria-Genova, per attraversare il torrente Scrivia, vennero anche costrutte delle arcate colla corda di 40 metri; e che, ricorrendo alla pietra da taglio molto resistente, fu possibile costrurre il ponte di Vieille-Brioude sul fiume Allier nella Francia con un'arcata avente la corda straordinaria di metri 56.22.

Per quanto spetta alla saetta delle arcate dei ponti, conviene ritenere che essa non deve risultare troppo piccola in confronto della corda, che, se è possibile, non deve essere minore di 1/6 della corda. Vennero però costrutti ponti molto ragguardevoli, in cui il rapporto fra la saetta e la corda è più piccolo di quello indicato e

pei quali questo rapporto venne portato ad 1/10.

149. Grossezza delle arcate dei ponti. — Una volta fissate la corda e la monta della superficie d'intrados delle arcate dei ponti, la prima quistione che devesi risolvere è quella di determinare la loro grossezza alla chiave. Questa grossezza suolsi generalmente determinare mediante formole empiriche del genere di quelle che vennero date nel numero 27, parlando della grossezza degli archi per costruzioni civili; esprimono esse i risultati di numerose osservazioni su arcate di ponte che già hanno fatto buona prova; e, fra le moltissime che si conoscono, meritano principalmente di essere ricordate quella del Perronet, quelle del signor Dejardin e quella del signor Léveillé.

Prendendo il metro per unità di lunghezza, e chiamando

r il raggio di curvatura della direttrice della superficie d'intrados dell'arcata alla sua sommità, ossia alla sommità della monta,

x la domandata grossezza dell'arcata alla chiave, Perronet ha proposto la seguente formola determinatrice di x

$$x = 0^{m}, 325 + 0,035 \cdot 2r$$
 (1).

Per valori di 2r superiori a 50 metri, la formola del Perronet conduce a grossezze che dai moderni costruttori sono riputate eccessive, per cui da molti si preferiscono le formole del signor Dejardin. Queste formole sóno: per le arcate a tutta monta

$$x = 0^{\circ}, 30 + 0, 10.r$$
 (2);

per le arcate a monta depressa, aventi un arco di circolo dell'ampiezza di 60° per direttrice della superficie d'intrados,

$$x=0^{\text{m}},30+0,05.r$$
 (3);

e per le arcate a monta depressa, aventi per direttrici della superficie d'intrados una mezza ellisse od una mezza ovale colla monta eguale ad 1/5 della corda,

$$x = 0^{m}, 30 + 0,07.7$$
 (4).

Per le arcate, la cui direttrice della superficie d'intrados è un arco

di circolo di ampiezza compresa fra 180° e 60°, si può assumere per x un valore intermedio a quello dato dalle formole (2) e (3). La formola (4) sovente si adotta per trovare le grossezze alla chiave, non solo delle arcate aventi per direttrice della superficie d'intrados una mezza ellisse od una mezza ovale colla corda eguale ad 1/3 della monta, ma anche per le arcate aventi le direttrici dell'indicata forma e la monta maggiore o minore di 1/3 della corda.

Il signor Léveillé, indicando con d la lunghezza, espressa in metri, della corda di un'arcata, ha proposto la seguente formola per calcolarne la loro grossezza alla chiave

$$x = \frac{4^{n} + 0.1 \cdot d}{3} \tag{5}.$$

Questa formola di Léveillé viene usata da molti costruttori per tutte le arcate aventi per direttrici curve circolari, mezze ellissi o mezze ovali; e, in seguito a paragoni instituiti su un gran numero di ponti, risulta che essa è applicabile ai ponti per vie carreggiabili, a quelli per vie ferrate, ed a quelli che portano dei grandi sovraccarichi di terra.

Le formole empiriche che vennero date, ed altre che l'ingegnere costruttore può preferire per la determinazione della grossezza delle arcate alla chiave, non tengono conto di elementi che grandemente influiscono sulla stabilità delle costruzioni, quali sono le resistenze dei materiali ed i carichi sotto i quali devonsi trovare. Risulta da quest'osservazione, che le formole empiriche non sono altro che mezzi per dare delle indicazioni approssimative; che si possono diminuire le grossezze con esse ottenute, quando si devono porre in opera materiali molto resistenti; e che per contro può essere il caso di aumentarle quando questi materiali sono di cattiva qualità, e quando è quistione di costrurre delle arcate le quali devono sopportare dei carichi straordinarii. Negli archi di struttura laterizia, la grossezza alla chiave deve essere multipla della dimensione media del mattone, e, quantunque le formole empiriche conducano sempre ad un valore di x maggiore della dimensione massima del mattone, pure nei ponticelli di apertura non eccedente 1 metro quasi sempre si assume la dimensione massima del mattone per grossezza dei loro archi alla chiave.

Nei ponticelli, ossia in quei ponti di una sola arcata con corda inferiore a 6 metri, ben di frequente si adotta una spessezza uniforme dalla chiave all'imposta, e precisamente quella che credesi di dover adottare per la chiave. Generalmente però le grossezze delle arcate con aperture un po' grandi ed a monta non molto depressa, si fanno crescere dalla chiave alle imposte. La legge d'accrescimento di queste grossezze dovrebbe essere determinata in modo che nei diversi giunti delle arcate le pressioni riferite all'unità di superficie risultino costanti o pressochè costanti, e, non avendosi ancora convenienti metodi pratici per soddisfare a questa condizione, una volta determinata la curva direttrice dell'intrados, si determinerà la curva direttrice dell'estrados, seguendo i metodi che vennero dati sul finire del numero 27.

Soventi volte le arcate dei ponti si presentano esternamente di spessezza uniforme, mentre nell'interno hanno una grossezza crescente dalla chiave alle imposte.

450. Carichi permanente ed accidentale, gravitanti sulle arcate dei ponti di struttura murale. — Il carico permanente, il quale gravita su un'arcata qualunque di ponte, è generalmente costituito: dal peso proprio dell'arcata; dal peso del riempimento murale costituente i timpani, compreso quello della cappa; dal peso dei muri andatori; dal peso delle cornici e dei parapetti; dal peso del riempimento sovrastante alla cappa per raggiungere il suolo stradale; e finalmente dal peso dei materiali costituenti il suolo stradale, se trattasi di un ponte per via carreggiabile, e dal peso dell'armamento se è quistione di un ponte per via ferrata. Il carico accidentale è rappresentato dal peso massimo che può supporsi accumulato sul suolo stradale nelle più sfavorevoli condizioni di carico, in cui il ponte sarà per trovarsi.

Nelle tavole dei numeri 7 e 20 si hanno i pesi dei decimetri cubi delle murature e delle pietre, necessarii per procurarsi i pesi delle parti murali e di quelle in pietra da taglio; il peso del decimetro cubo di riempimento, posto al disopra della cappa per raggiungere il suolo stradale, si può assumere da chilogrammi 1,6 a chilogrammi 1,8 ed anche di chilogrammi 2 a 2,2 quando trovasi ben compresso; ed il peso del decimetro cubo di ciottolato può essere preso di chilogrammi 2,2 per ogni decimetro cubo. Occorrendo di calcolare i pesi delle traversine, delle rotaie e dei cuscinetti esistenti su un determinato tratto di ponte, si possono assumere per valori dei pesi del decimetro cubo di legno, di ferro e di ghisa quelli già riportati per gli stessi materiali nei numeri 22, 23 e 24. Alcune volte sopra i ponti si fa tutto od una parte del suolo stradale con asfalto compresso, posto in opera su calcestruzzo; ed il peso di questo genere di pavimento si può media-

mente ritenere: di 270 chilogrammi per ogni metro quadrato, quando lo strato di calcestruzzo è alto metri 0,40 e lo strato d'asfalto metri 0,03; di 185 chilogrammi, pure per ogni metro di pavimento, se l'altezza dello strato di calcestruzzo è di metri 0,05 e di metri 0,04 quella dello strato d'asfalto.

Per quanto spetta al carico accidentale, conviene distinguere se il ponte deve servire per strada ordinaria destinata al passaggio di pedoni e di veicoli tirati da animali, oppure se deve servire per via ferrata. - Nel primo caso, il massimo sovraccarico si verifica: o nella circostanza di una calca di gente a piedi; o nella circostanza di una moltitudine di nomini a cavallo: o finalmente nella circostanza di un affollamento di carri o di altri veicoli carichi. Ora, esaminando queste tre circostanze, si viene a riconoscere: che il massimo carico di cui possa trovarsi gravato un ponte per strada ordinaria è quello derivante da una calca di gente a piedi armata; e che questo carico si può, in cifra rotonda, ragguagliare a 600 chilogrammi per ogni metro quadrato di suolo stradale. - Nel secondo caso, si verifica il massimo sovraccarico al passaggio di un convoglio di locomotive, se trattasi di una via ferrata ad un solo binario, e di due convogli pure di locomotive quando è quistione di una via ferrata a due binarii. Questo sovraccarico generalmente suolsi dai pratici ragguagliare per ogni metro corrente di ferrovia con un solo binario; a 5000 chilogrammi quando il ponte appartiene ad una strada ferrata di pianura, in cui non impiegansi locomotive delle piu pesanti; a 5000 chilogrammi, quando il ponte appartiene ad una strada ferrata di montagna, per le quali sono necessarie locomotive molto pesanti. Ammettendo che la lunghezza delle traversine sulle quali trovansi le due rotaie di uno stesso binario sia di metri 2,50, risulta che il detto sovraccarico di 4000 o di 5000 chilogrammi trovasi su una lista rettangolare, che nel senso parallelo all'asse del ponte è lunga 1 metro e che nell'altro senso è lunga metri 2,50. La superficie adunque di questa lista è di metri quadrati 2,50, e si può ammettere che su ogni metro quadrato di essa graviti il sovraccarico rappresentato dai quozienti

$$\frac{4000^{c_5}}{2,5}$$
 = 1600^{c_5} e $\frac{5000^{c_5}}{2,5}$ = 2000^{c_5} ,

convenendo il primo quoziente per una via ferrata di pianura, destinata ad essere percorsa dalle ordinarie locomotive, ed il secondo per una via ferrata di montagna, sulla quale deve verificarsi il passaggio di locomotive molto pesanti. 151. Verificazione della stabilità delle arcate. — Determinata la grossezza di un'arcata alla chiave, e ben definite le due curve rappresentanti le sezioni rette delle due superficie d'intrados e d'estrados, nel caso che per dimensioni, per qualità di materiali e per pesi che sopporta non si trovi essa nelle precise condizioni di arcate già costrutte e che hanno fatto buona prova, è necessario procedere alla verificazione della sua stabilità. Questa verificazione si fa coi procedimenti che vennero svolti nei numeri 29, 50, 51 e 52, attenendosi alle particolarità che seguono.

Si rappresenti in disegno, ed in iscala piuttosto grande, il profilo A B C D (fig. 192) della metà dell'arcata, col profilo E F G della superficie superiore della cappa nel senso dell'asse del ponte, e colla retta HI indicante il livello a cui vuolsi porre il suolo stradale. Se trattasi di un ponte per strada carreggiabile, si determini il peso che graviterebbe su un metro della sua lunghezza, considerando i materiali costituenti il pavimento stradale ed i parapetti; se invece è quistione di un ponte per via ferrata, si determini lo . stesso peso, considerando le rotaie, i loro cuscinetti ed i parapetti. Dividasi questo quoziente per la lunghezza delle arcate nel senso delle loro generatrici ed il quoziente B, che così si ottiene, rappresenta quel sovraccarico medio permanente che si troverebbe su ogni metro quadrato del suolo stradale del ponte, qualora su esso fosse uniformemente distribuito: il peso dei materiali costituenti il pavimento stradale ed i parapetti, se trattasi di un ponte per via carreggiabile; il peso dei parapetti e della parte metallica dell'armamento, se è quistione di un ponte per via ferrata. Per quanto spetta ai muri andatori, suppongasi, per maggior semplicità, che abbiano lo stesso peso specifico del riempimento fra essi collocato, e ritengasi che quest'ipotesi, di qualche poco sfavorevole alla stabilità, senza tema d'inconvenienti possa essere ammessa, sia perchè attribuisce ai muri andatori un peso ben di poco differente dal vero, sia anche perchè grandemente si opera in favore della stabilità col trascurare la tenacità delle malte.

Dopo di ciò, si calcoli il sovraccarico accidentale B₄, trovando prima il carico accidentale massimo per ogni metro lineare di ponte e dividendo questo per la lunghezza delle arcate nel senso delle generatrici.

Determinati il sovraccarico medio permanente B ed il sovraccarico accidentale B_4 , riferiti al metro quadrato, si cerchi quali sarebbero rispettivamente le altezze h ed h_4 da assegnarsi a due prismi dello stesso materiale che venne impiegato per fare il riem-

pimento posto fra la cappa ed il suolo stradale, affinchè, supposti questi prismi collocati l'uno sull'altro al disopra del piano orizzontale determinato dalla retta IH, per ogni metro quadrato di suolo stradale abbiansi rispettivamente i trovati pesi B e B_4 . Evidentemente, dicendo Π' il peso, in chilogrammi, del metro cubo di materiale costituente il riempimento posto fra GFE ed IH, le equazioni determinatrici dei valori, in metri, di h e di h_4 risultano

$$\Pi' h = B, \qquad \Pi' h_1 = B_1,$$

d'onde

$$h = \frac{B}{\Pi'}$$
, $h_4 = \frac{B_4}{\Pi'}$.

La somma dei due valori di h e di h_i si porti da H in K sulla verticale BV e conducasi la retta KL parallela ad HI.

Nel caso di un ponte per via ferrata, molti costruttori non considerano il sovraccarico medio permanente, ma sibbene il solo sovraccarico accidentale, assumendo però il valore di B, eguale a 1600 o a 2000 chilogrammi, secondochè trattasi di un ponte per strada ferrata di pianura, o di un ponte per strada ferrata di montagna.

Seguendo ora le norme che vennero date sul principio del numero 29, dividasi il profilo ABCD dell'arco, mediante rette normali alla curva d'intrados AB, quali sono le b, c, b, co, b, c, $b_A c_A$,; pei punti c_A , c_2 , c_3 , c_4 ,, che queste rette determinano sulla curva d'estrados e pel punto D, si conducano le verticali $c_4 m_4$, $c_2 m_2$, $c_3 m_3$, $c_4 m_4$, e DM; e si determinino i punti n, F, n, n, m, ed O, in cui le indicate verticali incontrano la linea GFE, rappresentante il profilo della superficie superiore della cappa. Dopo di ciò, considerando una parte di arcata lunga l'unità nel senso delle sue generatrici, ed ammettendo che la cappa ed i sottostanti timpani abbiano lo stesso peso specifico, riesce facile condurre a termine le operazioni preliminari di cui si è parlato nel numero 29, ed arrivare alla determinazione dei pesi P, Po, P, P, P, e P, sopportati dalle parti BCc, b, BCc, b, BCc, b, BCc, b, e BCDA dell'arcata proposta, non che le distanze D4, D2, D₃, D₄, e D₁ dei punti d'applicazione di questi pesi dal piano verticale passante per la generatrice più alta della superficie d'intrados e rappresentato dalla retta KV. Un casellario, come quello del numero 29, può servire per registrare i numeri occorrenti al

compimento delle operazioni preliminari, per la verificazione della stabilità di un'arcata, salvo che si può generalmente ridurre il numero delle sue caselle da undici a nove. Nella seconda e nella terza colonna si registrano gli elementi necessarii al calcolo delle due aree triangolari in cui devesi scomporre una parte qualunque dell'arcata, come $b_3c_3c_4b_4$, e gli elementi che occorrono pel calcolo delle insistenti figure trapezie, come $c_3n_3n_4c_4$ ed $n_3m_3m_4n_4$; nella quinta si marcano le tre aree corrispondenti ad una stessa parte di arcata, come sono le $b_3c_3c_4b_4$, $c_3n_3n_4c_4$ ed $n_3m_3m_4n_4$; nella sesta si marcano i tre rispettivi pesi; nella settima si marcano le tre rispettive distanze dei punti d'applicazione di questi pesi dalla verticale VK; e finalmente nell'ottava e nella nona si registrano i pesi P e le distanze D.

Ultimate le operazioni preliminari alla verificazione della stabilità dell'arcata, si procede a quest'ultima operazione, la quale si conduce a compimento col determinare la spinta orizzontale, col costrurre la curva delle pressioni, col verificare se l'opera progettata presenta la necessaria stabilità sotto il rapporto della resistenza alla rottura per scorrimento, e finalmente coll'accertarsi che non manca la voluta stabilità sotto il rapporto della resistenza allo schiacciamento. Queste verificazioni si devono intraprendere colle norme che vennero date nei numeri 30, 31 e 32, e si conchiuderà che l'arcata trovasi in buone condizioni di stabilità: quando le due curve delle pressioni, corrispondenti alle due ipotesi che la rottura tenda manifestarsi per aprimento alla chiave verso l'intrados e per aprimento alla chiave verso l'estrados, si trovano comprese nella superficie limitata dalle due curve passanti pei punti dei diversi giunti, i quali distano di un terzo dei giunti medesimi dall'intrados e dall'estrados: quando le direzioni delle pressioni sui varii giunti fanno un angolo minore dell'angolo d'attrito (num. 50) della muratura colle normali ai piani dei giunti medesimi; e finalmente quando le pressioni riferite all'unità di superficie sui diversi spigoli che limitano i giunti non eccedono il coefficiente di rottura, conveniente alla muratura di cui l'arcata è costituita (num. 7), moltiplicato pel coefficiente di stabilità 1/10.

Le arcate dei ponti quasi sempre sono a tutta monta, oppure a monta depressa; sono esse caricate in tutti i punti del loro estrados; e si può ritenere, che generalmente la rottura per aprimento alla chiave verso l'intrados tende manifestarsi in esse assai più facilmente della rottura per aprimento alla chiave verso l'estrados. Segue da ciò, che nelle ordinarie circostanze della pratica è permesso semplificare il processo di verificazione della loro stabilità, coll'am-

mettere l'unica ipotesi, che la rottura tenda manifestarsi per aprimento alla chiave verso l'intrados (num. 30).

152. Grossezze delle spalle dei ponti. — Il signor ingegnere Léveillé, dando la formola (5) del numero 149 per calcolare la grossezza delle arcate dei ponti alla chiave, ha pure suggerito alcune formole per determinare le grossezze delle spalle. Prendendo il metro per unità di lunghezza e chiamando

c la corda dell'arcata,

m la monta corrispondente,

x la sua grossezza alla chiave,

a l'altezza delle linee d'imposta della superficie d'intrados dell'arcata sul piano di fondazione della spalla,

A l'altezza del suolo stradale sullo stesso piano di fondazione ed y la domandata grossezza della spalla, propone di calcolare il valore di y: colla formola

$$y = (0,60+0,162.c) \sqrt{\frac{a+0,25.c}{A}} \times \frac{0,865.c}{0,25.c+x}$$

per una spalla che sopporta un'arcata a tutta monta; colla formola

$$y = (0,33 + 0,212.c) \sqrt{\frac{a}{A} \times \frac{c}{m+x}}$$

per una spalla la quale sostiene un'arcata a monta depressa, avente un arco circolare per direttrice della superficie d'intrados; e colla formola

$$y = (0,43 + 0,154.c) \sqrt{\frac{a + 0,54.m}{A} \times \frac{0,84.c}{0,465.m + x}},$$

per una spalla la quale serve di sostegno ad un'arcata a monta depressa, avente una mezza ovale oppure una mezza ellisse per direttrice della superficie d'intrados.

L'altezza A che trovasi nelle tre formole di Léveillé per determinare le grossezze delle spalle dei ponti, se chiamasi c l'altezza del suolo stradale sulla generatrice più alta dell'estrados dell'arcata, viene data da

A=a+m+x+c

nella quale l'altezza c si assume ordinariamente di metri 0,60.

153. Verificazione della stabilità delle spalle dei ponti di struttura murale. - Determinata la grossezza della spalla di un ponte, mediante l'opportuna formola del numero precedente, e disegnato il profilo della spalla stessa con quella forma che credesi più adatta alla circostanza, ma in modo che presenti per grossezza media quella somministrata dal calcolo, importa procedere alla verificazione della sua stabilità, sotto il triplice rapporto della resistenza alla rottura per scorrimento, della resistenza alla rottura per rovesciamento e della resistenza alla rottura per schiacciamento. Perciò, supponendo che la spalla, astrazione fatta dai muri di risvolto o dai muri d'ala ad essa uniti, abbia forma prismatica, ossia che non variino le sezioni in essa prodotte da piani verticali paralleli all'asse del ponte, e che siano rettangoli le sue sezioni orizzontali, si consideri una sua lunghezza eguale all'unità nel senso parallelo alle generatrici della superficie d'intrados dell'arcata che sopporta; prendasi il metro per unità di lunghezza ed il chilogramma per unità di forza, e si chiamino:

Q e V le due componenti orizzontale e verticale della spinta R che l'arcata, supposta lunga l'unità nel senso delle generatrici della sua superficie d'intrados, esercita in N (fig. 195), sul giunto d'imposta AD, contro la spalla;

v la distanza orizzontale SU del punto N dal punto S nel quale proiettasi lo spigolo esterno inferiore della spalla;

q la distanza NU degli stessi punti nel senso verticale.

Verificazione della stabilità sotto il rapporto della resistenza allo scorrimento. — La sezione pericolosa sotto il rapporto della resistenza alla rottura per scorrimento è la AA', determinata dal piano orizzontale passante per la generatrice più bassa della superficie d'intrados dell'arcata; tutti i pesi posti al di sopra dell'indicata sezione concorrono per far crescere la resistenza allo scorrimento; e quindi, nel verificare la stabilità di una spalla, si tiene solamente conto del peso della spalla stessa, del peso del corrispondente riempimento fino al suolo stradale e del sovraccarico medio permanente.

Premesso questo, s'immagini condotto il piano verticale DM, passante per la generatrice d'imposta della superficie d'estrados del-

l'arcata, non si dimentichi che operasi su una parte di piedritto lunga l'unità, e si dicano

P' il peso del prisma di muro rappresentato nella figura ADOYA', P'' quello del prisma rappresentato in 0h'iY, di densità eguale a quella del riempimento posto fra la cappa ed il suolo stradale, e terminato superiormente dal piano orizzontale hi, distante dalla retta HI, la quale definisce il livello del suolo stradale, della quantità H'h' = h (num. 151),

f il coefficiente d'attrito di muratura su muratura, che si può assumere di metri 0,57,

 n_4 " il coefficiente di stabilità relativo allo scorrimento. Evidentemente si ha l'equazione

$$Q = n_i^{\text{TV}} f(P' + P'') \tag{1},$$

dalla quale si può ricavare il valore di n_i . Quando questo valore è minore della frazione 2/5, ritiensi generalmente che, per rapporto alla resistenza allo scorrimento, si ha una stabilità più che sufficiente; ed alcuni costruttori sono d'avviso che non debbasi modificare il profilo della spalla, quando il valore di n_i è minore di 4/5.

Se dal valore che ottiensi per n_4 " risulta la convenienza di apportare qualche modificazione al profilo della spalla, onde ottenere un aumento nella resistenza allo scorrimento, si può raggiungere lo scopo, o accrescendo la grossezza $\overline{AA'}$, oppure adottando tali ripieghi di costruzione che la sezione pericolosa trovisi portata ad essere al di sotto della sezione orizzontale AA'. Uno di questi ripieghi, che ben sovente venne messo in pratica da valenti costruttori, è quello di prolungare l'arcata (fig. 194) nell'interno della spalla, per guisa che debba prendere parte allo scorrimento la parte di spalla $A'ADOYA_4$, assai maggiore della parte $ADOYA_4$.

Verificazione della stabilità sotto il rapporto della resistenza al rovesciamento. — La spinta orizzontale Q (fig. 193) è l'unica forza la quale tende a produrre rovesciamento della spalla attorno allo spigolo rappresentato nel punto S; mentre, quando considerasi il ponte siccome portante il sovraccarico per tutta la sua lunghezza, sono tre le forze le quali si oppongono a questo fatto. Una di queste forze è la componente verticale V dell'azione R che si verifica sul giunto d'imposta AD; l'altra è il peso P del prisma di muratura, avente per altezza l'unità ed avente per base la figura XADOYZS; e la terza è il peso del prisma proiettato nella sua base OMLY, di altezza pure eguale all'unità, di densità eguale a

quella del riempimento posto fra la cappa ed il pavimento stradale, e terminato superiormente dal piano orizzontale KL, distante da HI di $\overline{H'M} = h + h_4$ (num. 454).

Indicando con

P e P, i pesi dei detti prismi di muratura e di riempimento, rispettivamente rappresentati in XADOYZS ed OMLY, con

p e p_4 i bracci di questi pesi per rapporto allo spigolo rappresentato in S, con

d' la distanza ST del centro di pressione T della base SX dall'indicato spigolo,

e ponendo l'equazione dei momenti rispetto allo spigolo medesimo, si ha

$$Qq - Vv - Pp - P_1p_1 + (V + P + P_1)d' = 0,$$

dalla quale si deduce

$$d' = \frac{Vv + Pp + P_{4}p_{4} - Qq}{V + P + P_{4}}$$
(2).

Se la distanza d', data da questa formola, è positiva, è segno che il punto T cade sulla destra del punto S fra S ed X, e che non può aver luogo rovesciamento della spalla attorno lo spigolo orizzontalmente proiettato nel punto S; se la distanza d, essendo positiva, è maggiore di 1/3 e minore dei 2/3 di SX, l'intiera sezione rettangolare SX è premuta; se invece la distanza d, ancora positiva, è minore di 1/3 di SX, per generale consentimento dei pratici si ammette che la spalla non presenta la necessaria stabilità, la quale si può conseguire aumentando la sua grossezza.

Verificazione della stabilità sotto il rapporto della resistenza allo schiacciamento. — Essendo N la pressione normale alla base SX applicata nel centro di pressione T, si ha

$$N = V + P + P, \qquad (3);$$

e, nell'ipotesi che $d' = \overline{ST}$ sia minore di 1/2 \overline{SX} e maggiore di 1/5 \overline{SX} , la massima pressione K riferita all'unità di superficie, che ha luogo sullo spigolo proiettato nel punto S, si calcola mediante la formola (num. 50)

$$K = 2 \left(2 - 3 \frac{d'}{a'}\right) \frac{N}{a'} \tag{4},$$

nella quale a' rappresenta la lunghezza nota SX.

Può anche avvenire che la spalla si trovi sufficientemente stabile, sebbene la distanza $d' = \overline{ST}$ sia minore di $1/3 \overline{SX}$. In questo caso la formola determinatrice di K è (num. 50)

$$\mathbf{K} = \frac{2}{3} \frac{\mathbf{N}}{d'} \tag{5}.$$

Se per caso trovasi $d' > \frac{1}{2}a'$, la pressione massima K, invece di aver luogo sullo spigolo S, ha luogo sullo spigolo X; nelle equazioni (4) e (5) bisogna porre a'-d' invece di d'; bisogna applicare la formola (4) quando si ha a'-d' maggiore di 1/3 a'; e la formola (5) quando a'-d' è minore di 1/3 a'.

Una volta determinato il valore di K, bisogna dividerlo pel conveniente coefficiente di rottura per pressione (num. 7), riferito alla conveniente unità di superficie. Nel quoziente risultante si ha il valore del coefficiente di stabilità, e la spalla devesi ritenere siccome presentante sufficienti guarentigie di stabilità, quando il valore di questo coefficiente è 1/10 o minore di 1/10.

Invece di operare numericamente, si può adottare un metodo grafico nella verificazione della stabilità delle spalle: e questo metodo immediatamente risulta da quanto si disse nel numero 34, parlando della verificazione della stabilità dei piedritti per costruzioni civili.

Potendo avvenire che il sovraccarico di un ponte non giunga ad occupare la lunghezza IH' insistente alla spalla, sembra che si operi a danno della stabilità quando, nel verificare la stabilità sotto il rapporto della resistenza al rovesciamento, si tiene conto del peso posto sopra il livello del suolo stradale, il cui effetto ritiensi identico a quello del masso fittizio di riempimento rappresentato in h'MLi; giacchè riesce facile lo scorgere che l'esistenza di questo peso generalmente porta il centro di pressione T ad una distanza da S, maggiore di quella che si verificherebbe quando di esso non si tenesse conto. Se però osservasi che il valore di d' si calcola principalmente per trovare il valore massimo di K, e che il detto peso, per la sua grandezza, fa notevolmente aumentare il valore di N e quindi anche quello di K, riesce facile il persuadersi come non sia il caso di trascurarlo nel dedurre il valore d', e come, nella verificazione della stabilità di una spalla di ponte, convenga operare come venne indicato.

Le formole (4) e (5) convengono unicamente pel caso di una spalla, in cui la base SX sia rettangolare. Negli altri casi, bisogne-

rebbe dedurre la massima pressione riferita all'unità di superficie, giusta le norme che vennero date nei numeri 154, 135, 136, 157 e 138 del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, se pure non credesi sufficiente per la pratica considerare la massima base rettangolare ricavabile dalla base effettiva, di fare i calcoli per questa e di accontentarsi di un coefficiente di stabilità anche maggiore di 1/10, ritenendo che concorrano a convenientemente diminuirlo quelle parti di base effettiva che eccedono la base rettangolare considerata.

Le terre, le quali trovansi contro la spalla di un ponte, spingendo questa verso l'arcata che sopporta, contribuiscono a notevolmente aumentarne la resistenza allo scorrimento, al rovesciamento, ed anche alla pressione, in quanto portano il centro di pressione presso il centro della base, e quindi pare che la verificazione della stabilità di una spalla dovrebbe essere intrapresa : nell'ipotesi del ponte senza sovraccarico e senza terra contro la spalla, il qual fatto si può verificare nel caso che per una causa qualunque venga distrutto l'argine stradale; e nell'ipotesi del ponte con sovraccarico e colla terra spingente contro la spalla, la qual cosa sempre si verifica quando il ponte trovasi in esercizio. Questo metodo di verificazione però non è adottato dai pratici, i quali, nel dubbio che le terre contro le spalle dei ponti non agiscano come quelle di lunghi terrapieni contro i loro muri di sostegno, ne trascurano affatto la loro azione, operando in favore della stabilità col seguire un sistema di verificazione conforme a quello che risulta dall'applicazione delle formole (1), (2), (3) e (4) o (5).

154. Grossezza delle spalle dei ponti di struttura murale. — Invece di applicare le formole del numero 152 per determinare le grossezze delle spalle, e di sottoporle quindi al metodo di verificazione indicato nel precedente numero, si può immediatamente dare la risoluzione diretta del problema, allorquando sono note le due componenti orizzontale e verticale Q e V dell'azione R che l'arcata esercita sul giunto d'imposta, non che la posizione del punto N in cui la detta azione trovasi applicata. In quello che immediatamente segue, si dà la risoluzione di questo problema, e, considerando la spalla rappresentata nella figura 193, si ritengono le ipotesi e le denominazioni che già vennero stabilite nel precedente numero.

Affinchè la spalla presenti la necessaria resistenza allo scorrimento, deve essere verificata l'equazione

$$Q = n_i^{\text{Tr}} f(P' + P'') \tag{1},$$

la quale, quando esprimansi i valori dei pesi P' e P'' in funzione della dimensione incognita della sezione trasversale della spalla, e quando assumasi il coefficiente di stabilità n_4 " variabile fra 4/5 e 2/5, ed il coefficiente d'attrito f eguale a 0.57, serve alla determinazione della grossezza x.

Per la sufficiente stabilità della spalla, relativamente alla resistenza al rovesciamento attorno allo spigolo proiettato nel punto S, si richiede che il momento

Qq,

della spinta orizzontale Q rispetto al detto spigolo sia minore del momento

$$Vv+Pp+P_1p_1$$

rispetto allo stesso spigolo, delle forze che si oppongono al rovesciamento. Segue da ciò, che indicando nº il coefficiente di stabilità relativo al rovesciamento, si può porre l'equazione

$$Qq = n^{vi}(Vv + Pp + P_i p_i)$$
 (2),

la quale, espresse le quantità P, P_4 , p e p_4 in funzione della dimensione incognita della sezione trasversale della spalla, serve alla sua determinazione, allorquando assumasi il coefficiente di stabilità $n^{\prime\prime}$ variabile fra 4/5 e 2/5.

La formola (1) conduce ad un primo valore della grossezza della spalla, e la formola (2) ad un secondo valore generalmente diverso dal primo. Il maggiore dei due valori sarà quello da assumersi siccome rappresentante la grossezza da adottarsi in pratica.

Generalmente si soddisfa alle esigenze di una ben intesa economia, impiegando prima la formola (1) per dedurre la grossezza $\overline{AA'}$ della spalla al livello dell'imposta della superficie d'intrados dell'arcata; ed adottando poscia la formola (2), o per dedurre le sporgenze delle riseghe poste al di sotto del piano orizzontale AA', od anche per dedurre la grossezza \overline{SX} al livello delle fondazioni.

Una volta stabilite le dimensioni tutte del profilo della spalla, è necessario accertarsi se la massima pressione riferita all'unità di superficie sul piano orizzontale SX non eccede il limite della pressione riferita all'unità di superficie che, per generale consentimento dei pratici, si può far sopportare alla muratura, affinchè si trovi essa in buone condizioni di stabilità. Perciò, essendo noti Q e V, e

determinati i valori di P, P_4 , Qq, Vv, Pp e P_4p_4 corrispondenti alle stabilite dimensioni del profilo della spalla, mediante la formola (2) del numero precedente, si calcola la distanza d' del punto T, in cui la risultante delle forze Q, V, P e P_4 incontra il piano orizzontale SX, dal punto S; e, mediante la formola (4) o (5), da applicarsi come si è detto nello stesso numero, secondo il valore del rapporto fra d' ed \overline{SX} , si trova il valore di K. Dividendo questo valore di K pel conveniente coefficiente di rottura per pressione (num. 7), riferito al metro quadrato, si ha il coefficiente di stabilità, e la spalla devesi ritenere siccome posta in buone condizioni di stabilità, quando questo coefficiente risulta eguale o minore di 1/10,

Le osservazioni state fatte sul finire del precedente numero, convengono pure nella risoluzione del problema che ha per iscopo la

determinazione della grossezza delle spalle dei ponti.

Venendo ora ad un caso particolare, suppongasi di dover trovare la grossezza da assegnarsi ad una spalla di ponte, la quale verso terra deve presentare due riseghe, una al livello della linea d'imposta dell'intrados e l'altra egualmente distante dalla prima e dal piano di fondazione, mentre, dalla parte dell'arcata che sopporta, deve presentare una parete verticale.

Per risolvere questo problema, si chiamino:

A l'altezza al la quale determina il livello IH del suolo stradale sul piano di fondazione;

b l'altezza \overline{ai} della retta ih definita col portare al di sopra di IH la lunghezza $\overline{H'h'}$, eguale a quell'altezza che nel numero 151 venne indicata colla lettera h, cosicchè b = A + h;

 b_4 l'altezza \overline{aL} della retta LK, definita col portare al di sopra di IH la lunghezza $\overline{H'M}$, eguale alla somma delle due altezze che nel citato numero 151 vennero indicate colle lettere h ed h_4 , per modo che $b_4 = A + h + h_4$;

a l'altezza XA della generatrice d'imposta dell'intrados sul piano di fondazione;

c la sporgenza di ciascuna delle due riseghe;

l la lunghezza del giunto d'imposta AD;

d la distanza AN del punto d'applicazione dell'azione, prodotta dall'arcata sul detto giunto, dall'intrados;

e l'altezza DO, ossia la profondità della generatrice d'imposta dell'estrados dell'arcata sotto la superficie superiore della cappa;

α l'angolo DAA' misurante l'inclinazione del giunto d'imposta cell'orizzonte;

β l'angolo OYb, il quale misura l'inclinazione della retta YO, pure coll'orizzonte;

II il peso del metro cubo di muratura costituente la spalla;

Π' il peso del metro cubo di riempimento posto sopra la cappa;

y la grossezza SX della spalla al livello delle fondazioni.

Incominciando da quel valore di y che deve assicurare la stabilità della spalla per rapporto allo scorrimento, si ha: che le lunghezze, necessarie al calcolo dei pesi P e P', sono

$$\overline{Ac} = l\cos\alpha,$$

$$\overline{aA'} = y - 2c,$$

$$\overline{A'c} = \overline{Y}b = y - 2c - l\cos\alpha,$$

$$\overline{Ob} = (y - 2c - l\cos\alpha)\tan\beta,$$

$$\overline{A'Y} = \overline{cb} = l\sin\alpha + e - (y - 2c - l\cos\alpha)\tan\beta,$$

$$\overline{Yi} = \overline{bh'} = b - l\sin\alpha - e + (y - 2c - l\cos\alpha)\tan\beta - a,$$

$$\overline{Oh'} = b - l\sin\alpha - e - a;$$

che, ponendo

$$y-2c-l\cos z=y'$$

i valori di P' e di P" risultano

$$\begin{split} \mathbf{P}' &= \Pi \left[\frac{1}{4} \, l^2 \sin 2 \, \alpha + (l \sin \alpha + e) y' - \frac{1}{2} \, y'^2 \tan \beta \right] \,, \\ \mathbf{P}'' &= \Pi' \left[\left(b - l \sin \alpha - e - a \right) y' + \frac{1}{2} \, y'^2 \tan \beta \right] \,; \end{split}$$

e che, sostituendoli nella formola (1) dopo d'aver posto

$$\frac{1}{4} \Pi l^2 \operatorname{sen} 2 \alpha = G,$$

$$(\Pi - \Pi') (l \operatorname{sen} \alpha + e) + \Pi' (b - a) = H,$$

$$\frac{1}{2}$$
 (II' — II) tang β = I,

ottiensi l'equazione

$$Q = n_i^{TV} f(G + H y' + I y'^2)$$
 (4),

la quale serve alla determinazione di y'. Calcolata la lunghezza y', si pone il suo valore nell'equazione (3) ed immediatamente ottiensi quella grossezza y che la spalla deve avere, affinchè si trovi essa in buone condizioni di stabilità per rapporto alla resistenza alla rottura per scorrimento. Nel caso di $\Pi' = \Pi$, ossia nel caso che il riempimento abbia lo stesso peso specifico della muratura, l'equazione (4) si semplifica e diventa del primo grado in y'.

Venendo ora alla ricerca di quel valore di y, che è necessario affinchè la spalla non si rompa per rovesciamento attorno allo spigolo proiettato nel punto S, è innanzi tutto necessario conoscere i bracci q e v delle due forze Q e V. Questi bracci sono facili a determinarsi; pei dati stabiliti, si ha

$$q = a + d \operatorname{sen} \alpha$$
 (5),

$$v = 2c + y' + (l - d)\cos\alpha \tag{6}.$$

Il momento Pp del peso del masso murale rappresentato nella figura SXADOYZS, facilmente si determina, immaginandolo decomposto nelle parti Sdek, daA'f, agbY, YbO, gXAc e cAD, per cui si ha

$$P p = \Pi \begin{cases} \frac{7}{4}ac^{2} + \begin{bmatrix} a\left(2c + \frac{1}{2}l\cos\alpha\right) \\ +l\left(c + \frac{1}{6}l\cos\alpha\right)\sin\alpha \end{bmatrix} l\cos\alpha \\ + \begin{bmatrix} a\left(2c + l\cos\alpha\right) + 2ce \\ +l\left(2c + \frac{1}{2}l\cos\alpha\right)\sin\alpha \end{bmatrix} y' \\ + \begin{bmatrix} \frac{1}{2}(a + e + l\sin\alpha) - 2c\tan\beta \end{bmatrix} y'^{2} - \frac{1}{6}y'^{3}\tan\beta \end{cases}$$

$$(7).$$

Analogamente si trova il momento P_4p_4 del peso del prisma rappresentato nella figura YOML, supposto tutto di densità eguale a quella del riempimento rappresentato in YOH'I, considerandolo siccome la differenza tra il parallelepipedo rettangolo di base YbML ed il prisma retto triangolare di base YbO. Segue da ciò, che risulta

$$\Pr_{i} p_{i} = \prod' \left\{ \begin{aligned} & \frac{2c(b_{i} - a - e - l \sin \alpha)y'}{+\left[\frac{1}{2}(b_{i} - a - e - l \sin \alpha) + 2c \tan \beta\right]y'^{2}} \\ & + \frac{1}{6}y'^{3} \tan \beta \end{aligned} \right\} (8).$$

Sostituendo ora i valori di Q e V non che i valori di q, v, P p e P_i p_i nell'equazione (2), e ponendo

$$\left\{ \begin{array}{l} V \left[2c + (l-d)\cos\alpha \right] + \frac{7}{4} \Pi a c^2 \\ + \Pi \left[\begin{array}{l} a \left(2c + \frac{1}{2}l\cos\alpha \right) \\ + l \left(c + \frac{1}{6}l\cos\alpha \right) \sin\alpha \end{array} \right] l\cos\alpha \end{array} \right\} = K,$$

$$\left\{ \begin{array}{l} V + 2c (\Pi - \Pi') \left(a + e + l\sin\alpha \right) \\ + \Pi l \left(a + \frac{1}{2}l\sin\alpha \right) \cos\alpha + 2\Pi' c b_4 \end{array} \right\} = L,$$

$$\frac{1}{2} \left[(\Pi - \Pi') \left(a + e + l\sin\alpha - 4c\tan\beta \right) + \Pi' b_4 \right] = M,$$

$$\frac{1}{6} \left(\Pi' - \Pi \right) \tan\beta = N,$$

si ottiene l'equazione

$$Q(a+d \sin z) = n^{v_1} (K+Ly'+My'^2+Ny'^3)$$
 (9),

la quale serve a determinare y'. Ottenuto questo valore di y', si sostituisce nell'equazione (5); e questa conduce a trovare qual'è la grossezza y che devesi dare alla spalla, affinchè sia essa stabile sotto il rapporto della resistenza al rovesciamento.

L'equazione (9) è del terzo grado in y'; se però, operando in favore della stabilità, si ammette che Π' sia eguale a Π , essa notevolmente si semplifica e si riduce ad essere del secondo grado.

Il maggiore dei due valori di y, uno corrispondente al valore di y' dato dall'equazione (4) e l'altro al valore di y' dato dall'equazione (9), è quello che si deve assumere siccome grossezza della spalla al livello delle fondazioni, sempre che però la massima pressione riferita all'unità di superficie sul piano orizzontale SX, non ecceda il limite della pressione riferita all'unità di superficie che, per generale consentimento dei pratici, si può far sopportare alla muratura, affinchè si trovi essa in buone condizioni di stabilità. Per accertarsi se quest'importante condizione è soddisfatta, è necessario calcolare d' ed N, mediante le formole (2) e (3) del numero 153. Conoscendosi le due forze Q e V ed il loro punto d'applicazione N in seguito alla verificazione della stabilità dell'arcata, la quale operazione sempre deve precedere quella della determinazione della grossezza alla spalla, restano a trovarsi le lunghezze q e v, le forze P e P, ed i momenti Pp e P, p, Le equazioni (5) e (6) permettono di trovare i valori numerici di q e di v; i pesi P e P, sono facili ad ottenersi, mediante le formole

$$P = \Pi \left\{ \begin{array}{l} \frac{3}{2} a c + l \left(a + \frac{1}{2} l \operatorname{sen} \alpha \right) \cos \alpha \\ + (a + e + l \operatorname{sen} \alpha) y' - \frac{1}{2} y'^{2} \operatorname{tang} \beta \end{array} \right\},$$

$$\mathbf{P}_{i} = \mathbf{\Pi}' \left[\left(b_{i} - a - e - l \sin \mathbf{z} \right) y' + \frac{1}{2} y'^{2} \tan \mathbf{g} \, \mathbf{\beta} \right];$$

le quali si trovano immaginando decomposti i pesi dei prismi SXADOYZS ed YOML, come già venne fatto per trovare i loro momenti rispetto alla orizzontale proiettata nel punto S; ed i momenti Pp e P_4 p_4 immediatamente si deducono dalle formole (7) e (8). Calcolati così tutti i termini che si trovano nelle citate formole (2) e (3) del numero 453, riesce facile ottenere il valore di d' e di N; di confrontare il valore di d' con quello di d', che rappresenta la lunghezza che nel citato numero 453 venne indicata colla lettera d'; e di calcolare in modo opportuno il valore di d', mediante la formola (4) o mediante la formola (5) dello stesso numero. Dividendo il trovato valore di d' pel conveniente coeffi-

ciente di rottura, si ottiene quel coefficiente di stabilità che deve essere minore di 1/10, e nel caso che questo non si verifichi, è necessario aumentare la grossezza della spalla.

155. Dimensioni dei muri di risvolto e dei muri d'ala. — Già si è detto nel numero 144 che alle spalle dei ponti trovansi sempre annessi o muri di risvolto o muri d'ala, ed importa dare alcune norme le quali possano servire di guida nella determinazione delle dimensioni di questi muri.

Se considerasi il muro di risvolto R, rappresentato nella figura 195, la quale dà l'elevazione e la proiezione orizzontale di una porzione di spalla di ponte, si vede che esso deve sopportare la spinta delle terre esistenti fra la spalla ed i due muri di risvolto alla medesima annessi, e che esternamente trovasi rinforzato dalle terre la cui superficie interseca il detto muro di risvolto secondo una linea verticalmente proiettata in abcd. Ora, se si divide la lunghezza ef del muro R in un dato numero di parti eguali, per esempio in tre, e se dai punti di divisione q ed h si conducono le verticali hi e qk, si può operare come segue: prendere i punti l, n e p di poco al disotto della linea deba, appartenente all'intersezione della superficie del terreno colla parete esterna del muro di risvolto; condurre le orizzontali lm, no e pq; ed assegnare grossezze diverse alle tre parti di muro di risvolto rappresentate in elmh, hnog e q p q f. La prima parte si considererà come un muro di sostegno di altezza \overline{el} , la seconda parte come un muro di sostegno di altezza \overline{hn} e la terza parte come un muro di sostegno di altezza gp.

Se osservasi che le terre costituenti l'argine stradale per l'accesso sul ponte, sono ben lungi dal presentare quel grado di compattezza e quell'immobilità che generalmente si riscontra nelle terre non smosse, quali sono quelle poste sotto la superficie rappresentata nella linea rbct, facilmente si comprende la ragione, per cui sembra più conveniente assumere per terza parte del muro di risvolto quella rappresentata in gp'q'f, essendo la orizzontale p'q' di poco al disotto della linea rc, e considerarla quindi come un muro di sostegno di altezza gp'.

Il muro di risvolto, che direttamente si potrebbe stabilire sulle riseghe lm, no e p'q', allorquando trovasi roccia resistente sotto la superficie rappresentata nella linea rbct, si deve affondare sotto i piani orizzontali determinati dalle rette lm, no e p'q' negli altri casi, e si deve stabilire su una conveniente opera di fondazione, opportunamente collegata ai lavori di fondazione della spalla. Volendosi fare delle riseghe interne nei muri di risvolto, sembra con-

veniente assegnare ad esse o ad alcune di esse le posizioni determinate dalle ultime accennate rette.

La grossezza di un muro di risvolto in sommità, difficilmente si assume minore di metri 0,36, e conviene attenersi a questo limite inferiore in quei casi in cui, applicando le esposte norme generali, si ottiene una grossezza minore di metri 0,36. Nei muri di risvolto corti, e quindi di piccola altezza, non si fanno riseghe verticali o, tutto al più, se ne fa una. Nei muri di risvolto molto langhi, e quindi di grande altezza, se ne pongono due, tre od anche un numero maggiore di tre.

Sia A un muro d'ala, rappresentato nella figura 196 mediante la sua proiezione orizzontale e mediante la sua elevazione, e sia proposto di determinare le dimensioni che a questo muro conviene assegnare per trovarsi esso nelle condizioni di un muro di sostegno, contro il quale si appoggia un terrapieno di altezza decrescente, a partire dal sito in cui il detto muro si attacca alla spalla fino alla sua estremità inferiore. Seguendo un metodo affatto analogo a quello che venne tenuto pei muri di risvolto, quando si conosce la direzione e la lunghezza ab del muro d'ala, si può immaginare divisa questa lunghezza in un certo numero di parti eguali, per esempio in tre, e condurre dai punti di divisione c e d le rette ce e df parallele alla fronte del ponte, ossia all'asse della strada passante sul ponte. Fatto questo, essendo gh il livello delle fondazioni e rappresentando rispettivamente le due rette ab ed a''b' le projezioni orizzontale e verticale di quello spigolo della faccia superiore del muro il quale trovasi dalla parte del terrapieno, si possono considerare le tre parti di muro le cui lunghezze sono ac, cd e db, siccome muri di sostegno di altezze rispettivamente eguali ad a'a', c'c" e d'd". Per questi muri di sostegno si può dedurre una stessa dimensione, per esempio la grossezza, onde poter stabilire due riseghe verticali, orizzontalmete rappresentate nelle rette il ed nm, in corrispondenza delle due rette ec ed fd.

La faccia superiore dei muri d'ala è costituita da una superficie piana, di larghezza costante, che asseconda l'andamento delle scarpe dei terrapieni che contro essi sono appoggiati. Questa larghezza ben difficilmente si assume minore di metri 0,36, e non conviene scostarsi da essa, quand'anche i risultamenti del calcolo conducano ad una larghezza minore.

Ben sovente avviene che sono inutili le riseghe verticali verso terra, bastando la scarpa della faccia esterna per dare al muro quella grossezza decrescente che viene motivata dalla diminuzione della sua altezza.

456. Grossezza delle pile dei ponti di struttura murale. — Abbiasi una pila di ponte, la quale sopporta due arcate precisamente identiche, impostate alla medesima altezza, e trattisi di trovare la grossezza AB (fig. 498) di questa pila al livello delle fondazioni.

Per risolvere questo problema, si consideri una lunghezza di pila eguale all'unità; suppongansi tolte le due arcate A' ed A" che essa sopporta, ed in loro vece sostituite le componenti orizzontali O e verticali V delle azioni che le arcate stesse esercitano sulle imposte CD ed EF; s'immaginino condotti i due piani verticali, passanti per le generatrici d'imposta della superficie d'estrados delle dette arcate A' ed A", rappresentati dalle rette DM ed FN; e finalmente si traccino alle convenienti altezze le tre orizzontali IH. ih ed LK, la prima delle quali corrisponde al livello del suolo stradale, mentre le altre due distano rispettivamente da essa delle quantità $\overline{0m} = h$ ed $\overline{0M} = h + h_t$, corrispondenti al sovraccarico medio permanente ed al sovraccarico accidentale (num. 151). Essendo STUV il profilo della superficie superiore della cappa, risulta che le forze producenti pressione sulla base AB sono: il peso del masso murale ABEFUTDCA; il peso P, del masso di materia, avente densità eguale a quella del riempimento che trovasi sopra la cappa, rappresentato in TUNM; e le componenti verticali V delle azioni, che le arcate coi massimi carichi a cui devono soggiacere, esercitano sulla pila nei punti noti N' ed N". In quanto alle componenti orizzontali Q delle dette azioni, sono esse eguali e reciprocamente si elidono.

Ciò premesso, se, per la materia di cui è costituita la pila, si

indica con n''R'' il prodotto del coefficiente di stabilità pel coefficiente di rottura, relativi alla pressione (num. 7 e 20), si ha

$$P + P_4 + 2V = n'' R'' z$$
 (1),

nella quale l'incognita z, di cui sono funzioni i pesi P e P₄, rappresenta la domandata grossezza AB della pila.

L'equazione (4) si presta anche a trovare la grossezza della pila in una sezione qualunque A'_4B_4' , quando si conosca la distanza a'b di questa sezione dal piano d'imposta CE. Perciò basta porre in essa per P l'espressione del peso del masso murale rappresentato in $A'_4B'_4$ EFUTDCA'₄.

Per ben comprendere in qual modo si deve applicare la formola (1), si consideri il caso di una pila le cui pareti non sono verticali, e, prendendo il metro per unità di lunghezza ed il chilogramma per unità di forza, si dicano:

a l'altezza ab delle linee d'imposta dell'intrados delle arcate sul piano di fondazione;

t le due lunghezze eguali CD ed EF dei giunti d'imposta;

 α i due angoli DCE ed FEC, che i detti giunti fanno coll'orizzonte;

e le altezze eguali DT ed FU dei timpani in corrispondenza delle generatrici d'imposta delle superficie d'estrados delle arcate;

A l'altezza af del suolo stradale sul piano delle fondazioni;

 b_4 l'altezza \overline{ae} della retta LK, determinata col portare $\overline{OM} = h + h_4$ (num. 151) sul piano di fondazione;

Il il peso del metro cubo di muratura;

Il' il peso del metro cubo della materia costituente il riempimento posto sopra la cappa;

 $\frac{1}{n}$ la scarpa delle due rette AC e BE.

Il peso P del masso murale rappresentato nella figura ABEFUT DC s'immagini decomposto nelle tre parti ABEC, CEFD e DFUT, ed ammettasi che l'ultima parte termini al piano orizzontale determinato dalla retta TU. Essendo z la domandata grossezza AB, si ha

$$\overline{\text{CE}} = z - 2 \frac{a}{p},$$

$$\overline{\text{DF}} = z - 2 \left(\frac{a}{p} + l \cos \alpha \right),$$

$$\overline{bc} = t \operatorname{sen} \alpha;$$

e quindi il valore P vien dato da

$$P = n \begin{cases} (a + l \sin \alpha + e) z - l (l \sin \alpha + 2e) \cos \alpha \\ - \frac{a}{p} \left[a + 2 (l \sin \alpha + e) \right] \end{cases}.$$

In quanto al valore di P,, essendo

$$\overline{TM} = b_1 - a - l \operatorname{sen} \alpha - e_1$$

si ha

$$P_{4} = \Pi' \left\{ (b_{4} - a - l \operatorname{sen} \alpha - e) \left[z - 2 \left(\frac{a}{p} + l \cos \alpha \right) \right] \right\}.$$

Se ora si pongono i trovati valori di P e di P, nell'equazione (4), e se si fa

$$\left\{ \begin{array}{c} \Pi'b_4 + (\Pi - \Pi')(a + l \sin \alpha + e) = M, \\ \\ \left(2\Pi' - \Pi\right) \left(\frac{1}{2}l^2 \sin 2\alpha + \frac{a^2}{p}\right) \\ \\ -2(\Pi - \Pi') \left[e l \cos \alpha + \frac{a}{p}(l \sin \alpha + e) \right] = N, \\ \\ -2\Pi' \left[\frac{a}{p}b_4 + l(b_4 - a)\cos \alpha\right] \end{array} \right\} = N,$$

si ha l'equazione

$$2V + N = (n''R'' - M)z$$
,

dalla quale si può ricavare la grossezza z della pila.

Alcuni costruttori, dal dedurre la grossezza delle pile dei ponti, suppongono che il riempimento abbia lo stesso peso specifico della muratura; allora $\Pi' = \Pi$, ed i valori dei coefficienti M ed N notevolmente si semplificano.

Invece di trovare direttamente la grossezza delle pile, procedendo

come si è indicato, parecchi ingegneri preferiscono di assegnare alle medesime grossezze in armonia con quelle che vennero adottate in ponti, che hanno fatto buona prova e che si trovano in condizioni analoghe a quello di cui vuolsi dare il progetto. Adottando questo metodo, si ha che, non solo V ed R", ma che anche P, P, e z sono quantità note; e l'equazione (1) serve allora alla deduzione del coefficiente di stabilità n". Se questo coefficiente è eguale o di poco inferiore ad 1/10, si ritiene che la pila trovasi in buone condizioni di stabilità, e che ben le conviene l'assegnatale grossezza; se di molto è inferiore ad 1/10, si ha una stabilità eccessiva, e conviene diminuire la grossezza assunta; se finalmente è maggiore di 1/10, non si ha il voluto grado di stabilità, ed è necessario aumentare la detta grossezza. Quando si diminuisce o si aumenta la grossezza di pila primitivamente assunta, è necessario dedurre nuovamente il coefficiente di stabilità n" dall'equazione (1), e così continuare finchè questo coefficiente trovasi eguale o di poco minore di 1/10.

Non sempre le pile dei ponti sono caricate da due arcate perfettamente eguali, ed avviene sovente che, oltre di essere diseguali le loro corde, anche le imposte trovansi a differenti altezze. In questo caso, s'immaginino condotti i due piani verticali paralleli determinati dalle generatrici d'imposta della superficie d'estrados delle arcate A ed A' (fig. 199), e rappresentati nelle rette DM ed FN. Suppongansi tolte le parti di ponte che non sono comprese fra questi piani, ed in loro vece si sostituiscano le componenti orizzontali Q e Q' e le componenti verticali V e V' delle azioni che le due arcate A ed A', considerate per una lunghezza eguale all'unità nel senso delle loro generatrici, esercitano sulle imposte EF e CD. La pila si può allora considerare siccome posta sotto le azioni delle due forze Q e V, applicate nel punto dato N", delle due forze Q' e V' applicate nel punto dato N', del peso P del masso murale avente per base la figura ABEFUTDC e di altezza eguale all'unità, e finalmente dal peso di un prisma di densità eguale a quella del riempimento che trovasi sulla cappa del ponte, avente per base la figura TUNM, e di altezza anche eguale all'unità. Stabiliendosi la grossezza AB da darsi alla pila, col dedurla da altre poste in analoghe condizioni ed appartenenti a ponti che hanno fatto buona prova, si può dopo passare alla verificazione della sua stabilità col metodo che venne seguito nel numero 453 parlando della stabilità di una spalla di ponte; dedurre principalmente il centro di pressione, ossia il punto d'applicazione della pressione sulla base AB, mediante l'equazione dei momenti delle forze sollecitanti il sistema attorno allo spigolo rappresentato in A, oppure attorno allo spigolo rappresentato in B; trovare la massima pressione riferita all'unità di superficie, la quale si verifica su uno dei due spigoli rappresentati in A ed in B; e finalmente dividere questa massima pressione pel coefficiente di rottura relativo alla muratura di cui è formata la pila, onde ottenere il coefficiente di stabilità, il quale per la sicurezza dell'opera deve essere eguale o minore di 1/10. Quando questo coefficiente di stabilità risulta maggiore di 1/10, bisogna aumentare la grossezza della pila e procedere quindi ad una nuova verificazione.

157. Pile-spalle. - Le spinte orizzontali delle arcate sostenute da una stessa pila si elidono completamente, allorquando le due arcate sono identiche e poste in identiche condizioni; si elidono in parte, quando le arcate non sono identiche, nè poste nelle stesse condizioni. Questa circostanza fa sì che, determinando col calcolo la grossezza delle pile di un ponte, essa risulta minore di quella delle spalle; e che, assegnando alle pile dei ponti la stessa grossezza delle spalle, si ottiene in quelle un eccesso di stabilità, con grave danno nell'economia della costruzione. Quando però è quistione di stabilire un ponte su un fiume o su un torrente soggetto a frequenti piene, avente il suo fondo mobile ed il regime variabile, devesi osservare: che, cadendo una sola pila e le due arcate adiacenti sotto l'azione di una straordinaria piena e dei suoi disordinati effetti, di necessità devono rovinare tutte le altre, se non sono capaci di resistere alle spinte orizzontali delle arcate; e che per conseguenza in questo caso importa assegnare a ciascuna pila una tale grossezza, che possa fare l'ufficio di spalla. Queste pile capaci di far l'ufficio di spalle, per avere grossezza determinata come si è indicato nel numero 154, prendono il nome di pile-spalle.

I ponti stati costrutti prima del declinare del decorso secolo, salvo poche eccezioni, hanno tutti i loro piedritti intermedii nelle condizioni di pile-spalle; e quindi, oltre di presentare un aspetto eccessivamente pesante, principalmente quando le arcate sono sceme e di piccola portata, ostruiscono considerevolmente il letto del corso d'acqua in cui sono stabiliti. I moderni costruttori, più arditi degli antichi, hanno quasi totalmente abbandonato il sistema di fare tutte le pile in modo che siano capaci di disimpegnare l'ufficio di spalle; nei ponti numeranti poche arcate, assegnano alle pile le grossezze risultanti dai calcoli di cui si fece cenno nel numero precedente; e nei ponti con molte arcate usano interporre delle pile-spalle alle

pile. Si hanno esempli di ponti in cui le pile-spalle si trovano ad ogni due, ad ogni tre, ad ogni quattro e persino ad ogni nove arcate. Con questa disposizione, un ponte molto lungo resta diviso in più parti quasi indipendenti l'una dall'altra; si conciliano i vantaggi, e si tolgono gl'inconvenienti proprii ai due sistemi delle pile tutte sottili e delle pile tutte capaci di disimpegnare l'ufficio di spalle.

Nella costruzione di un ponte avente tutte le sue pile sottili, è necessario avere l'avvertenza di non disarmare un'arcata qualunque, se essa non trovasi fra due arcate già costrutte, o fra un'arcata già costrutta e disarmata ed un'arcata ancora armata a cui fanno seguito alcune altre ultimate od in corso d'esecuzione. Quest'avvertenza è necessaria, affinchè venga distrutta l'azione della spinta dell'arcata che si disarma sulle pile che la sostengono, le quali altrimente rovinerebbero coll'arcata per la quale venne fatta l'operazione del disarmamento. Nella costruzione dei ponti con pile-spalle, usasi generalmente costrurre contemporaneamente tutte le arcate poste fra una spalla e la prima pila-spalla; le armature, state impiegate per questa prima parte del ponte, si fanno servire per costrurre la seconda parte, posta fra la prima pila-spalla e la seconda; dopo si adottano per edificare la terza parte, fra la seconda e la terza pila-spalla; e così si procede fino alla costruzione di tutte le arcate.

158. Superficie e linee dei giunti nei ponti retti. - Nei ponti retti, di struttura murale, con materiali aventi una certa regolarità di forme, sono piane tutte le superficie dei giunti; alcune di queste sono orizzontali, alcune verticali ed alcune inclinate. I giunti orizzontali mettono in evidenza il numero e le dimensioni dei filari dei conci nei muri frontali e nei piedritti; i giunti verticali manifestano le separazioni fra i conci di uno stesso filare; ed i giunti inclinati si trovano principalmente nelle arcate e talvolta anche in alcune parti dei muri d'ala. Allorquando le arcate devono essere costrutte con conci non abbraccianti l'intiera loro grossezza, s'incontrano anche dei giunti le cui superficie sono cilindriche e parallele alle superficie d'intrados delle arcate. I diversi giunti devono avere tali disposizioni che la costruzione risulti ben collegata in tutte le sue parti, e quindi non deve essere posto in obblio il generale principio che i giunti verticali di due filari successivi non devono mai cadere in prolungamento gli uni degli altri. I giunti inclinati delle arcate devono risultare normali alla superficie intradossale.

Quei giunti delle arcate, i quali sono generalmente continui da una fronte all'altra, si dicono giunti longitudinali; e chiamansi invece giunti trasversali quelli che sono paralleli alle fronti e che non sono continui per le intiere sezioni rette nelle quali si trovano. I ginnti longitudinali intersecano le superficie d'intrados delle arcate secondo generatrici, ed i giunti trasversali secondo archi di sezioni rette; cosicchè le linee dei giunti longitudinali e quelle dei giunti trasversali sull'intrados presentano, nello sviluppo della superficie intradossale, l'aspetto della fronte di un muro eseguito per filari regolari mediante materiali di forma parallelepipeda. Il numero dei filari e la lunghezza dei cunei componenti le arcate dipendono dalla natura e dalle dimensioni delle pietre di cui si può disporre; in quanto al numero però, esso deve essere impari. Nelle arcate in pietra da taglio, le grossezze dei filari, misurate sull'intrados, sono generalmente eguali; nulla osta però che queste grossezze si facciano anche disuguali, purchè siavi simmetria sulle due parti in cui ogni arcata resta divisa dal piano verticale passante pel punto più alto della sua superficie d'intrados.

Le arcate talvolta presentano le loro fronti comprese fra due curve parallele, una delle quali è quella d'intrados; tal'altra queste fronti sono contenute fra due curve non parallele; e finalmente non di rado appariscono siccome terminate superiormente da rette alternativamente orizzontali e verticali. La prima disposizione dà esternamente all'arcata la forma di una vôlta a botte di spessezza uniforme; la seconda mette in evidenza quanto generalmente si verifica nella sezione retta dell'arcata, ossia l'aumento di grossezza dalla chiave all'imposta; e finalmente la terza realizza l'idea della forma più conveniente che conviene dare ai cunei in pietra da taglio. per ischivare tutti gli angoli acuti e per ottenere un conveniente collegamento dei cunei delle arcate con quelli dei timpani sulle fronti. Affinchè l'ultima disposizione (fig. 200) risulti di buon effetto, è d'uopo che i vertici a, b, c, d, e ed f degli angoli rientranti della linea spezzata ad angoli retti, che superiormente limita la testa dell'arcata, si trovino su una curva, la quale se, venendo dalla chiave all'imposta, non si allontana dall'intrados, sia almeno a questo parallela.

159. Ponti con strombature. — Quando è piccola la differenza di livello fra il pelo delle massime piene ed il suolo stradale, e quando è una necessità di fare un ponte con arcate di apertura piuttosto grande, inevitabilmente si va incontro ad uno di questi inconvenienti: o di dover dare alle arcate una monta eccessivamente piccola; ovvero di dover collocare le imposte delle arcate medesime alquanto sotto il livello delle massime piene. Se però osser-

vasi, che il primo inconveniente è generalmente assai più grave del secondo a motivo delle serie difficoltà, che si presentano nella costruzione di grandi arcate con monta molto depressa, si prende quasi sempre il partito di tenere le imposte al di sotto delle più grosse piene, e di diminuire l'inconveniente, che porta seco questa disposizione, mediante un opportuno ripiego atto a facilitare il deflusso delle acque sotto il ponte. Questo ripiego, consiste nel fare in modo che l'arcata si allarghi alla sua imboccatura, e che si presenti alla corrente una luce più aperta di quella, che formasi nella parte interiore, ove la sezione retta dell'arcata corrisponde al sesto stabilito. Le due estremità dell'arcata, così dilatate nell'intento che l'acqua entri sotto di essa, passando quasi in un imbuto, costituiscono due strombature, le quali, oltre di facilitare il deflusso dell'acqua, contribuiscono anche a dare eleganza e leggierezza al ponte.

Nel dedurre le dimensioni delle principali parti di un ponte con strombature, finora si usa di applicare le norme che vennero date dal numero 148 al numero 156, col considerare una parte di arcata lunga l'unità nel senso delle generatrici della sua superficie d'intrados dove non esistono le strombature.

Le strombature si potrebbero praticare solamente da quella parte delle arcate che trovasi contro la corrente; generalmente però si fanno anche dalla parte opposta, in modo da ottenere la simmetria perfetta rispetto al piano verticale passante per l'asse longitudinale del ponte.

delle strombature. — Nelle arcate con strombature, per sezione retta della superficie d'intrados, suolsi generalmente assumere una mezza elisse, oppure una mezza ovale; e, per sezione retta della superficie d'estrados, si prende una curva a questa parallela, ma più frequentemente una curva che va allontanandosi dalla chiave all'imposta, affinchè il vôlto risulti di grossezza crescente dal suo mezzo verso i piedritti. Le due superficie d'intrados e d'estrados del masso murale costituente il vôlto, dove esiste una strombatura, si possono definire come risulta da quello che segue.

Sia AB (fig. 201) la proiezione orizzontale dell'asse e contemporaneamente delle generatrici più alte dell'intrados e dell'estrados di un'arcata con strombature: AX quella retta che rappresenta la traccia orizzontale del piano di testa; C'A' la proiezione sul piano verticale di proiezione, assunto in modo da essere parallelo alle fronti del ponte, di una sezione retta dell'arcata dove non esistono

le strombature; e (CD, C') una delle due linee d'imposta dell'arcata. Se nel piano d'imposta, preso per piano orizzontale di proiezione, immaginasi tirata la retta AE che, dall'intersezione della AB colla AX, va ad incontrare la CD, e se immaginasi il piano verticale determinato da questa retta, esso taglia la superficie d'intrados dell'arcata secondo una curva piana, la quale orizzontalmente proiettasi in AE e verticalmente in A'C', ed è questa curva che si può assumere per linea di separazione della superficie d'intrados della strombatura dalla superficie cilindrica costituente l'intrados dell'arcata. Il piano di testa tagli il piedritto secondo la retta (CF, C'F'); ed (AF, A'F') sia un arco di circolo, assunto in modo da rappresentare l'intersezione della superficie d'intrados della strombatura collo stesso piano di testa, passante pel punto (A, A') estremo della generatrice più alta della superficie d'intrados dell'arcata, ed avente la tangente orizzontale in questo punto. La superficie d'intrados della strombatura proiettasi verticalmente nel triangolo mistilineo C'A'F'; questa superficie taglia il piedritto secondo una curva che. partendo dal punto (E, C'), elevasi fino al punto (F, F'); e proiettasi orizzontalmente nel triangolo mistilineo AEF.

Premesso questo, osservisi che la froute del vôlto sul piano di testa deve apparire compresa fra la definita curva (AF, A'F') ed una seconda curva (AH, G'H'), la quale generalmente suol essere un arco circolare colla tangente orizzontale nel punto (A, G'), ma di raggio maggiore di quello dell'arco (AF, A'F'), affinchè la fronte del masso murale in cui trovasi la strombatura vada crescendo dalla chiave all'imposta. Se ora sull'arco (AF, A'F') si prende un punto qualunque (a, a'), se per a' si tira la retta a' b' normale alla curva A' F' e se pel punto b' immaginasi condotto il piano passante per una generatrice della parte cilindrica della superficie d'intrados dell'arcata e normale alla superficie stessa, si ha: che il definito piano è perpendicolare al piano verticale di projezione; che la sua traccia verticale è determinata in direzione dalla normale b'c' alla curva A'C' condotta dal punto b'; che, unendo il punto c' col punto a', si può assumere la retta a' c' siccome la projezione verticale di una retta giacente nella superficie d'intrados della strombatura; e che ac, essendo c la projezione orizzontale di quel punto, la di cui proiezione verticale è c', rappresenta la proiezione orizzontale della stessa retta. Immaginando un'infinità di punti tutti posti, come il punto (a, a'), sull'arco (AF, A'F'), e fatta per essi la stessa costruzione stata eseguita sull'ultimo detto punto, si ottiene un'infinità di rette analoghe alla (a c, a'c'), le quali tutte costituiscono nel loro assieme la superficie d'intrados della strombatura, e che per conseguenza si possono assumere siccome altrettante generatrici di questa superficie.

L'indicata costruzione, una volta fatta per i punti posti sull'arco (AF, A'F'), determina, non la superficie dell'intiera strombatura, ma sibbene quella della sola parte, le cui proiezioni orizzontale e verticale sono rispettivamente AFd ed A'F'd'; ed importa ancora di ben definire l'altra parte, avente la sua projezione orizzontale nel triangolo mistilineo FEd e la sua projezione verticale nel triangolo mistilineo F'C'd'. Perciò s'immaginino prolungati i due archi A'F' e G'H' in F'U' ed H'V', e la costruzione, che si è detto doversi fare col considerare più punti posti sull'arco A'F', si ripeta prendendo più punti sull'arco F'U' prolungamento di A'F'. Il punto (E, C') è un vertice della superficie d'intrados della strombatura, e la generatrice di questa superficie, la quale passa pel detto vertice, assai facilmente si determina conducendo per C' la normale C'e' alla curva A'C' fino ad incontrare in e' il prolungamento H'V' dell'arco G'H': tirando per e' la retta e'f' normale all'arco F'U', prolungamento dell'arco A'F'; ed unendo con una retta i due punti f' e C'. Questa retta C'f' è la proiezione verticale della cercata generatrice passante pel vertice (E, C'), mentre ottiensi la sua proiezione orizzontale proiettando f' in f sulla retta AX e tirando la retta Ef.

Venendo ora alla superficie d'estrados della strombatura, ecco come si può essa immaginare generata. Essendo (AI, G'I') la sezione prodotta nell'estrados della vôlta a botte dal piano verticale, la cui traccia orizzontale è determinata dalla retta AEI, si può assumere questa curva siccome quella che separa la superficie d'estrados della strombatura dalla superficie cilindrica costituente l'estrados dell'arcata, dove la strombatura non esiste. Considerando il punto a' e accennando alla costruzione per determinare la retta (ac, a'c') posta sulla superficie d'intrados della strombatura, si è detto doversi condurre il piano, perpendicolare al piano verticale di proiezione, di traccia verticale c'b', passante per una generatrice della parte cilindrica della superficie d'intrados dell'arcata e normale a questa superficie. Ora, questo piano taglia evidentemente l'arco (AHX, G'H'V') nel punto (b, b') e la curva (AEI, G'I') nel punto (g, g'), per cui si può considerare la retta (bg, b'g') siccome collocata sulla superficie d'estrados della strombatura. Segue da ciò, che l'indicata superficie d'estrados può essere definita il luogo

geometrico di tutte le rette determinate dalle coppie di punti, che un'infinità di piani, passanti per le generatrici della parte cilindrica della superficie d'estrados dell'arcata ed a questa normali, determinano sulle due curve estradossali (AHX, G'H'V') e (AEI, G'I'). Se poi si suppone prolungata la superficie d'estrados della strombatura fino al piano orizzontale d'imposta determinato dalla retta C'e', essa proiettasi orizzontalmente nel triangolo rettilineo AIe e verticalmente nel triangolo mistilineo G'I'e'.

La superficie d'intrados della strombatura, generata come si è detto, incontra la superficie laterale del piedritto, ossia il piano perpendicolare al piano verticale di projezione, avente la sua traccia orizzontale in CD (fig. 202) e la sua traccia verticale in C'F', secondo una linea curva verticalmente proiettata nella retta C'F', le di cui estremità sono date dai punti (E, C') ed (F, F'). Di gnesta curva importa determinare la projezione orizzontale, ed averla di più nella vera sua forma e grandezza. Per raggiungere lo scopo, è necessario operare come segue: si segni una generatrice qualunque (li, l'i') della superficie d'intrados della strombatura, in modo però che la sua projezione verticale l'i' tagli la retta C'F'; si determini il punto d'intersezione m' di l'i' con C'F'; e si trovi la proiezione orizzontale m di quel punto della curva che ha per proiezione verticale m', conducendo da m' una verticale fino ad incontrare in m la retta li. Il punto m appartiene alla proiezione orizzontale dell'intersezione della superficie d'intrados della strombatura colla superficie laterale del piedritto, ed il metodo tenuto per troyare questo punto serve per determinarne quanti altri possono essere necessarii al buon tracciamento della curva E mF. Ottenuta la projezione orizzontale della detta intersezione, riesce facile averla nella vera sua forma e grandezza, bastando perciò di far venire il piano di traccia orizzontale C'C e di traccia verticale C'F' sul piano orizzontale di projezione, girandolo intorno alla sua traccia orizzontale. Dopo questo movimento l'estremo inferiore della curva rimane in E; l'estremo superiore si porta in F₄, essendo $\overline{CF}_{\bullet} = \overline{C'\Phi} = \overline{C'F'}$; ed il punto (m, m') si porta in m, sulla mx perpendicolare alla retta CD, con una distanza nm, = C' u = C' m' da questa. Trovando quanti altri punti si credono necessarii collo stesso metodo tenuto per ottenere il punto m,, si può tracciare la curva E m, F,, la quale nella vera sua forma e grandezza dà l'intersezione della superficie d'intrados della strombatura colla faccia laterale del piedritto.

Il sistema di generazione delle superficie d'intrados e d'estrados

di una strombatura, quale venne dato, riesce di assai facile applicazione nella pratica, giacchè, costrutte e poste in opera le tre centine foggiate secondo gli archi rappresentati su (AF, A'F'), (A E, A'C') ed (E F, E'F') (fig. 201), basta segnare su esse alcune coppie di punti i quali, come (a, a') e (c, c'), rappresentino gli estremi di generatrici della superficie d'intrados della strombatura, e disporre regoli rettilinei nella direzione delle rette determinate da questi punti, per avere una guida sicura nell'esecuzione dell'or indicata superficie. Qualora alcuni dei detti regoli risultino troppo lunghi, conviene sostenerli in punti intermedii della loro lunghezza, e questo assai facilmente si può ottenere, mediante costole disposte parallelamente al piano di testa di traccia orizzontale AX. Le sagome da assegnarsi a queste costole si possono ottenere colla massima facilità, trovando l'intersezione del piano verticale in cui ciascuna di esse dev'essere collocata colla superficie d'intrados della strombatura. Così, se si suppone che questo piano abbia per traccia orizzontale la retta KL parallela ad AX, l'intersezione voluta sarà una curva le cui estremità sono date dai punti K' ed L', determinati col condurre da K e da L le verticali KK' ed LL' fino ad incontrare la curva A'C' e la retta C'F'. I punti intermedii di questa curva si ottengono segnando le proiezioni orizzontali e verticali di parecchie generatrici della superficie d'intrados della strombatura, e trovando le proiezioni verticali dei punti in cui la retta KL incontra le dette proiezioni orizzontali delle generatrici; di maniera che, essendo a c ed a'c' le due proiezioni orizzontale e verticale di una stessa generatrice, ottiensi il punto della domandata intersezione su essa collocato, conducendo per h una verticale fine al suo incentro con a'c' in h'.

Le sezioni rette A'C' e G'I' delle due superficie d'intrados e d'estrados delle arcate dove queste superficie sono cilindriche, devono essere tali da soddisfare alle condizioni di stabilità delle arcate rette. In quanto poi alle due curve di testa A'F' e G'H', il loro tracciamento deve essere fatto in modo che le lunghezze dei giunti fra esse compresi non risultino inferiori a quelle dei giunti di eguale inclinazione, contenuti fra le due curve A'C' e G'I'.

161. Altro metodo per la generazione delle superficie d'intrados e d'estrados delle strombature. — Il sistema di generazione delle superficie d'intrados e d'estrados delle strombature, quale venne dato nel precedente numero, è tale, che se la costruzione deve essere eseguita in pietra da taglio e se i filari dei conci misurano larghezze eguali sull'arco A'F' (fig. 203), gli stessi filari non

conservano più larghezze eguali sulla sezione retta della superficie cilindrica, costituente la superficie d'intrados dell'arcata, dove non esiste la strombatura. Qualora credasi che anche quest'ultima eguaglianza debba essere conservata, ecco qual è il sistema che si può adottare nella generazione delle due superficie d'intrados e d'estrados della strombatura.

Conducasi dal punto F' la normale F'd' all'arco A'C'; si determinino sull'arco A'F' diversi punti assai vicini ed equidistanti; e si fissino sull'arco A' d' altrettanti punti pure equidistanti, i quali rappresentano le projezioni verticali di generatrici egualmente distanti, sulla sezione retta della parte cilindrica della superficie d'intrados dell'arcata. I punti di divisione dell'arco A'F' si proiettino orizzontalmente sulla retta AF, ed i punti di divisione dell'arco A'd' si proiettino sulla retta A d. Supponendo che (a, a') e (c, c') siano due punti corrispondenti, ossia due punti che avrebbero lo stesso numero, qualora le divisioni degli archi (AF, A'F') e (Ad, A'd') si numerizzassero a partire rispettivamente dai punti (F, F') e (d, d'), si può ritenere, che la superficie d'intrados della strombatura sia tale da contenere la retta (ac, a'c') e tutte le altre che uniscono due punti aventi lo stesso numero e posti, uno sulla curva (AF, A'F') e l'altro sulla curva (Ad, A'd'). Così procedendo, si possono determinare quante rette si vogliono, vicinissime fra di loro cogli estremi nei punti di divisione corrispondenti, ed il luogo geometrico di tutte queste rette costituisce quella parte della superficie d'intrados della strombatura che orizzontalmente trovasi proiettata nel triangolo rettilineo AdF e verticalmente nel triangolo mistilineo A'd'F'.

Immaginando diversi piani perpendicolari al piano verticale di proiezione, ed aventi le loro tracce verticali normali alla curva d'C', ciascuno di essi taglia in un punto la curva (dE, d'C') ed in un punto la curva (FX, F'U'); e restano in tal guisa determinate diverse coppie di punti e quindi altrettante rette, le quali si possono ritenere siccome poste su quella parte di superficie d'intrados della strombatura, la quale verticalmente proiettasi nel triangolo C'F'd'. Così, la retta o'p', normale nel punto o' alla curva d'C', rappresenta la traccia verticale di uno di questi piani, (o, o') e (p, p') sono i due punti in cui esso taglia rispettivamente le curve (dE, d'C') e (FX, F'U'); ed (op, o'p') è una retta collocata nella superficie d'intrados della strombatura.

Il punto m', in cui la proiezione verticale dell'indicata retta taglia la C'F', è la proiezione verticale di un punto dell'intersezione della superficie d'intrados della strombatura colla superficie laterale del

piedritto; ed il punto m, nel quale la verticale condotta per m' incontra la retta o p, è la proiezione orizzontale dello stesso punto. Come si è segnata la generatrice (o p, o' p') della parte di superficie d'intrados della strombatura, la quale verticalmente proiettasi nel triangolo C' F' d', è possibile segnare quante altre generatrici si vogliono, e così completamente definire la superficie d'intrados della strombatura.

Per quanto spetta alla superficie d'estrados, si può ammettere che essa risulti come segue. Immaginando condotti pei diversi punti già considerati sulla curva (AE, A'C') diversi piani perpendicolari al piano verticale di proiezione, passanti per conseguenza per le generatrici della superficie cilindrica costituente l'intrados dell'arcata, dove non esistono le strombature, e normali all'ora indicata superficie cilindrica, tutti questi piani intersecano la curva (A E, G'I'), che costituisce lo spigolo di separazione della superficie d'estrados della strombatura dalla parte cilindrica della superficie d'estrados dell'arcata. Unendo questi punti d'intersezione con quelli corrispondenti sulla curva (AX, G'V'), si ottengono altrettante rette, le quali tutte si possono ritenere siccome collocate sulla superficie d'estrados della strombatura. Così, se considerasi il punto (c, c') sulla curva (AE, A'C'), e se osservasi che a questo punto corrispondono, sulla strombatura la generatrice d'intrados (ca, c'a'), sul piano di testa la linea di giunto (ab, ab'), ed il punto (b, b') per quell'estremo della detta linea di giunto il quale trovasi nella superficie d'estrados della strombatura, si ha: che la retta c' q', condotta pel punto c' con direzione normale alla curva A'C', rappresenta la traccia verticale del piano passante per la generatrice, verticalmente proiettata nel punto c', della superficie cilindrica costituente l'intrados dove la strombatura non esiste, e normale a questa stessa superficie; che il punto (q, q') è quello in cui il definito piano interseca la curva (AE, G'I'); e che la retta (b q, b' q') è quella retta posta sulla superficie d'estrados della strombatura la quale corrisponde alla generatrice (ca, c'a') della superficie d'intrados ed al giunto di testa (ab, a'b').

Il sistema di generazione delle superficie d'intrados e d'estrados della strombatura, quale si è dato nel presente numero, riesce assai comodo nelle pratiche applicazioni. Segnati sulla centina sagomata secondo l'arco (AF, A'F'), da porsi nel piano verticale di traccia orizzontale AX, diversi punti equidistanti, e segnati sul tratto (Ad, A'd') della centina, sagomata secondo l'arco (AE, A'C') da porsi nel piano verticale di traccia orizzontale AE, un egual numero di

punti, corrispondenti a generatrici equidistanti sulla sezione retta della superficie cilindrica dell'intrados dell'arcata, s'intendano questi punti di divisione numerizzati a partire rispettivamente dai punti (F. F') e (d. d'); secondo rette determinate da punti di divisione. aventi lo stesso numero, si pongano alcuni regoli rettilinei, e questi daranno una guida sicura per l'esecuzione della parte di strombatura, la cui superficie d'intrados verticalmente proiettasi nel triangolo mistilineo A'F'd'. - Per convenientemente disporre i regoli necessarii alla costruzione della parte di strombatura verticalmente proiettata nel triangolo mistilineo C'F'd', bisogna porre in opera una sagoma foggiata secondo l'intersezione della superficie d'intrados della strombatura colla superficie laterale del piedritto; segnare su questa i punti appartenenti a diverse generatrici, per le quali vennero già individuate le estremità inferiori sul tratto (Ed. C'd') della centina disposta nel piano verticale di traccia orizzontale AE; e finalmente disporre ancora alcuni regoli secondo rette determinate da punti, che due a due appartengano ad una stessa generatrice. - Presentandosi il caso, che alcuni dei regoli da porsi in opera per ottenere la superficie d'intrados della strombatura, risultino troppo lunghi, bisogna sostenerli in punti intermedii mediante costole, il cui contorno superiore assai facilmente si può ottenere, procedendo come già si è detto nel numero precedente, trovando cioè l'intersezione di piani verticali, aventi la loro traccia orizzontale KL parallela ad AX, colla detta superficie d'intrados.

162. Superficie dei giunti in un'arcata con strombature. — Per quella parte dell'arcata nella quale non si trovano le strombature, le superficie dei giunti sono piane; normali alla superficie d'intrados, passanti per generatrici di questa e continue, le superficie dei giunti longitudinali; dirette secondo sezioni rette ed alternate in guisa che i giunti trasversali di un filare di cunei non siano in continuazione dei giunti trasversali dei filari attigui, le superficie dei giunti trasversali. Dove esistono le strombature, le superficie dei giunti longitudinali devono essere superficie rigate.

Essendo $(a\,c,\,a'\,c')$ $(fig.\,204)$ una generatrice della superficie d'intrados della strombatura, $(b\,g,\,b'\,g')$ la corrispondente generatrice della superficie d'estrados, ed $(a\,b,\,a'\,b')$ la linea di giunto sul piano di testa, la quale unisce gli estremi $(a,\,a')$ e $b,\,b')$ delle indicate generatrici, si può ritenere la superficie di giunto $(c\,a\,b\,g,\,c'\,a'\,b'\,g')$ siccome generata dal movimento di una retta, la quale, conservandosi costantemente parallela al piano di testa dell'arcata, ossia

al piano verticale di traccia orizzontale AX, si appoggia sulle due rette (ac, a'c') e (bg, b'g') non situate nello stesso piano. Quando la generatrice, dalla posizione rappresentata orizzontalmente in ab, è venuta nella posizione che ammette la retta es per proiezione orizzontale, le due direttrici diventano la retta (bg, b'g') e la generatrice (cq, c') della superficie cilindrica costituente l'intrados dell'arcata dove la strombatura non esiste. Finalmente, quando la generatrice è arrivata a prendere la posizione marcata in projezione orizzontale dalla retta qt, le due direttrici della superficie di giunto si riducono ad essere le due generatrici (cq, c') e (qr, q') delle parti cilindriche dell'intrados e dell'estrados dell'arcata. Siccome poi le ultime accennate direttrici sono rette parallele, contenute in un piano normale alla parte cilindrica della superficie d'intrados dell'arcata, risulta che la superficie del giunto longitudinale considerato, sghemba per la parte orizzontalmente proiettata nella figura pentagonale abgte, diventa piana e normale alla superficie d'intrados dell'arcata dove non esistono le strombature.

Generalmente, per superficie dei giunti longitudinali, intersecanti la superficie d'intrados della strombatura nel triangolo (EFd, C'F'd'), si assumono piani perpendicolari al piano verticale di proiezione, ossia al piano di testa dell'arcata, aventi le loro tracce verticali normali alla curva C'd'. Segue da ciò, che queste superficie dei giunti longitudinali passano per generatrici della parte cilindrica della superficie d'intrados dell'arcata, e che hanno direzione normale a questa superficie.

165. Ponti a torri. - Due luminosi, e forse i primi esempli di ponti a torri, si trovano sulla strada ferrata fra Alessandria e Genova, in due diverse località, in cui essa attraversa il torrente Scrivia. Gli assi longitudinali di questi ponti hanno una considerevole obliquità per rapporto al corso del detto torrente, il suolo stradale trovasi ad una grande altezza al di sopra del livello delle acque magre, e ciascuno di essi consta di una sola arcata della straordinaria corda di metri 40. Con questo ripiego dei ponti a torri, si ottenne di conservare al torrente il suo primitivo alveo; di eliminare le serie difficoltà che avrebbe presentato la costruzione di un'arcata sbieca dell'accennata straordinaria corda; e di contemporaneamente evitare lo stabilimento di alte pile nel mezzo del torrente Scrivia, le cui acque, rinserrate fra due alte solidissime sponde, corrono con grandissima velocità, elevandosi nelle grandi piene perfino all'altezza di 12 metri sul livello delle magre. Per impedire poi che le acque incontrassero nelle spalle di questi ponti

angoli salienti, promotori di dannosi vortici nelle piene, e soggetti a guasti, a motivo degli urti prodotti dai corpi che esse trascinano. si stimò conveniente di costrurre le dette spalle a guisa di torri. assegnando loro sezione orizzontale circolare. Risultando le spalle di diametro piuttosto considerevole, per ragioni di ben intesa economia, si fecero esse vuote nel loro interno, per guisa che, mediante riseghe, s'accresce la sezione orizzontale dell'interno vano dalle fondazioni alla sommità. L'arcata non termina alle spalle, ma sibbene si protende nel loro interno fino ad impostarsi orizzontalmente sulla roccia ed al medesimo livello in cui trovansi stabilite le fondazioni delle spalle stesse. Onde ben contrastare l'arcata per le parti che si estendono nei vani delle due spalle ed onde impedire che essa venga a deformarsi, vennero costrutti, per ogni vano, due robusti speroni, situati a poca distanza dai piani verticali determinanti le fronti dell'arcata, con direzioni parallele a questi piani, e posti fra l'estrados dell'arcata e la superficie interna della parte posteriore della spalla. Ciascuna delle due torri, costituenti le spalle, è seguita da opportuni muri di risvolto con riseghe orizzontali e verticali. - La figura 204, mediante l'elevazione e mediante la sezione orizzontale fatta appena sotto il livello delle imposte, dà l'idea delle principali parti costituenti un ponte a torri. In T sono rappresentate le due spalle a torre; in R si vedono gli annessi muri di risvolto; A è l'arcata che si addentra nelle spalle; ed S sono gli speroni che servono di rinforzo all'arcata. La superficie d'intrados dell'arcata non è cilindrica, ma sibbene è una superficie curva, la di cui generazione può essere definita come segue.

Siano ab e cd due rette equidistanti dall'asse longitudinale X Y del ponte; la distanza di queste rette corrisponda alla larghezza che deve avere l'arcata; e le due rette ac e bd siano le proiezioni orizzontali delle due linee d'imposta della superficie d'intrados dell'arcata medesima, qualora si supponga che questa superficie debba essere cilindrica ed avere per direttrice l'arco circolare a'v'b'. In quest'ipotesi, la detta superficie d'intrados si proietterebbe orizzontalmente nel rettangolo abdc, verticalmente nell'arco circolare a'v'b'; le sezioni delle spalle al livello delle imposte, dovendo essere contorniate esternamente dalle due circonferenze aecg, bfdh, passanti rispettivamente pei punti dati aec, bed, presenterebbero una certa sporgenza per rapporto alla superficie d'intrados dell'arcata; e si vedrebbero in elevazione due risalti a'e'e b'f', i quali potrebbero produrre cattivo effetto allo sguardo dell'osservatore. Per togliere questo cattivo effetto, si è immaginato di costrurre l'arcata

in modo che la sua superficie d'intrados ammetta per sezione orizzontale, al livello di ciascuna imposta, gli stessi archi circolari (aee, a'e') e (bfd, b'f'), coi quali sono terminate le superficie laterali delle spalle all'indicato livello, e, per sezione verticale alla chiave, una retta orizzontale verticalmente proiettata nel punto v'. Per quanto spetta all'intiera superficie d'intrados dell'arcata, si può intendere che essa sia generata da un arco circolare di corda variabile, con lunghezza compresa fra le due aperture ab ed ef, e di monta costantemente eguale ad u'v'. Così, si può ammettere che la sezione, prodotta nella superficie d'intrados dell'arcata da un piano qualunque ik parallelo alle fronti del ponte, sia un arco circolare i'v'k' di corda i'k'=ik e di monta u'v'.

L'indicato sistema di generazione della superficie d'intrados delle arcate dei ponti a torri, riesce eminentemente comodo nella pratica, giacchè tutti i cavalletti per la costruzione dei vôlti di questi ponti devono essere sagomati secondo archi circolari, la cui corda è determinata, quando si conosce la posizione nella quale devono essere posti in opera, e la cui monta si conserva per tutti la medesima. Così, volendosi porre un cavalletto in corrispondenza del piano verticale determinato dalla retta ik, esso avrà per corda la lunghezza della retta ik e per monta la lunghezza della retta uv', quando suppongasi che queste lunghezze siano relative alla superficie d'intrados del manto dell'armatura.

La superficie d'estrados delle arcate dei ponti a torri è come quella delle arcate dei ponti retti, e quindi è una superficie cilindrica, oppure una superficie a riseghe, a tratti alternativamente orizzontali e verticali. I giunti longitudinali si possono assumere perpendicolari ai piani di testa e concorrenti nel centro dell'arco (ef, e'v'f'); i giunti trasversali si prendono paralleli agli indicati piani di testa.

Non sempre le arcate dei ponti a torri penetrano nell'interno delle spalle, ma sibbene sono impostate contro le spalle stesse, come ordinariamente si pratica per le arcate cilindriche. Quando questo avviene, con ogni cura bisogna procurare che le imposte delle arcate nelle spalle siano ben ferme, e, per ottenere questo, conviene generalmente che le spalle siano piene almeno per la parte che corrisponde alle dette imposte.

Pare che il sistema dei ponti a torri sia stato sinora applicato solamente pel caso di ponti con una sola arcata, o, tutto al più, per formare un'arcata principale fra due pile-spalle nei ponti a più arcate. I ponti però con pile circolari non si devono ritenere siccome impossibili; essi hanno l'inconveniente di occupare uno spazio pinttosto considerevole nell'alveo del corso d'acqua in cui sono stabiliti; ma per contro rendono possibile di schivare le arcate sbieche e di superare grandi portate. La principale avvertenza che conviene avere nel progettare un ponte a torri con più arcate, sta nel rendere la minima possibile la sezione delle pile, non dando loro che il giusto grado di stabilità.

Per la determinazione delle dimensioni delle principali parti dei ponti a torri, valgono le norme che già vennero date dal numero 148 al numero 156, parlando delle principali dimensioni dei ponti con arcate cilindriche.

164. Ponti obliqui, ed inconveniente che si presenta, quando i giunti delle loro arcate si dispongono come quelli delle arcate dei ponti retti. - Quantunque l'ingegnere costruttore debba porre ogni cura nell'ottenere che l'attraversamento dei corsi d'acqua mediante ponti abbia luogo secondo direzioni normali alla loro corrente, pure nella costruzione delle strade, e principalmente delle strade ferrate, in cui è necessario di strettamente attenersi a limiti prestabiliti di pendenza nel senso altimetrico (num. 105), e di curvatura nel senso planimetrico (num. 107), ben sovente si presenta la circostanza di dover attraversare i corsi d'acqua con direzioni oblique al loro andamento, e di dover per conseguenza costrurre ponti coi loro assi non perpendicolari a quelli delle loro luci. Questi ponti, come già si disse nel numero 140, prendono il nome di ponti obliqui; quando sono di stuttura murale, le loro arcate insistono ad aree parallelogrammiche e non ad aree rettangolari, e, invece di vôlte a botte rette, si hanno vôlte a botte oblique.

Nelle arcate rette dei ponti retti, tanto i giunti longitudinali, quanto i giunti trasversali, sono piani; quelli hanno direzioni normali alle superficie d'intrados e sono disposti secondo generatrici; e questi sono paralleli ai piani di testa (num. 158); e le linee dei giunti longitudinali e trasversali sulle superficie d'intrados seguono così gli andamenti delle linee di minima e di massima curvatura.

Questa disposizione dei giunti, che si presența siccome la più naturale e la più semplice, non è ammissibile nella costruzione delle arcate oblique dei ponti obliqui, giacchè è causa di notevoli inconvenienti. Infatti, essendo ABCD (fig. 205) la proiezione orizzontale ed A'B'C'D' la proiezione verticale di un giunto longitudinale piano di arcata obliqua, diretto normalmente alla superficie d'intrados e passante per una generatrice di questa superficie, su questo giunto

avrà luogo una certa azione R, proveniente dal peso della parte di arcata sovrastante, dal peso di quanto essa sopporta, dalla spinta orizzontale; e quest'azione sarà decomponibile in due forze, una N. normale alla superficie del giunto e l'altra T, contenuta nel giunto stesso. La componente N, essendo perpendicolare alla retta orizzontale (EF, E'F') contenuta nel piano del giunto considerato e condotta pel suo punto d'applicazione (0, 0'), orizzontalmente proiettasi nella direzione ON, perpendicolare ad EF e quindi anche a DC: non opera nella direzione XOY della lunghezza del piedritto che viene ad incontrare; e per conseguenza tende a rovesciarlo, spingendolo all'infuori. Di più, se considerasi un'intiera arcata obliqua coprente un parallelegramma ABCD (fig. 206), e se immaginansi condotti i due piani verticali corrispondenti alle sezioni rette AN e CM, passanti pei vertici degli angoli ottusi dell'indicato parallelegramma e quindi per quei due spigoli che sono vertici di angoli diedri acuti dei piedritti, le componenti normali delle azioni che hanno luogo sui giunti longitudinali delle parti di arcata, le cui superficie d'intrados orizzontalmente projettansi in AGE e CHF, tenderanno a cacciare all'infuori, e nel senso delle frecce f ed f', le indicate parti, esercitando quelle dannose spinte, che chiamansi spinte al vuoto. Se poi consideransi i piedritti DI e KB sopportanti l'intiera arcata e se, mediante i piani verticali determinati dalle rette IO e KO, immaginasi essa decomposta nella parte centrale, la cui superficie d'intrados proiettasi orizzontalmente nel rettangolo LOPO, e nelle due parti estreme, le quali ammettono i due trapezii ABOL e CDQP per proiezioni orizzontali delle loro superficie d'intrados, si ha: che la prima parte, essendo una vôlta a botte retta sopportata da due spalle di grossezza costante, si troverà in convenienti e favorevoli condizioni di stabilità; e che ciascuna delle altre due parti, come quella la cui superficie d'intrados orizzontalmente proiettasi nel trapezio ABOL, non essendo sostennta che dalla piccola parte di piedritto rappresentata nel triangolo ALI, eserciterà su questo un'azione assai maggiore di quella che si verifica sopra una parte RSUT, lunga RT = AL, del piedritto sopportante la parte centrale dell'arcata; e che, come l'osservazione assai bene lo ha confermato, se vi ha rottura del piedritto sotto l'azione della spinta al vuoto, essa avviene preferibilmente secondo le sezioni IL e KP.

Che se, invece di assumere i giunti trasversali nella direzione delle sezioni rette, si disponessero parallelamente ai piani di testa dell'arcata, oltre l'inconveniente della spinta al vuoto, si avrebbe : che i diversi cunei presenterebbero alcuni angoli diedri ottusi od alcuni

(1) a quelle long Redinal nelle singione rell'oper Dell'occate

altri acuti; che risulterebbero essi molto fragili e soggetti a rompersi sugli spigoli corrispondenti ad angoli diedri acuti; e che non si potrebbero impiegare elementi parallelepipedi nella formazione del vôlto.

165. Condizioni alle quali devono soddisfare le arcate dei ponti obliqui. — Queste arcate devono essere costrutte in modo che si trovi eliminato od almeno che sia ridotto di poca entità l'inconveniente della spinta al vuoto, e che gli angoli diedri delle diverse facce dei cunei, se non precisamente retti, siano almeno poco lungi dall'esserlo. Si cerca di soddisfare alla prima condizione dando una tale direzione ed una tale forma ai giunti longitudinali, che le spinte le quali si verificano contro i piedritti risultino per quanto si può parallele ai piani di testa delle arcate; si procura di soddisfare alla seconda condizione col fare in guisa che le linee dei giunti longitudinali e trasversali s'intersechino sulla superficie d'intrados secondo direzioni esattamente, o almeno con molta approssimazione, perpendicolari fra di loro. Le disposizioni adottate dagli ingegneri per raggiungere le indicate condizioni sono molte, e mi limiterò ad indicare quelle che sono riputate più vantaggiose per la pratica.

466. Obliquità di un ponte obliquo; apparecchio delle sue arcate. — L'angolo BAN (fig. 206), che il piano di testa di un'arcata fa col piano della sua sezione retta, dicesi angolo d'obliquità o più semplicemente obliquità dell'arcata o anche del ponte a cui l'arcata appartiene. Quest'angolo è eguale a quello che l'asse EF dell'arcata fa colla perpendicolare EX al piano di testa; ed è complemento dell'angolo che l'asse longitudinale del ponte fa coll'asse delle sue arcate. Pei ponti retti, l'angolo d'obliquità è evidentemente nullo (h).

Il complesso delle disposizioni che si adottano in un'arcata obliqua, per ottenere che essa soddisfi alle condizioni enunciate nel precedente numero, costituisce il suo apparecchio; e siccome il problema può essere risolto in diversi modi, così si conoscono diversi apparecchi, fra i quali sono principalmente rimarchevoli: l'apparecchio constituito da più archi per passaggio obliquo; l'apparecchio formato da una serie di archi retti; l'apparecchio elicoi-

⁽h) Alcuni autori, invece di chiamare angolo d'obliquità l'angolo BAN che il piano della sezione retta fa col piano di testa, chiamano angolo d'obliquità il suo complemento ABC, eguale all'angolo che l'asse del ponte fa coll'asse delle arcate, e quindi conchiudono che al ponte retto corrisponde l'angolo d'obliquità di 90°, ossia l'angolo retto.

dale; l'apparecchio ortogonale; e l'apparecchio cicloidale. Il primo ed il secondo hanno ricevuto sufficienti applicazioni, per poter asserire che essi sono nel dominio della pratica e che possono riuscire di qualche utilità; il terzo apparecchio, ossia l'elicoidale, è quello che indubitatamente ha ricevuto più numerose applicazioni, e che vien tenuto dai costruttori siccome il più conveniente; gli apparecchi ortogonale e cicloidale non hanno avuto che alcune rare applicazioni, sia perchè di difficile esecuzione, sia perchè non si prestano all'impiego dei minuti materiali, come sono i mattoni.

Nei numeri che immediatamente seguono si darà un breve cenno dei due primi apparecchi. Diffusamente si parlerà dell'apparecchio elicoidale; e si darà soltanto un'idea dell'apparecchio ortogonale e dell'apparecchio cicloidale.

obliquo. — Nel numero 228 del volume il quale tratta dei lavori generali di architettura civile, stradale ed idraulica, si parlò del modo di combinare un arco per passaggio obliquo, e si accennò a due principali disposizioni per ottenere che i suoi giunti risultino perpendicolari ai piani di testa, e che la spinta si verifichi per conseguenza nel senso della lunghezza del muro, nel quale il passaggio trovasi praticato. Or bene, l'assieme di più archi per passaggio obliquo assai facilmente può condurre alla costruzione di un'arcata obliqua, quando si operi come segue.

Nel caso in cui i piani d'imposta fanno colla verticale un angolo maggiore di 60°, s'incominci dal costrurre la vôlta obliqua fino che si arriva al giunto, il quale trovasi inclinato alla verticale del detto angolo, procedendo per questo primo lavoro come se si trattasse di un'arcata retta. Dopo di ciò, come in proiezione orizzontale risulta dalla figura 207, si fanno diversi archi A, A, A, A,, adottando per costruirli le disposizioni che convengono per la costruzione degli archi per passaggi obliqui, e lasciandoli indipendenti gli uni dagli altri mediante gli intervalli a, a, Una volta disarmati tutti gli archi A, A, A,, si passa a riempire gli intervalli a,, a,,, e nel fare questo riempimento conviene usare ogni cura per ottenere una superficie d'intrados ben conguagliata, ed un sufficiente collegamento fra i materiali degli archi, appositamente disposti a dentiera, e quelli che si posano negli interposti vani. Gli archi A, A, A, sono in quest'apparecchio le sole parti che producono spinte sui piedritti, e, risultando queste spinte parallele alle fronti degli archi stessi, esse operano sui piedritti nel senso parallelo alle fronti del ponte e quindi nel senso più favorevole alla stabilità.

Quando il piano d'imposta fa colla verticale un angolo minore di 60° , gli archi A_4 , A_2 , A_3 ,, si costruiscono a partire da questo piano, che anzi questo modo di procedere può anche convenire quando il detto piano d'imposta fa colla verticale un angolo maggiore di 60° .

Le grossezze degli archi A₄, A₅, A₃, si determinano come se si trattasse di un'arcata retta di corda eguale all'apertura dell'arcata obliqua misurata nel piano di testa o parallelamente a questo piano. Le grossezze dei piedritti, nel senso parallelo ai piani di testa, si determinano pure come pel caso delle arcate rette.

È bene che gli archi A_4 , A_2 , A_3 ,...... abbiano larghezza non maggiore di 4 metro nel senso parallelo alle linee d'imposta; e che gli intervalli a_4 , a_2 ,..... non abbiano, nello stesso senso, larghezza maggiore di metri 0,20.

168. Arcata obliqua costituita da una serie di archi retti.-Per ottenere che la spinta di un'arcata obliqua abbia luogo parallelamente ai piani di testa, fu proposto e fu messo in pratica l'apparecchio nel quale, invece dell'arcata obliqua, si trovano diversi archi retti posti gli uni a fianco degli altri. Nella figura 208 è rappresentata, in sezione orizzontale al livello delle imposte, questa disposizione. Gli archi retti componenti l'intiera arcata sono proiettati in A: e nel costruirli accuratamente bisogna osservare che essi risultino ben collegati mediante pietre poste a differenti altezze, le quali contemporaneamente si addentrino in due archi vicini, o mediante chiavi di ferro, collocate secondo direzioni perpendicolari ai piani di testa ed in tali posizioni che ciascuna di esse attraversi il maggior numero possibile di archi. La larghezza degli archi A nel senso delle generatrici della loro superficie d'intrados difficilmente si assume inferiore a metri 0,80; questa larghezza però non deve essere troppo grande, se non vuolsi aumentare eccessivamente la loro corda; e si può ritenere che generalmente non conviene andare al di là di metri 1,50. In quanto alle grossezze dei detti archi dalla chiave all'imposta, esse devono essere tali che trovisi assicurata la loro stabilità anche nelle più sfavorevoli circostanze in cui saranno per trovarsi. Queste grossezze si possono determinare come si disse nel numero 149, per quindi accertarsi della loro sufficienza, operando come si accennò nel numero 151.

Invece di addossare l'uno all'altro gli archi A, si è talvolta preso il partito di lasciare fra essi gli intervalli I, come in sezione orizzontale al livello delle imposte appare dalla figura 209, e di coprire questi intervalli mediante vôlte di piccola spessezza. Queste vôlte, nel mentre cogli archi A concorrono a dare l'intiera arcata, servono a stabilire un sufficiente collegamento fra tutte le parti della costruzione, quando si impieghino alcuni conci in pietra da taglio o almeno pietre piatte addentrantisi di metri 0,15 a 0,20 nelle vôlte principali. La larghezza degli archi A, nel senso delle generatrici delle loro superficie d'intrados, si deve generalmente assumere non inferiore a metri 0,80, e la larghezza degli interposti vani può essere circa i 7/8 di quella degli archi. Per quanto si riferisce alle grossezze da assegnarsi agli archi A dalla chiave alle imposte, esse devono essere tali da aversi sufficienti garanzie di stabilità nelle condizioni più sfavorevoli in cui saranno per trovarsi; e, tanto per determinare queste grossezze, quanto per accertarsi se esse sono sufficienti, si possono adottare i metodi che trovansi esposti nei citati numeri 149 e 151. Alle vôlte coprenti gli intervalli I suolsi generalmente assegnare una grossezza costante, la quale, nelle ordinarie circostanze in cui gli archi A non hanno corde maggiori di 20 metri, non è maggiore di metri 0,50.

Le grossezze dei piedritti sopportanti arcate oblique costituite da una serie di archi retti, non che le grossezze dei muri d'ala e di risvolto annessi alle spalle, si determinano considerando un arco retto solo, e procedendo colle norme state tracciate nei numeri 152, 153, 154, 155, 156 e 157.

Conviene fare in modo che le superficie d'estrados di tutte le vôlte si elevino presso a poco ad una stessa altezza, in corrispondenza della chiave; e, siccome sulla detta superficie d'estrados si presentano alcuni angoli salienti ed alcuni angoli rientranti, mediante un riempimento mnrale in questi, si può ottenere la superficie continua destinata a ricevere la cappa.

Il descritto apparecchio riesce applicabile qualunque sia l'obliquità dell'arcata, ma ha l'inconveniente di aumentare l'apertura della volta e di presentare qualche difficoltà nello stabilimento delle armature. La molteplicità degli angoli salienti e rientranti non è certamente di buon effetto, quantunque abbiasi l'avvertenza di far terminare questi angoli alle imposte, apparecchiando secondo l'obliquità i paramenti dei piedritti. Finalmente un altro inconveniente da notarsi, sta nella facilità colla quale i numerosi spigoli

si guastano sotto gli urti dei corpi galleggianti nei ponti stabiliti su corsi d'acqua navigabili e soggetti a grandi piene.

469. Apparecchio elicoidale per la costruzione delle arcate oblique. — Quest'apparecchio, che è uno dei più usati nella pratica delle costruzioni, conduce ad ottenere arcate, per cui le superficie dei giunti longitudinali e le superficie dei giunti trasversali sono superficie sghembe, generate da rette che, percorrendo eliche convenientemente tracciate sulle loro superficie d'intrados, si conservano normali a queste stesse superficie. Le superficie dei giunti sono adunque elicoidi sghembi a piano direttore, e quindi il nome di apparecchio elicoidale.

Le eliche, le quali costituiscono le direttrici delle superficie dei giunti, devono aver tali posizioni che, sviluppando la superficie cilindrica su cui sono descritte, si dispongano nello sviluppo secondo due direzioni perpendicolari o sensibilmente perpendicolari fra di loro; le rette corrispondenti alle eliche longitudinali, secondo perpendicolari alle corde delle curve secondo cui si sviluppano le due curve di testa della superficie d'intrados; le rette corrispondenti alle eliche trasversali, secondo parallele alle dette corde. Adottando queste disposizioni, le superficie dei giunti longitudinali vengono ad incontrare i piani di testa secondo direzioni che poco si scostano dall'essere perpendicolari ai piani medesimi, le facce dei diversi cunei, eccezione fatta di quelle che trovansi sui piani di testa, sono normali o pressochè normali fra loro, e quindi l'apparecchio sufficientemente bene soddisfa alle condizioni enunciate nel numero 165. Di più, risultando costante la larghezza dei diversi filari, quest'apparecchio riesce eminentemente utile nei casi frequentissimi della pratica in cui si può disporre di materiali parallelepipedi di piccole dimensioni, come sono i mattoni.

Nei numeri che immediatamente seguono, si ha un'esposizione minuta di tutte le operazioni da farsi per applicare l'apparecchio elicoidale alla costruzione di un'arcata di ponte obliquo in pietra da taglio; e si avverte fin d'ora che, per quanto si riferisce alle dimensioni delle principali parti del ponte, affinchè si trovi esso in buone condizioni di stabilità, può valere quanto si è detto pei ponti retti, dal numero 448 al numero 457, considerando l'apertura corrispondente al piano di testa, e valutando le grossezze dei piedritti parallelamente al piano medesimo. Le arcate per ponti obliqui quasi sempre si costruiscono a monta depressa e con grossezza, che, nella sezione retta, si conserva costante dalla chiave alle im-

poste. Questa grossezza poi si assume generalmente un po' maggiore di quella che adottasi alla chiave per le arcate, nella cui sezione retta si verifica una grossezza crescente dalla chiave alle imposte.

170. Dati del problema e calcolo di alcuni elementi principali. — Allorquando è quistione di dare il progetto di un'arcata obliqua per quanto si riferisce allo studio del suo apparecchio, si conoscono generalmente: le due curve costituenti le sezioni rette delle superficie d'intrados e d'estrados dell'arcata, per le quali due curve si assumeranno due archi circolari concentrici; la corda e la monta della sezione retta della superficie d'intrados; la grossezza del vôlto alla chiave; la distanza dei due piani di testa; e l'angolo d'obliquità. Colla scorta di questi dati si deve procedere alla determinazione di alcuni elementi principali, trovando: gli sviluppi delle indicate due sezioni rette, previo il calcolo dei loro raggi e delle loro ampiezze; la corda o la monta della sezione retta della superficie d'estrados; le corde delle sezioni fatte da un piano di testa nelle supeficie d'intrados e d'estrados; la lunghezza dell'arcata nel senso delle sue generatrici.

Essendo ABCD (fig 210) la figura parallelogrammica in cui orizzontalmente proiettasi la superficie d'intrados dell'arcata, \overline{AD} e \overline{BC} le proiezioni orizzontali delle due linee d'imposta, AB e DC le proiezioni orizzontali delle due curve di testa, e D'G'C' la proiezione verticale di una sezione retta fatta su un piano perpendicolare alle generatrici della superficie d'intrados dell'arcata, assunto come piano verticale di proiezione, si ha: che le due curve di testa, orizzontalmente proiettate in AB e DC, si proiettano verticalmente nella curva D'G'C'; e che la stessa curva rappresenta nella vera sua forma la sezione retta della superficie d'intrados, non che la proiezione verticale di questa medesima superficie. Ciò premesso, prendendo il metro per unità di lunghezza ed il grado sessagesimale per unità di misura degli angoli, si chiamino

2c la corda $\overline{D'C'} = \overline{DF} = \overline{EC}$ della sezione retta,

m la monta I'G',

h l'altezza \overrightarrow{AP} del parallelogramma ABCD, ossia la distanza dei due piani di testa,

α l'angolo d'obliquità FDC=DCE=DAP,

r il raggio dell'arco D'G'C' e

2β la sua ampiezza,

21 la lunghezza dello stesso arco,

2c' la corda DC=AB dell'arco di testa,

i la lunghezza $\overrightarrow{AD} = \overrightarrow{BC}$ delle generatrici della superficie d'intrados.

Il raggio r (Geometria pratica applicata all'arte del costruttore, num. 24) viene dato dalla formola

$$r = \frac{m^2 + c^2}{2m}$$
;

l'angolo β si può dedurre dalla formola

$$\sin\beta = \frac{2cm}{m^2 + c^2},$$

oppure dall'altra

$$\tan \beta = \frac{c}{r-m}$$
;

e la lunghezza l si può calcolare colla formola

$$l = \frac{\beta}{180^{\circ}} \pi r \tag{1}.$$

Per quanto si riferisce alla semicorda c' della curva di testa, immediatamente si può essa ottenere, considerandola come ipotenusa del triangolo rettangolo $\mathbf{DG_4G}$ e ponendo quindi

$$c' = \frac{c}{\cos \alpha}$$
.

La lunghezza i della linea d'imposta, ossia delle generatrici della snperficie d'intrados, si può calcolare colla formola

$$i=\frac{h}{\cos\alpha}$$
,

la quale si deduce dal triangolo rettangolo ADP, in cui l'angolo DAP è eguale all'angolo d'obliquità α .

Se pei punti estremi C' e D' (fig. 211) della sezione retta della superficie d'intrados si conducono due normali all'arco C' G' D', in esse proiettansi verticalmente i due piani d'imposta dell'arcata. Descrivendo la curva R'L'S' parallela a D' G' C' e distante da questa della grossezza che vuolsi dare all'arcata nel suo mezzo, nel mentre

ottiensi la sezione retta della superficie d'estrados, si ha pure la proiezione verticale di questa superficie, la quale orizzontalmente proiettasi nel parallelogramma PQRS, di altezza \overline{RU} eguale alla corda $\overline{R'S'}$ della sezione retta R'L'S. Se poi si chiamano

s la grossezza G'L' dal vôlto alla chiave,

R il raggio dell'arco R'L'S',

2 L la lunghezza dello stesso arco,

2 C la corda $\overline{R'S'} = \overline{RU}$,

M la monta T'L' e

2C' la corda RS = QP della sezione fatta nella superficie d'estrados dal piano di testa, si ha: che il valore di R vien dato da

$$R=r+s$$
:

che, essendo circolari i due archi D'G'C' e R'L'S', essi hanno la stessa ampiezza 2β ; che la lunghezza L risulta dalla formola

$$L = \frac{\beta}{180^{\circ}} \pi R = \frac{R}{r} l;$$

che la semicorda C e la monta M si possono ottenere col porre

$$C = \frac{R}{r} c$$
,

$$M = R(1 - \cos \beta) = \frac{R}{r} m;$$

e che finalmente, come risulta dal triangolo rettangolo LL, R

$$C' = \frac{C}{\cos \alpha} = \frac{R}{r}c'$$
.

471. Sviluppo della superficie d'intrados. — Conviene fare questo sviluppo sul piano orizzontale, coll'immaginare che la superficie da svilupparsi si svolga girando attorno alla generatrice d'imposta (B C, C') (fig. 210), trasportata parallelamente a sè stessa in B"C", in modo da essere BB" e CC" perpendicolari a BC. Le generatrici della superficie sviluppata saranno parallele alla retta B"C" e l'ultima A"D", la quale corrisponde alla generatrice d'imposta (A D, D), si porterà ad una distanza C""D", eguale alla lunghezza 21 dell'arco D'G'C', da B"C"; le due curve di testa si

svilupperanno secondo due sinusoidi aventi per corde le rette C"D" e B"A", determinate col condurre DD" perpendicolari a BC e col portare $\overline{C'''D''} = 2l$, $\overline{C'''C''} = \overline{FC}$, $\overline{C''B''} = \overline{CB}$ e $\overline{D''A''} = \overline{AD} = \overline{CB}$; e la generatrice più elevata della superficie d'intrados, la quale proiettasi verticalmente nel punto G', si disporrà sulla retta G"H", che unisce fra loro i punti di mezzo G" ed H" delle due corde delle sinusoidi, i quali punti sono pure le intersezioni delle sinusoidi colle corde stesse. Per trovare poi un punto qualunque dell'una e dell'altra delle due sinusoidi, si tracci una generatrice qualsiasi (bc, b'); da C'''in b''' si porti lo sviluppo dell'arco C'b'; per b''' si elevi una perpendicolare $b'''x_4$ a C'''D''; e si prendano su essa le due lunghezze $\overline{b'''b''}$ e $\overline{b'''c''}$ rispettivamente eguali a $\overline{b_4b}$ e $\overline{b_4c}$. Il punto b" appartiene alla sinusoide C"G"D", avente per corda la retta C"D", ed il punto c" alla sinusoide B"H"A" la cui corda è la retta B" A". Per trovare con un procedimento facile e spedito un sufficiente numero di punti delle indicate due sinusoidi, si fissino i limiti di grossezza che devono presentare i filari longitudinali dei cunei sulla superficie d'intrados, e si stabilisca il numero impari n di parti eguali, in cui deve essere divisa la lunghezza della corda C"D" della sinusoide C"G"D", affinchè ciascuna di queste parti risulti compresa fra i detti limiti. Si dividano dopo le lunghezze C"D" e B"C", dello sviluppo della sezione retta in n parti eguali, ed i punti di divisione si numerizzino, a partire da C'' e da B', coi numeri 1", 2", 3", Questi punti, uniti due a due con rette che risultino parallele a C"B" e quindi perpendicolari a C"D", dànno nello sviluppo le direzioni di altrettante generatrici equidistanti della superficie d'intrados dell'arcata, e contemporaneamente dividono le corde C"D" e B"A" nel numero impari n di parti eguali, individuando su esse ed a partire da C"B" i punti portanti i numeri I, II, III, Se ora si divide la sezione retta C'G'D' nello stesso numero n di parti eguali, e se i punti di divisione si numerizzano a partire da C' coi numeri 1',2', 3',....., in questi punti trovansi verticalmente proiettate quelle generatrici della superficie d'intrados, le quali cadono sullo sviluppo nelle direzioni 1"1", 2"2", 5"3",, e, conducendo dai punti così determinati sull'arco C'G'D' altrettante perpendicolari a DF, le parti 11, 22, 33, di queste perpendicolari, le quali trovansi intercette fra le rette DC ed AB, somministrano le proiezioni orizzontali delle stesse generatrici. Se finalmente si opera per tutte queste generatrici come già si fece per la generatrice (bc, b'), riesce facile ottenere tutti quei punti delle sinusoidi, i quali si trovano sulle rette 4"4", 2"2", 5"5",, e quindi passare al loro tracciamento.

Visto il metodo per fare praticamente lo sviluppo della superficie d'intrados, conviene procedere ad alcune determinazioni numeriche, che ad esso si riferiscono. Perciò si ritengano le denominazioni già stabilite nel precedente numero e si indichino con

b la lunghezza $\overline{C'''C''} = \overline{FC}$, con

dla lunghezza di ciascuna delle due corde $\overline{\mathbf{C}''\mathbf{D}''}$ e $\overline{\mathbf{B}''\mathbf{A}''}$ delle sinusoidi, e con

γ l'angolo C" D" C" = A" B" C", che le corde delle sinusoidi fanno collo sviluppo di una sezione retta.

Il valore di b si deduce dal triangolo rettangolo DFC, in cui si conoscono (num. 170) il cateto $\overline{\rm DF}$ = 2 c e l'angolo acuto FDC = α , col porre

$$b = 2c \tan \alpha;$$

ed i valori di γ e di d risultano dalla considerazione del triangolo rettangolo D"C"C", il quale, per essere C"D" $\equiv 2l$ (num. 470), dà

$$\tan g \gamma = \frac{c}{l} \tan g \alpha$$
,

$$d = \frac{2l}{\cos\gamma}$$
.

172. Tracciamento delle linee dei giunti longitudinali e delle linee dei giunti trasversali sullo sviluppo della superficie d'intrados. — Trovandosi già divise le rette $\overline{C'''D''}$, $\overline{C''D''}$ e $\overline{B''A''}$ nel numero impari n di parti eguali, dal punto A'' si abbassi una perpendicolare A''h'' sulla corda $\overline{C''D''}$. Generalmente avviene che questa perpendicolare non passa per uno dei punti di divisione dell'accennata corda; ma il suo piede h'', cadendo di necessità fra due di questi punti, finisce per trovarsi più vicino all'uno che all'altro. Essendo f'' il punto di divisione della corda $\overline{C''D''}$, il quale trovasi più vicino al piede h'' della definita perpendicolare, si assume la retta. A''f'' siccome quella che dà la direzione delle linee dei giunti longitudinali sullo sviluppo della superficie d'intrados. Conducendo poi dai punti di divisione delle corde delle sinusoidi altrettante parallele alla A''f'', si hanno in esse, fra le due sinusoidi e sullo sviluppo dell'intrados, le linee corrispondenti ai giunti continui o longitudi-

nali. Quelle, fra le definite linee, le quali incontrano le corde delle sinusoidi fra D" ed f" e fra B" e g", intersecano le generatrici A"D" e B"C", e le dividono in parti eguali, il cui numero è quello stesso delle parti eguali che trovansi sui tratti \overline{D} "f" e \overline{B} "g" delle corde delle sinusoidi.

Unendo fra loro gli accennati punti di divisione di A"D" e di B"C", e facendo queste unioni mediante rette, le quali risultino parallele alle corde delle sinusoidi, si hanno in esse altrettante direzioni, secondo le quali convien disporre, sullo sviluppo della superficie d'intrados, alcune linee corrispondenti ai giunti discontinui o trasversali.

Determinate graficamente le direzioni delle linee dei giunti longitudinali e le direzioni delle linee dei giunti trasversali sulla superficie d'intrados, conviene procedere ad alcune semplicissime determinazioni numeriche, e principalmente alla ricerca degli angoli che le linee corrispondenti ai giunti longitudinali e quelle corrispondenti ai giunti trasversali fanno colla retta D"A", ed al calcolo di ciascuna delle parti in cui le linee dei giunti longitudinali dividono le corde C"D" e B"A", non che le generatrici C"B" e D"A". Si ritengano perciò le denominazioni già stabilite nei precedenti numeri e si chiamino

γ' l'angolo C"D"A", che la direzione delle linee dei giunti trasversali fa colla retta D"A",

d'angolo f" A" D", che la direzione delle linee dei giunti longitudinali fa pure colla retta D" A",

N' l'angolo A"f"D", che la direzione delle linee dei giunti longitudinali fa colla retta C"D", ossia colla direzione delle linee dei giunti trasversali.

ε la deviazione f"A"h", dell'assunta direzione delle linee dei giunti longitudinali, dalla perpendicolare A"h" alle corde delle sinusoidi,

n il numero impari delle parti eguali in cui trovasi divisa la corda $\overline{C''D''}$, ed

n' il numero delle stesse parti contenute in f"D",

e la lunghezza di ciascuna delle parti eguali, in cui sono divise le due corde C''D'' e B''A'',

f la lunghezza di ciascuna delle parti eguali, in cui restano divise le linee d'imposta C''B'' e D''A'' dalle linee dei giunti longitudinali.

L'angolo \gamma' è complemento dell'angolo C' D' C''', che nel numero 171 venne indicato colla lettera \gamma, e quindi

Essendo d (num. 171) la lunghezza della corda $\overline{C''D''}$, ciascuna delle n parti in cui essa trovasi divisa è rappresentata dal quoziente $\frac{d}{n}$, e quindi,

$$e = \frac{d}{n}$$
.

Il numero delle parti eguali, in cui trovasi divisa ciascuna delle due linee d'imposta $\overline{C''B''}$ e $\overline{D''A''}$, è eguale al numero n' di divisioni contenute nelle parti $\overline{f''D''}$ e $\overline{g''B''}$ delle due corde $\overline{C''D''}$ e $\overline{B''A''}$, per cui

$$f = \frac{i}{n'}$$
.

La lunghezza D"f" viene data da

$$\overline{\mathbf{D}''f''} = \frac{n'd}{n},$$

e, siccome nel triangolo A"D"f" sono noti i due lati $\overline{D"A"}$ e $\overline{D"f"}$, rispettivamente eguali ad i e a $\frac{n'd}{n}$, e l'angolo compreso f''D''A'', eguale a γ' , riesce facile trovare gli angoli δ e δ' . Perciò si ricorra alle relazioni

$$\frac{1}{2}(\delta' + \delta) = 90^{\circ} - \frac{1}{2}\gamma'$$

$$\tan \frac{1}{2} (\delta' - \delta) = \frac{i - \frac{n'd}{n}}{i + \frac{n'd}{n}} \cot \frac{1}{2} \gamma'$$

date dalla trigonometria rettilinea, le quali, per esser $\gamma' = 90^{\circ} - \gamma$, si riducono a

$$\frac{1}{2}(\delta'+\delta)=45^{\circ}+\frac{1}{2}\gamma,$$

$$\tan \frac{1}{2} \left(\delta' - \delta \right) = \frac{n \, i - n' \, d}{n \, i + n' \, d} \cot \left(45 \, \circ - \frac{1}{2} \, \gamma \right).$$

Eseguendo i calcoli, queste equazioni conducono a trovare gli angoli p° e q° rappresentanti rispettivamente la semi-somma e la semi-differenza 1/2 $(\delta' + \delta)$ ed 1/2 $(\delta' - \delta)$; per guisa che, avendosi

$$\frac{1}{2}(\delta' + \delta) = p^{\circ}$$

$$\frac{1}{2}(\partial'-\partial)=q^{\circ},$$

basta combinare queste per addizione e sottrazione, onde ottenere

$$\delta' = p^{o} + q^{o}$$

$$\delta = p^{\circ} - q^{\circ}$$
.

L'angolo D'' A'' h'' è eguale all'angolo C''' D'' C'', perchè i due triangoli A'' h'' D'' e D'' C''' C'' hanno i loro lati rispettivamente perpendicolari, e quindi si ha

$$\varepsilon = \delta - \gamma$$
.

Quando il valore di ε è positivo, la retta A'' f'' cade fuori dell'angolo $D'' A'' h'' = \gamma$ a sinistra di A'' h''; e, quando il valore di ε risulta negativo, la retta A'' f'' cade nel detto angolo a dritta di A'' h''.

173. Sviluppo della superficie d'estrados. - Per ottenere lo sviluppo della superficie d'estrados, si segue un procedimento in tutto analogo a quello già adottato nel numero 171 per sviluppare la superficie d'intrados. Si suppone che la superficie da svilupparsi si svolga girando attorno alla generatrice d'imposta (PS, S') (fig. 211), trasportata parallelamente a sè stessa in P'S', in modo da essere PP" ed SS" perpendicolari a PS. Le generatrici della superficie sviluppata si dispongono secondo parallele alla retta P'S", e quella corrispondente alla generatrice d'imposta (QR, R') si porta, da P"S", ad una distanza S"R" eguale alla lunghezza 2L dell'arco R'L'S'. Essendo RS"R" perpendicolare alla direzione PSU ed essendo $\overline{S'''R''}=2L$, se si assume $\overline{S'''S''}=\overline{US}$, $\overline{S'''P''}=\overline{UP}$ ed R"Q"=RQ=SP, nelle rette S"R" e P"Q" si hanno le corde delle sinusoidi secondo le quali si dispongono nello sviluppo le due curve di testa (RS, R'L'S') e (QP, R'L'S'); nella retta L"M", la quale unisce i due punti di mezzo delle accennate corde, si ha la generatrice più elevata della superficie d'estrados verticalmente proiettan-

tesi nel punto L'. Per trovare un punto qualunque delle indicate due sinusoidi, si tracci una generatrice qualsiasi (de, d'): da S" in d" si porti lo sviluppo dell'arco S'd'; per d" si elevi una perpendicolare d'"y, ad S"'R"; e si prendano su essa le due lunghezze $\overline{d'''d''}$ e $\overline{d'''e''}$ rispettivamente eguali a $\overline{d_id}$ e $\overline{d_ie}$. Il punto d'' appartiene alla sinusoide la cui corda è S"R", ed il punto e" spetta alla sinusoide la gnale ha per corda le retta P"0". I punti di mezzo L" ed M" delle dette corde sono pure i punti di mezzo delle sinusoidi corrispondenti; e, volendosi ottenere con un metodo facile e spedito altri punti di queste curve, conviene dividere lo sviluppo S"R" della sezione retta R'L'S' nello stesso numero impari n di parti eguali, in cui, nello sviluppare la superficie d'intrados, venne diviso lo sviluppo C"D" (fiq. 210) della sezione retta D'G'C'; e fare questa stessa divisione sulla P"S4" (fig. 211) eguale e parallela ad S"R". Essendo 1", 2", 3", i punti di divisione individuati sulle accennate rette S"R" e P"S,", si uniscano due a due quelli che portano lo stesso numero, e risultano nello sviluppo le direzioni di altrettante generatrici equidistanti della superficie d'estrados dell'arcata. Se ora si divide la curva R'L'S' nello stesso numero di parti eguali in cui venne diviso il corrispondente sviluppo S"R", nei punti di divisione 1', 2', 3', sono verticalmente projettate quelle generatrici della superficie d'estrados, le cui direzioni nello sviluppo sono determinate dalle rette 4"4", 2"2", 3" 5",; conducendo dai punti così determinati sull'arco R' L' S' altrettante perpendicolari a RU, le parti 11, 22, 33, di queste perpendicolari, intercette fra le rette RS e QP, danno le proiezioni orizzontali delle stesse generatrici; e, operando per tutte queste generatrici come già si fece per la generatrice (de, d'), riesce facile trovare tutti quei punti delle sinusoidi i quali sono sulle rette 1"4", 2"2", 3" 3",, e che, convenientemente uniti, determinano i loro andamenti.

Venendo alla determinazione numerica di alcuni importanti elementi relativi allo sviluppo dell'estrados, si ritengano le denominazioni del numero 470 e si dicano

B la lunghezza $\overline{S'''S''} = \overline{US}$,

D la lunghezza di ciascuna delle due corde delle sinusoidi S'' R'' e P'' Q'',

Γ l'angolo S"R"S"=Q"P"S₄", che le corde delle sinusoidi fanno collo sviluppo della sezione retta.

Dal triangolo rettangolo RUS, si ha

$$B=2C tang \alpha;$$

e dall'altro triangolo rettangolo R"S"S" si deduce

$$\tan \Gamma = \frac{C}{L} \tan \alpha$$
,
 $D = \frac{2L}{\cos \Gamma}$.

Se in queste equazioni si pongono per C e per L i loro valori quali vennero trovati nel numero 170, si ottengono le formole

$$B = \frac{R}{r} 2c \tan \alpha,$$

$$\tan \Gamma = \frac{c}{l} \tan \alpha,$$

$$D = \frac{R}{r} \frac{2l}{\cos \Gamma},$$

le quali, a motivo dei valori di b, di tang γ e di d ottenuti nel numero 171, dànno

$$B = \frac{R}{r}b$$
,
 $tang \Gamma = tang \gamma$,
 $D = \frac{R}{r}d$.

Ottenute adunque le lunghezze b e d corrispondenti allo sviluppo della superficie d'intrados, si ottengono le lunghezze analoghe B e D per lo sviluppo dell'estrados, moltiplicando le primé pel rapporto $\frac{R}{r}$; l'angolo S'''R''S'' è eguale all'angolo C'''D''C'' (fig. 210), ed il triangolo S''S'''R'' (fig. 211) è simile al triangolo C'''D''' (fig. 210).

174. Tracciamento delle linee dei giunti longitudinali e delle linee dei giunti trasversali sullo sviluppo della superficie d'estrados. — Già si è detto nel numero 169 che nell'apparecchio eli-

coidale le superficie dei giunti longitudinali e quelle dei giunti trasversali sono elicoidi sghembi a piano direttore; e, conservandosi le generatrici di queste superficie sghembe perpendicolari alla superficie d'intrados dell'arcata, ne risulta: che il detto piano direttore è parallelo a quelli determinanti le sezioni rette del vôlto, e quindi al piano verticale di proiezione, quale venne assunto nelle figure 210 e 211; che la proiezione orizzontale di una generatrice qualunque delle indicate superficie dei giunti ha una direzione perpendicolare alle proiezioni orizzontali delle generatrici delle superficie d'intrados e d'estrados, e che la sua proiezione verticale deve passare pel centro comune dei due archi rappresentanti le sezioni rette delle dette superficie d'intrados e d'estrados; che le linee dei giunti longitudinali e dei giunti trasversali sull'estrados sono eliche; e finalmente che queste linee sono rette nello sviluppo della superficie d'estrados.

Premesso questo, se si dividono le proiezioni orizzontali CB e DA delle generatrici d'imposta della superficie d'estrados (fig. 211) nello stesso numero di parti eguali, in cui le linee dei giunti trasversali dividono C"B" e D"A" (fig. 210) nello sviluppo della superficie d'intrados, si ottengono su CB e su DA (fig. 211) i punti a. B e γ, δ, ε e ζ, i quali si possono considerare siccome gli estremi delle tre eliche trasversali che, sullo sviluppo della superficie d'intrados (fig. 210), sono rappresentate nelle rette α" δ", β" ε" e γ" ζ". Conducendo pei punti (fig. 211) α , β e γ , δ , ϵ , e ζ le rette $\alpha \alpha_i$, $\beta \beta_i$ e γγ, perpendicolari a CB, e le rette δδ, εε, e ζζ, perpendicolari a DA, si hanno in queste rette le proiezioni orizzontali di quelle generatrici delle superficie dei giunti trasversali, le quali passano pei punti (α, C') , (β, C') e (γ, C') , (∂, D') , (ε, D') (ζ, D') ; e, nello stesso modo che i punti orizzontalmente proiettati in α, β e γ, δ, ε e ζ sono, sulla superficie d'intrados, gli estremi di generatrici di tre diversi giunti trasversali, si ha che i punti orizzontalmente proiettati in α_4 , β_4 e γ_4 , δ_4 , ϵ_4 e ζ_4 sono, sulla superficie d'estrados, gli estremi delle stesse generatrici trasversali. Nello sviluppo della superficie d'estrados, i punti α,, β_i e γ_i si portano rispettivamente in α''_i , β''_i e γ''_i con tali posizioni da essere $\overline{S''\alpha_1}'' = \overline{S\alpha_1}$, $\overline{S''\beta_1}'' = \overline{S\beta_1}$ e $\overline{S''\gamma_1}'' = \overline{S\gamma_1}$; ed i punti δ, ε, e ζ, prendono rispettivamente le posizioni δ,", ε," e ζ_4'' determinate coll'assumere $\overline{R''\delta_4''} = \overline{R\delta_4} = \overline{P''\gamma_4}$, $\overline{R''\varepsilon_4''} = \overline{R\varepsilon_4} = \overline{P''\beta_4''}$ e $\overline{R''\zeta_4''} = \overline{R\zeta_4} = \overline{P''\alpha_4''}$. Tracciando adunque le tre rette parallele $\alpha_{i}^{"}\delta_{i}^{"}$, $\beta_{i}^{"}\epsilon_{i}^{"}$ e $\gamma_{i}^{"}\zeta_{i}^{"}$, si ottengono sullo sviluppo della superficie d'estrados le direzioni di quelle linee dei giunti

trasversali, le cui corrispondenti sullo sviluppo della superficie d'intrados (fig. 210) sono rispettivamente date dalle rette parallele α'' δ'' , β'' ϵ'' e γ'' ζ'' .

Se dai due punti C e D (fig. 211) si conducono le perpendicolari CC, e DD, alle rette CB e DA, e se i punti C, e D, si portano sullo sviluppo in C", e D", è cosa evidente che i punti C, e D, si possono considerare siccome i due estremi di quell'elica, che, sullo sviluppo della superficie d'estrados, trovasi rappresentata nella retta C", D",. Analogamente, conducendo dai due punti B ed A le perpendicolari BB, ed AA, alle rette CB e DA e portando i punti B, ed A, sullo sviluppo in B", ed A", è pure evidente che si possono considerare i punti B, ed A, come i due estremi di quell'elica, la quale, sullo sviluppo della superficie d'estrados, è rappresentata nella retta B'', A'', Per essere $\overline{SC}_4 = \overline{RD}_4$, $\overline{S''C_4}'' = \overline{SC}_4$, $\overline{R''D_4}'' =$ RD, e quindi R"D,"=S"C,", la retta C,"D," passa pel punto di mezzo L" della sinusoide S"L"R"; ed analogamente, per essere $\overline{PB}_{i} = \overline{QA}_{i}, P''B_{i}'' = \overline{PB}_{i}, \overline{Q''A_{i}''} = \overline{QA}_{i}$ e quindi $\overline{Q''A_{i}''} = \overline{P''B_{i}''},$ la retta B,"A," passa pel punto di mezzo M" della sinusoide P"M"Q". Segue da ciò: che le due eliche, le quali sullo sviluppo della superficie d'estrados trovansi rappresentate nelle rette C," D," e B," A,", sono le intersezioni della detta superficie d'estrados colle superficie elicoidali sghembe, aventi per direttrici le due eliche che sullo sviluppo della superficie d'intrados sono rispettivamente rappresentate nelle rette (fig. 210) C"D" e B"A", ed aventi le loro generatrici perpendicolari all'accennata superficie d'intrados; che le superficie dei giunti longitudinali, dividendo già nel numero impari n di parti eguali le due eliche che sullo sviluppo della superficie d'intrados si dispongono secondo le rette C"D" e B"A", devono pure dividere nello stesso numero di parti eguali le due eliche rappresentate sullo sviluppo della superficie d'estrados nelle rette (fig. 211) C,"D," e B,"A," (i); e finalmente che, dividendo in n parti eguali la lunghezza delle or accennate rette, si hanno nei punti di divisione altrettanti punti atti alla determinazione delle linee dei giunti longitudinali sullo sviluppo della superficie d'estrados. Per

⁽i) La verità di quest'osservazione risulta chiaramente, quando si osservi: che se due elicoidi sghembi, aventi per direttrici due eliche tracciate su una superficie cilindrica ed aventi le loro generatrici normali alla stessa superficie, vengono ad incontrarsi, il loro incontro ha luogo secondo una generatrice, perchè nel punto d'incontro delle due eliche direttrici si può condurre una sola normale alla superficie cilindrica, la quale per conseguenza è contemporaneamente generatrice dell'uno e dell'altro

rapporto al modo di unire gli accennati punti di divisione, si osserva sullo sviluppo della superficie d'intrados (fig. 210) quante divisioni di D"C" vi sono fra D" e f"; un egual numero di divisioni si prende (fig. 211) su D," C," a partire da D,", per ottenere il punto f,"; e questo punto, unito con A,", dà sullo sviluppo della superficie d'estrados la direzione di quella linea dei giunti longitudinali, la quale corrisponde alla A"f" (fig. 210) sullo sviluppo della superficie d'intrados. Tirata la retta A," f," (fig. 214), si tracciano tutte le altre linee dei giunti longitudinali in modo che, risultando parallele alla A,"f,", passino pei punti di divisione delle rette C,"D," e B," A,". Le linee dei giunti longitudinali incontranti la C,"D," fra f," e D," e la B₁" A₁" fra g₁" e B₁", devono intersecare le generatrici R"Q" e S" P" nei già definiti punti ζ_i", ε_i" e d_i", z_i", β_i" e χ_i". Le rette parallele 1"1", 2"2", 5" 5",, dividendo in n parti eguali lo sviluppo S"R" della sezione retta della superficie d'estrados, dividono pure in n parti eguali le due rette Ci"Di" e Bi"Ai" nei punti I, II, III,, cosicchè gli stessi punti individuati da quelle su queste costituiscono già i punti di divisione da unirsi nel modo indicato, onde avere le linee dei giunti longitudinali sullo sviluppo della superficie d'estrados.

Anche per le linee dei giunti sullo sviluppo della superficie d'estrados, convengono alcune determinazioni numeriche del genere di quelle che vennero fatte nel numero 172, e, per raggiungere lo scopo, si ritengano le denominazioni che già vennero stabilite nei precedenti numeri e si chiamino:

Γ₁ l'angolo C₁"D₁"S₁" che la direzione delle linee dei giunti trasversali fa colla retta D₁"S₁" parallela ad R"S";

 Γ' l'angolo $C_4''D_4''A_4''$, che la direzione delle linee dei giunti trasversali fa colla retta $D_4''A_4''$;

 Δ l'angolo $f_i''A_i''R''$, che la direzione delle linee dei giunti longitudinali fa pure colla retta $D_i''A_i''$;

 Δ' l'angolo $A_i'' f_i'' D_i''$, che la direzione delle linee dei giunti longitudinali fa colla retta $C_i'' D_i''$, ossia colla direzione delle linee dei giunti trasversali;

elicoide; che, se in una porzione di uno di tali elicoidi, compresa fra le due superficie cilindriche parallele con sezioni rette circolari, si conducono diverse generatrici incontranti l'elica posta su una delle due superficie cilindriche in punti equidistanti, esse incontrano l'elica descritta sull'altra superficie cilindrica in punti pure equidistanti, perchè sono eguali le porzioni d'elica comprese fra piani meridiani facenti fra loro angoli eguali. g la lunghezza di ciascuna delle parti $\overline{S''C_i''}$, $\overline{P''B_i''}$, $\overline{R''D_i''}$ e $\overline{Q'''A_i''}$;

D, la lunghezza di ciascuna delle due rette C,"D," e B,"A,";

E la lunghezza di ciascuna delle n parti eguali in cui, dalle linee dei giunti longitudinali, sono divise le due rette $\overline{C_i''}D_i''$ e $\overline{B_i''}A_i''$;

G le due lunghezze eguali $S'' \alpha_4''$ e $Q'' \zeta_4''$; G' le due lunghezze eguali $P'' \gamma_4''$ ed $R'' \delta_1''$.

Dal triangolo rettangolo S'S_i'C', in cui l'ipotenusa $\overline{C'S'}$ vale s e β l'angolo C'S'S_i', si ha

$$\overrightarrow{C'S_1'} = s \operatorname{sen} \beta$$
,

e dall'altro triangolo rettangolo SC_4C , il cui cateto $\overline{CC_4}$ è eguale a $\overline{C'S_4}'$ ed il cui angolo acuto C_4CS vale α , si ricava

$$\overline{SC}_4 = s \operatorname{sen} \beta \operatorname{tang} \alpha$$
.

Ma, per essere eguali fra di loro i quattro triangoli rettangoli SC_4C , PB_4B , RD_4D e QA_4A , i quattro cateti $\overline{SC_4}$, $\overline{PB_4}$, $\overline{RD_4}$ e $\overline{QA_4}$ sono eguali fra di loro, e quindi le lunghezze $\overline{S''C_4''}$, $\overline{P''B_4''}$, $\overline{R''D_4'''}$ e $\overline{Q''A_4''}$, le quali rispettivamente sono eguali agli indicati cateti, sono pure eguali fra di loro ed al cateto $\overline{SC_4}$, cosicchè il valore di g viene dato da

$$g = s \operatorname{sen} \beta \operatorname{tang} \alpha$$
.

La retta $\overline{S_i'''C_i''}$ vale la lunghezza B (num. 173) diminuita di due volte la lunghezza g, cosicchè

$$\overline{S_i'''C_i''}=B-2g;$$

e dal triangolo rettangolo $C_i''S_i'''D_i''$, nel quale si conosce il cateto $S_i'''C_i''$ e l'altro cateto $S_i'''D_i''=2L$, immediatamente si ottiene

$$\tan g \Gamma_4 = \frac{B-2g}{2L}$$
,

$$D_4 = \frac{2L}{\cos\Gamma_4}.$$

Ciascuna delle due rette $\overline{C_i''D_i''}$ e $\overline{B_i''A_i''}$ trovasi divisa in n parti eguali, e quindi

$$E = \frac{D_i}{n}$$
.

Le lunghezze $\overline{C_i''\alpha_i''}$, $\overline{\alpha_i''\beta_i''}$, $\overline{\beta_i''\gamma_i''}$, $\overline{\gamma_i''B_i''}$, $\overline{A_i''\zeta_i''}$, $\overline{\zeta_i''\epsilon_i''}$, $\overline{\epsilon_i'''\delta_i''}$ e $\overline{\delta_i'''D_i''}$ sono tutte eguali fra di loro, e ciascuna vale la lunghezza (num. 172) di una delle divisioni in parti eguali, che le linee dei giunti longitudinali sullo sviluppo della superficie d'intrados hanno determinato su ciascuna delle due linee d'imposta: segue da ciò che

$$G = f - g$$

$$G'=f+g$$
.

L'angolo Γ' è complemento dell'angolo $C_4''D_4''S_4'''$, che venne indicato colla lettera Γ_4 , e quindi

La lunghezza $\overline{D_4''f_1''}$, contenendo n' (num. 172) delle n parti eguali in cui venne divisa la retta $\overline{C_4''D_1''}$, vale

$$\frac{n'D_4}{n}$$
,

e, siccome nel triangolo $A_4'' f_4'' D_4''$ si conoscono, il lato $\overline{A_4'' D_4''} = i$ (num. 470), il lato $\overline{D_4'' f_4''} = \frac{n' D_4}{n}$ e l'angolo compreso $\Gamma' = 90^\circ - \Gamma_4$, analogamente a quanto già si ottenne nel numero 172 per la deduzione dei due angoli ∂ e ∂' , si arriva alle equazioni

$$\frac{1}{2}(\Delta' + \Delta) = 45^{\circ} + \frac{1}{2}\Gamma_{i},$$

$$\tan g \frac{1}{2} (\Delta' - \Delta) = \frac{n i - n' D_4}{n i + n' D_4} \cot \left(45^{\circ} - \frac{1}{2} \Gamma_4\right).$$

Effettuando i calcoli, queste equazioni conducono a trovare gli angoli P° e Q° rappresentanti la semi-somma $1/2(\Delta' + \Delta)$ e la semi-differenza $1/2(\Delta' - \Delta)$, per modo che, avendosi

$$\frac{1}{2}(\Delta' + \Delta) = P^{\circ}$$

$$\frac{1}{2}(\Delta'-\Delta)=Q^{\circ},$$

combinando queste ultime per addizione e per sottrazione, si ottengono i seguenti valori di Δ' e di Δ .

$$\Delta' = P^{\circ} + Q^{\bullet},$$

$$\Delta = P^{\circ} - Q^{\circ}.$$

175. Scomposizione delle superficie d'intrados e d'estrados nelle facce sviluppabili dei diversi cunei componenti un'arcata obliqua. - Incominciando dalla superficie d'intrados, si fa questa scomposizione mediante le linee dei giunti longitudinali tracciate per intiero. Per le due linee dei giunti longitudinali A"f" e C"g" (fig. 210), le quali sullo sviluppo passano pei vertici A" e C", ben sovente si fa un'eccezione; la prima di esse si limita alla retta y"z", e la seconda alla retta a" d". Fatta la scomposizione della superficie d'intrados nel senso longitudinale, si eseguisce quella nel senso trasversale, coll'avvertenza che le linee dei giunti trasversali abbiano una lunghezza limitata alla distanza delle linee dei giunti longitudinali, e che in tal guisa risultino alternate da non trovarsi mai due linee dei giunti trasversali, appartenenti a due filari successivi, in continuazione l'una dell'altra. Secondo le rette parallele α" δ", β" ε" e γ" ζ", le quali, come si è detto nel numero 172, danno altrettante direzioni delle linee dei giunti trasversali, conviene generalmente assumere alcune linee dei giunti trasversali effettivi, disponendo queste come risulta nelle parti delle accennate rette, le quali trovansi segnate in grosso sulla figura. Tracciate così queste linee dei giunti trasversali, riesce facile segnarne altre ad esse intermedie. Se dividesi, per esempio, ciascuna delle lunghezze eguali a" \beta", \overline{\beta"}, \overline{\beta"}, \overline{\dagger}, \overl ed ε"ζ" in tre parti eguali, convenientemente unendo questi punti di divisione, si ottengono rette parallele ad α" δ". Secondo queste parallele si possono segnare le linee dei giunti trasversali che sulla figura trovansi fra α'' δ'' , β'' ε'' e γ'' ζ'' , ed ottenere così la scomposizione della parte di sviluppo α'' γ'' ζ'' δ'' . Resta ancora da farsi il tracciamento delle linee dei giunti trasversali fra la retta a" d" e la sinusoide C"G"D", fra la retta ;" " e la sinusoide D"H"A". Dividendo in tre parti eguali ciascuna delle lunghezze $\overline{C''} \alpha''$, $\overline{B''} \gamma''$, $\overline{D''} \delta'''$ e $\overline{A''} \zeta'''$, si ha la scomposizione che trovasi indicata nella figura, la quale scomposizione è fatta in modo da esservi: due file di giunti trasversali fra la retta $\alpha'' \delta'''$ e la parte saliente G'' D''' della sinusoide C'' G'' D'', come pure fra la retta $\gamma''' \zeta'''$ e la parte saliente B'' H''' della sinusoide B'' H'' A''; una sola fila di giunti trasversali fra le stesse rette e le parti rientranti C'' G'' ed A'' H'' delle medesime sinusoidi. Non potendosi adottare per linee dei giunti trasversali effettivi le due rette lm ed no, giacchè sarebbero esse in continuazione delle due $\alpha'' l$ e $\zeta'' n$, si è preso il partito di dividere le lunghezze mp ed q per metà nei punti n e partita, e di segnare i giunti n q e partita.

La scomposizione della superficie d'estrados nelle varie facce sviluppabili dei cunei componenti l'arcata, è completamente subordinata alla scomposizione già eseguita sulla superficie d'intrados. Le linee dei giunti longitudinali devono essere tracciate per intiero, salvo le due A," f," e C," g," (fig. 211), da limitarsi alle rette y," ζ," e α," d,". Le linee dei giunti trasversali si devono segnare in modo che corrispondano a quelle già individuate sullo sviluppo della superficie d'intrados, ossia in modo che, per rapporto alle diverse linee dei giunti longitudinali, abbiano le stesse posizioni rispettive, tanto sullo sviluppo della superficie d'intrados quanto sullo sviluppo della superficie d'estrados. Così, si segnerà sullo sviluppo della superficie d'estrados la fila dei giunti longitudinali, che corrisponde a quelli posti sulla retta $\pi \rho$ (fig. 210) nello sviluppo della superficie d'intrados, col prendere (fig. 210 e 211) $\overline{\gamma_4}'' \pi_4 = \overline{\gamma''} \pi$ e $\overline{\zeta_i}^{"}\rho_i = \overline{\zeta}^{"}\rho$, col condurre la retta $\pi_i \rho_i$, e col segnare su essa le linee degli effettivi giunti trasversali coll'ordine stesso col quale si trovano distribuiti sulla πρ.

Qualora credasi conveniente di tracciare le linee dei giunti sulle proiezioni orizzontali delle superficie d'intrados e d'estrados, l'operazione risulta della massima semplicità: basta segnare le proiezioni orizzontali delle diverse eliche secondo le quali vengono a disporsi le linee dei giunti longitudinali e trasversali che si trovano sugli sviluppi. Così, si ottengono le proiezioni orizzontali di quelle eliche, le quali sugli sviluppi della superficie d'intrados e d'estrados sono rappresentate nelle rette IV VIII, coll'osservare che queste rette intersecano le generatrici 4"4", 5"5", 6"6", 7"7" ed 8"8", coll'abbassare dai punti d'intersezione altrettante perpendicolari a CB, fino ad incontrare le proiezioni orizzontali 44, 55,

66, 77 ed 88 delle stesse generatrici, e coll'unire convenientemente i punti d'incontro, che così si ottengono, sulle or indicate proiezioni orizzontali. Analogamente, volendosi le proiezioni orizzontali delle eliche trasversali, per esempio di quelle che, sugli sviluppi delle superficie d'intrados e d'estrados, sono rispettivamente rappresentate nelle rette \(\beta'' \epsi'' \eps tersecano tutte le generatrici 1"1", 2"2", 3"3",; che per conseguenza le proiezioni orizzontali dell'eliche corrispondenti devono incontrare tutte le rette 11, 22, 33,; che, abbassando da tutti i punti, in cui le rette 1"1", 2"2", 3" 3", sono incontrate dalle β" ε" e β₄" ε₄" delle perpendicolari a CB fino a trovare i loro incontri colle 11, 22, 33,, si hanno in essi altrettanti punti delle domandate proiezioni orizzontali; e che i loro estremi sono dati, dai punti β ed ε per quella curva che trovasi sulla superficie d'intrados, e dai punti β, ed ε, per quella posta sulla superficie d'estrados.

Considerando separatamente le superficie d'intrados e d'estrados, è facile il vedere che, per ciascuna di esse, le proiezioni orizzontali delle eliche trasversali sono curve identiche. Segue da ciò che, fatta ed ottenuta la sagoma di una di esse, riesce facilissimo il tracciamento di tutte le altre, quando si fissino soltanto i loro estremi sulle proiezioni orizzontali delle linee d'imposta e quando fra questi estremi si ponga la sagoma ottenuta. In quanto alle proiezioni orizzontali delle eliche longitudinali, è anche facile riconoscere che esse sono tutte porzioni della proiezione orizzontale dello stesso arco d'elica longitudinale avente le sue due estremità sulle due linee d'imposta. Prolungando sullo sviluppo quella retta parallela alle linee dei giunti longitudinali che passa pel punto di mezzo M" (fig. 215) della generatrice mediana G" H", fino ad incontrare il prolungamento della generatrice d'imposta B" C" e sin oltre la sinusoide B" H" A", riesce facile la costruzione della proiezione orizzontale EMF dell'arco d'elica ad essa corrispondente. Se ora si costruisce una sagoma foggiata come la curva così ottenuta in proiezione orizzontale, serve questa sagoma a segnare le proiezioni orizzontali di tatte le linee dei giunti longitudinali; così, si ottiene la proiezione orizzontale del giunto longitudinale rappresentato sullo sviluppo nella retta a"b", trovando le proiezioni orizzontali a e b corrispondenti ai punti a" e b", posti rispettivamente sulla generatrice d'imposta B" E" e sulla generatrice n" m" passante pel punto b" in cui il giunto a" b" incontra la corda B" A" della sinusoide B" H" A"; disponendo la sagoma della curva EMF in modo che la parte concava EM resti volta verso GG', che l'estremo E coincida col punto a, e che la sagoma EMF passi pel punto b; e finalmente tracciando la curva cd determinata dalla sagoma fra le due rette DC ed AB. Facendo pei giunti longitudinali rappresentati sullo sviluppo nelle rette 1"1", 2"2", 3"5", 4"4", 5"5", 6"6", 8"8", 9"9", 10"10" ed 11"11" quanto si fece per quello rappresentato nella retta a"b", con tutta facilità si tracciano le proiezioni orizzontali delle linee dei giunti longitudinali situate fra BC e KI. Per quelle poste fra AD e KI vale la stessa sagoma, quando si giri in modo che il punto E venga a passare pei punti di divisione che si saranno individuati sulla DL, a partire da D, con distanze eguali a quelle che i punti posti sulla BE hanno da B.

Alcune volte alla figura quadrilatera $C'' \alpha'' l \sigma$ (fig. 210) si sostituisce la figura esagonale $C'' \alpha'' \varphi \chi_{\omega} \sigma$ col prolungare il giunto $g'' \varphi$ fino in χ dove incontra la direzione ψp . Con questa disposizione resta tolta la parte φl del giunto $\alpha'' l$; e viene naturale di sopprimere il giunto $\eta \theta$ e di porre l'altro lm. La modificazione apportata alla figura $C'' \alpha'' l \sigma$, si può pure apportare alla figura $A'' \zeta'' n \tau$.

476. Intersezione delle superficie dei giunti longitudinali coi piani di testa. — Se tagliasi la superficie elicoidale costituente un giunto longitudinale con un piano perpendicolare alle generatrici della superficie d'intrados dell'arcata, l'intersezione che ne risulta è una generatrice della superficie elicoidale medesima; giacchè questa è generata da una retta che, percorrendo l'elica direttrice tracciata sulla superficie d'intrados, si conserva costantemente normale a questa superficie e quindi in un piano perpendicolare alle sue generatrici. Se invece tagliasi l'indicata superficie elicoidale con un piano non perpendicolare alle generatrici della superficie d'intrados, l'intersezione risultante deve essere una linea curva; e questa circostanza ha appunto luogo per le intersezioni delle superficie dei giunti longitudinali coi piani di testa.

Siano: D'G'C' (fig. 216) la proiezione verticale di una porzione della sezione retta della superficie d'intrados di un'arcata obliqua, su un piano perpendicolare alle sue generatrici; DC la traccia orizzontale di un suo piano di testa; CB la proiezione orizzontale di una delle due linee d'imposta dell'indicata superficie; B"C"G"D"A" una parte del suo sviluppo; e C"G"D" la porzione di sinusoide secondo la quale nello sviluppo si trasforma la curva di testa (DC, D'G'C'). Suppongasi che (M, M') sia l'incontro di una linea dei giunti longitudinali della superficie d'intrados colla curva di testa; e nello sviluppo trovisi questo punto rappresentato in M" sulla sinusoide C"G"D".

Per avere un'idea dell'intersezione della superficie del giunto longitudinale passante pel punto (M, M') col piano di testa, usasi cercare la sua tangente nello stesso punto (M, M'). Ora, questa tangente è l'intersezione del piano tangente alla superficie del giunto longitudinale nel punto (M, M') col piano di testa; e questo piano tangente è determinato dalle due tangenti nel punto (M, M') a due linee qualunque, condotte per lo stesso punto (M. M') nell'elicoide costituente la superficie del giunto longitudinale. Fra le infinite linee che pel punto (M, M') si possono tracciare sull'indicato elicoide, conviene considerare l'elica direttrice posta sulla superficie d'intrados e la generatrice della superficie elicoidale stessa. La proiezione orizzontale di questa generatrice, la quale si identifica colla sua tangente nel punto (M, M') cade sulla retta M, MM" perpendicolare a CB, e la sua projezione verticale è diretta secondo O'M'. Per quanto spetta all'indicata elica direttrice, essa proiettasi verticalmente nella curva C' M' G' D', e la retta M'T, tangente in M' all'or accennata curva, dà la proiezione verticale della sua tangente nel punto (M, M'). Essendo M"c" la direzione della retta secondo la quale, nello sviluppo della superficie d'intrados, si dispone l'elica direttrice di cui si parla, ed assumendo per piano verticale di proiezione quello la cui traccia orizzontale è data dalla retta XY, passante per G e perpendicolare a CB, si ha: che la retta d'M', parallela a B'C', rappresenta sullo sviluppo della superficie d'intrados la generatrice passante pel punto (M, M'); che la retta c" M", facente con d" M" l'angolo d" M" c" eguale a quello che le linee dei giunti longitudinali sullo sviluppo della superficie d'intrados fanno colle generatrici, oltre di rappresentare sullo sviluppo l'elica direttrice passante pel punto (M, M'), è contemporaneamente la tangente a quest'elica nel or indicato punto; che, immaginando portato lo sviluppo della superficie d'intrados, sulla superficie stessa, i punti a" e b" in cui le rette d" M" e c" M" incontrano la X Y si portano rispettivamente nei punti (a, M') e (b, b'), in guisa da risultare, sul prolungamento di M'T, la lunghezza $\overline{M'b'} = \overline{a''b''}$; e finalmente che il punto b' è la traccia verticale della tangente all'elica direttrice nel punto (M, M'). Se ora si osserva che la generatrice all'elicoide, costituente il giunto longitudinale passante pel punto (M, M'), è una retta parellela al piano verticale di proiezione, perchè orizzontalmente proiettasi nella retta MM, parallela alla linea di terra XY, immediatamente si viene a conchiudere che il piano tangente alla detta superficie elicoidale nel punto (M, M') deve avere la sua traccia verticale parallela alla projezione verticale O'M' dell'indicata gene-

ratrice. Siccome poi questo piano tangente deve passare per la già più volte nominata tangente all'elica direttrice, la cui traccia verticale si trova nel punto b', risulta che la sua traccia verticale, oltre di essere parallela alla retta O'M', deve anche passare per b'. Questa traccia verticale adunque è completamente determinata e non è altro che la retta b'F' condotta pel punto b' parallelamente ad O'M'. Trovata la traccia verticale del piano tangente nel punto (M, M') alla superficie del giunto longitudinale passante per questo stesso punto, riesce facile trovare l'intersezione dello stesso piano col piano di testa. Il punto F' in cui s'incontrano le tracce verticali b' F' e GG' degli indicati piani è la traccia verticale della detta intersezione, la quale, dovendo di più passare pel punto (M, M), ammette per proiezione verticale la retta F'M'; la corrispondente projezione orizzontale poi trovasi nella retta MC. Conchiudendo si dirà, che la tangente, all'intersezione della superficie del giunto longitudinale, passante pel punto (M, M'), col piano di testa, è definita dalla retta (GMC, F'M'N').

Facendo l'indicata costruzione per tutti i punti i quali, come il punto (M, M'), rappresentano le intersezioni delle eliche direttrici tracciate sulla superficie d'intrados colla corrispondente curva di testa, si possono determinare, mediante le loro proiezioni orizzontale e verticale, le tangenti alle diverse intersezioni delle superficie dei giunti longitudinali con un piano di testa nei punti estremi delle eliche longitudinali tracciate sulla superficie d'intrados. Quest'operazione però è suscettiva di una notevole ed importante semplificazione, a motivo di una singolare proprietà di cui gode il punto F'.

Rammentando che si è indicato con

r il raggio O'G' della sezione retta, con

α l'angolo d'obliquità CGY, con

∂ l'angolo c' M' d' che le linee dei giunti longitudinali sullo sviluppo della superficie d'intrados fanno colle generatrici, e chiamando

φ l'angolo M'O'G' che il raggio O'M' fa col raggio verticale O'G',

ε la distanza O'F' del punto F' dal centro O', si ha: dal triangolo O'K M', rettangolo in K,

 $\overline{M'K} = r \operatorname{sen} \varphi;$

dal triangolo GaM, rettangolo in a, col cateto Ga = M'K

 $\overline{Ma} = r \operatorname{sen} \varphi \operatorname{tang} \alpha;$

e dal triangolo $\mathbf{M}''a''b''$, rettangolo in \mathbf{A}'' , col cateto $\overline{\mathbf{M}''a''} = \overline{\mathbf{M}a}$,

$\overline{a''b''} = r \operatorname{sen} \varphi \operatorname{tang} \alpha \operatorname{tang} \vartheta$.

Se ora s'immagina condotta la retta O'I perpendicolarmente ad F'b', la sua lunghezza risulta eguale ad $\overline{M'b'}$ ed ancora ad $\overline{a''b''}$, cosicchè dal triangolo O'IF', rettangolo in I, immediatamente si deduce

$$\varepsilon = r \tan \alpha \tan \alpha \delta$$
 (1).

Questo valore di ε è indipendente dall'angolo φ , e quindi, qualunque sia il punto che si prende sull'arco D'G'C', la tangente all'intersezione della superficie del giunto longitudinale col piano di testa in quel punto deve avere la sua proiezione verticale passante pel punto F'. Questa rimarchevole proprietà, di cui gode il punto F', gli ha fatto dare il nome di fuoco, mentre la distanza $\overline{O'F'} = \varepsilon$ si chiama eccentricità.

L'eccentricità $\overline{O'F'}$ è suscettiva di una rappresentazione geometrica della massima semplicità. Se sulla retta GY si prende la lunghezza \overline{GN} eguale al raggio $\overline{O'C'}$, se si costruisce il triangolo GNP, rettangolo in N, coll'ipotenusa \overline{GP} sulla direzione DC, e finalmente se si tira la retta PQ parallela a c''b'', ossia facente con PN l'angolo ∂ , si ha: che il cateto \overline{PN} del triangolo PNG viene dato da

$\overline{PN} = r \tan \alpha$;

e che il cateto QN del triangolo QNP si ottiene ponendo

$\overline{QN} = r \tan \alpha \alpha \tan \alpha \delta$.

La lunghezza \overline{QN} adunque rappresenta l'eccentricità ε data dal secondo membro della (1).

Per segnare la proiezione verticale dell'intersezione della superficie costituente un giunto longitudinale con un piano di testa, ecco come si può procedere. Supponendo che vogliasi considerare quel giunto a cui corrisponde l'elica direttrice, rappresentata nella retta ty (fig. 240) sullo svilluppo della superficie d'intrados, e che si domandi l'intersezione di questo giunto col piano di testa di traccia orizzontale D C, si osservi: qual è la generatrice della superficie d'intrados che passa pel punto d'incontro della ty colla corda C" D"

della sinusoide C"G"D"; e qual è il punto della proiezione verticale della sezione retta nel quale verticalmente proiettasi questa generatrice. Essendo b" x, l'indicata generatrice passante pel punto r in cui la retta ty incontra la C"D", ed essendo b' (fig. 218) il punto della proiezione verticale della sezione retta in cui essa proiettasi, determinato in modo che la lunghezza dell'arco C'b' sia eguale allo sviluppo corrispondente C''' b''' (fig. 210), se da t si abbassa la perpendicolare tu su C'''D" e se la lunghezza b'''u si porta da b' (fig. 218) in u', in quest'ultimo punto ottiensi la projezione verticale di quell'estremo della domandata intersezione, il quale trovasi sulla superficie d'intrados dell'arcata. Fatto questo, si osserva che il giunto longitudinale considerato taglia la superficie d'estrados secondo l'elica che nello sviluppo della superficie d'estrados trovasi rappresentata nella retta v z (fig. 211). Questa retta taglia la C, "D," nel punto s e la generatrice della superficie d'estrados corrispondente a questo punto è la d'"y, la quale proiettasi verticalmente sulla proiezione verticale della sezione retta della superficie d'estrados nel punto d' (fig. 218), preso in modo da essere sul raggio passante per b'. Se da v (fig. 211) si abbassa la perpendicolare vx su S"' R" e se portasi la lunghezza d"' x da d' (fig. 218) in x', in quest'ultimo punto si ha la proiezione verticale di quell'estremo della domandata intersezione, il quale trovasi sulla superficie d'estrados dell'arcata. Trovati i due estremi u' ed x' della proiezione verticale dell'intersezione del giunto longitudinale considerato col piano di testa, e determinato il fuoco, si può far passare per u' e per x' una curva concava verso la chiave dell'arcata e tangente in u' alla retta F'u'F,', e questa curva è generalmente sufficiente a dare un'idea della projezione verticale dell'indicata intersezione. Ripetendo quanto si è fatto pel giunto longitudinale, la cui elica direttrice è quella rappresentata sullo sviluppo della superficie d'intrados nella retta ty (fig. 210), per tutti i giunti longitudinali, le cui eliche direttrici sono rappresentate sullo sviluppo della superficie d'intrados nelle linee dei giunti longitudinali intersecanti la retta C" D", si arriva a trovare le proiezioni verticali delle curve secondo le quali il piano di testa, di traccia ozizzontale DC, incontra i giunti longitudinali dell'arcata che su esso vengono a terminare.

Allorquando l'arcata è di grossezza piuttosto grande, riesce insufficiente l'indicato metodo pel tracciamento delle proiezioni verticali delle intersezioni dei giunti longitudinali con un piano di testa; importa considerare fra le superficie d'estrados e d'intrados altre superficie cilindriche ad esse concentriche, e per conseguenza proiettate verticalmente negli archi circolari D_4 C_4 , D_2 C_2 , D_3 C_3 ,......, (fig. 218) col loro centro in O'; fare per ciascuna di queste superficie lo sviluppo, segnandovi sopra le linee dei giunti longitudinali, col·l'operare precisamente come si fece per lo sviluppo della superficie d'estrados; e passare finalmente ad individuare, per ciascuna delle rette concorrenti nel centro O' e dividenti nel numero impari n di parti eguali l'angolo R' O'S'= β , le proiezioni verticali (fig. 217), u_4 , u_2 , u_3 , dei punti in cui gli archi D_4 C_4 , D_2 C_2 , D_3 C_3 , sono intersecati dalla superficie dei giunti longitudinali, e fare questo precisamente col metodo tenuto per determinare i due punti u' ed x' (fig. 218).

Per avere maggiore esattezza nel tracciamento della proiezione verticale di ciascuna delle indicate intersezioni, è bene conoscere le tangenti in tutti i punti u', u_4 , u_2 , u_3 , x' (fig. 217) che si costruiscono per la sua determinazione, e queste tangenti assai facilmente si possono tracciare, quando si conoscono i fuochi corrispondenti a tutti gli archi D'C', D_4C_4 , D_2C_2 , D_3C_3 , R'S' in cui verticalmente proiettansi le accennate superficie cilindriche concentriche a quella d'intrados. Perciò essendo (fig. 218)

 $r, r_4, r_2, r_3, \ldots, r_c$ i raggi $\overrightarrow{O'C'}, \overrightarrow{O'C_4}, \overrightarrow{O'C_2}, \overrightarrow{O'C_3}, \ldots, \overrightarrow{O'S'}$

degli archi D'C', D, C, D, C, D, C, D, C, , M, C, , R'S';

 δ , δ_1 , δ_2 , δ_3 ,, $\delta_n = \Delta$ (num. 175) gli angoli che le linee dei giunti longitudinali, sugli sviluppi delle diverse superficie cilindriche aventi per sezioni rette i detti archi, fanno colle generatrici;

 ε , ε_4 , ε_2 , ε_3 ,, ε_e le distanze focali corrispondenti agli stessi archi:

p il passo costante di tutte le eliche secondo le quali sulle accennate superficie cilindriche si dispongono le linee dei giunti longitudinali;

se ragionasi come venne fatto per ottenere l'equazione (1), immediatamente si ottengono le equazioni

 $\varepsilon = r \tan \alpha \tan \beta$, $\varepsilon_1 = r_1 \tan \alpha \tan \beta_1$, $\varepsilon_2 = r_2 \tan \alpha \tan \beta_2$, $\varepsilon_3 = r_3 \tan \alpha \tan \beta_3$, $\varepsilon_e = r_e \tan g \alpha \tan g \delta_e$.

Ricavando da tutte il valore di tang a, risulta la serie di eguaglianze

$$\frac{\varepsilon}{r \tan \theta} = \frac{\varepsilon_4}{r_4 \tan \theta} = \frac{\varepsilon_9}{r_2 \tan \theta} = \frac{\varepsilon_9}{r_3 \tan \theta} = \frac{\varepsilon_3}{r_3 \tan \theta} = \dots$$

$$= \frac{\varepsilon_6}{r_6 \tan \theta} = \frac{\varepsilon_9}{r_9 \tan \theta} = \frac{\varepsilon_9$$

e, siccome il passo d'un'elica qualunque è eguale allo sviluppo della sezione retta del cilindro su cui è descritta, diviso per la tangente trigonometrica dell'angolo che la retta, secondo cui nello sviluppo della superficie cilindrica si dispone l'elica, fa colle generatrici della superficie cilindrica medesima, si ha

$$p = \frac{2\pi r}{\tan \theta} = \frac{2\pi r_4}{\tan \theta} = \frac{2\pi r_4}{\tan \theta} = \frac{2\pi r_3}{\tan \theta} = \frac{2\pi r_3}{\sin \theta} = \dots = \frac{2\pi r_e}{\tan \theta}.$$

Questa serie di eguaglianze dà

$$r ang \delta = rac{2\pi r^2}{p}$$
,
 $r_4 ang \delta_4 = rac{2\pi r_4^2}{p}$,
 $r_2 ang \delta_2 = rac{2\pi r_2^2}{p}$,
 $r_3 ang \delta_3 = rac{2\pi r_3^2}{p}$,
 $\dots \dots \dots$
 $r_c ang \delta_c = rac{2\pi r_c^2}{p}$,

e quindi la serie di eguaglianze (2) diventa

$$\frac{p \varepsilon}{2 \pi r^2} = \frac{p \varepsilon_4}{2 \pi r_4^2} = \frac{p \varepsilon_9}{2 \pi r_9^2} = \frac{p \varepsilon_3}{2 \pi r_3^2} = \dots = \frac{p \varepsilon_6}{2 \pi r_6^2},$$

Dividendo per $\frac{p}{2\pi}$, si ottiene la serie di eguaglianze

$$\frac{\varepsilon}{r^2} = \frac{\varepsilon_4}{r_4^2} = \frac{\varepsilon_2}{r_2^2} = \frac{\varepsilon_3}{r_2^2} = \dots = \frac{\varepsilon_e}{r_e^2}$$
(3);

da cui immediatamente si deducono le seguenti equazioni determinatrici di ε_1 , ε_2 , ε_3 ,, ε_e , quando si conosce il valore di ε ,

$$egin{aligned} arepsilon_4 &= rac{{r_4}^2}{r^2} \, arepsilon \ , \ & arepsilon_2 &= rac{{r_2}^2}{r^2} \, arepsilon \ , \ & arepsilon_3 &= rac{{r_3}^2}{r^2} \, arepsilon \ , \ & arepsilon & arepsilon & arepsilon \ , \ & arepsilon & arepsilon & arepsilon \ , \ & arepsilon & arepsilon & arepsilon \ , \ & arepsilon & arepsilon & arepsilon & arepsilon \ , \ & arepsilon & arepsilon & arepsilon & arepsilon & arepsilon \ , \ & arepsilon & arepsil$$

Invertendo i diversi membri della serie di eguaglianza (3), si ottiene

$$\frac{r^2}{\varepsilon} = \frac{r_1^2}{\varepsilon_1} = \frac{r_2^2}{\varepsilon_2} = \frac{r_3^2}{\varepsilon_3} = \dots \frac{r_c^2}{\varepsilon_c}$$
 (4).

Il rapporto $\frac{r^2}{\varepsilon}$ rappresenta una terza proporzionale dopo l'eccentricità ε corrispondente all'arco D'C', ed il raggio r di quest'arco. Segue da ciò che, se pel punto O' si conduce il raggio $\overline{O'n'}=r$ perpendicolare alla verticale O'L', se prendesi l'eccentricità $\overline{O'F'}=\varepsilon$ quale risulta dalla formola (1) o dalla costruzione grafica da questa derivante, se si unisce F' con n' e se tirasi n'N' perpendicolare ad F'n', si ha nella lunghezza $\overline{N'O'}$ la rappresentazione grafica del rapporto ε . Determinato il punto N', riesce facilissima la determinazione grafica dei fuochi corrispondenti agli archi D_1C_1 , D_2C_2 , D_3C_3 ,, R'S', giacchè basta di prendere su O'n'X' le lunghezze

 $\overrightarrow{O'n_i}$, $\overrightarrow{O'n_2}$, $\overrightarrow{O'n_3}$,, $\overrightarrow{O'n_e}$, rispettivamente eguali ai raggi r_i , r_2 , r_3 ,, r_e , ed elevare dai punti n_i , n_2 , n_3 ,, n_e altrettante perpendicolari ad N' n_i , N' n_2 , N' n_3 ,, N' n_e . Queste perpendicolari intersecano il prolungamento di N'F' nei punti 4, 2, 3,, e, che sono i fuochi rispettivamente corrispondenti agli archi D_1C_i , D_2C_2 , D_3C_3 ,, R'S', giacchè, per la fatta costruzione, trovasi verificata la serie delle eguaglianze (4).

Avviene ben di frequente che, prendendo $\overrightarrow{0'n'} = r$, il punto N' cade assai lontano e fuori del foglio sul quale si opera. Quando questo arriva, si fa l'indicata costruzione su una stessa frazione $\frac{1}{q}$ di $\overrightarrow{0'n'}$ e di $\overrightarrow{0'F'}$, e le distanze $\overrightarrow{0'1}$, $\overrightarrow{0'2}$, $\overrightarrow{0'5}$,, $\overrightarrow{0'e}$ sono tutte la stessa frazione $\frac{1}{q}$ delle eccentricità ε_{i} , ε_{2} , ε_{3} ,, ε_{e} .

Determinati i punti u', u_1 , u_2 , u_3 ,, x' (fig. 219) della proiezione verticale dell'intersione di un giunto longitudinale con un piano di testa e determinati i fuochi corrispondenti agli archi D'C', $D_4 C_4$, $D_2 C_2$, $D_3 C_3$,, R'S' sui quali i detti punti si trovano, unendo convenientemente tali punti cogli indicati fuochi, ossia F' con u', 1 con u_4 , 2 con u_2 , 3 con u_3 ,, e con x', si hanno nelle rette risultanti le direzioni delle tangenti alla detta curva negli indicati punti, e quindi si può dire che il suo andamento trovasi graficamente determinato con tutta l'esattezza desiderabile.

177. Corona di testa di un'arcata obligua, e curve su essa determinate dalle superficie dei giunti lougitudinali. - Assumendo per piano verticale di proiezione un piano perpendicolare alle generatrici delle superficie d'intrados e d'estrados dell'arcata, come sinora si fece nello studio dell'apparecchio elicoidale, la corona di testa trovasi rappresentata mediante le sue due proiezioni. Per avere questa corona nella vera sua forma, colle curve che i giunti longitudinali su essa determinano, basta immaginare che il piano verticale di traccia orizzontale GC (fig. 220) giri attorno alla sua traccia verticale GL', finchè si trovi esso sul piano verticale di proiezione. Considerando un punto qualunque (u, u') posto sull'intersezione del piano di testa colla superficie d'intrados, nell'indicato moto rotatorio descrive un arco circolare parallelo al piano orizzontale di proiezione ed avente il suo centro sull'asse di rotazione, e si determina la sua posizione u, sul piano verticale di proiezione descrivendo l'arco uv di centro G e di raggio Gu, conducendo per u' la parallela alla linea di terra XY e trovando l'intersezione u_i di questa parallela colla perpendicolare alla linea di terra nel punto ν . Operando, per molti punti dell'arco (G C, G'C'), come si è fatto pel punto (u,u'), riesce agevole avere quest'arco nella vera sua forma in G'C_i.

Se poi si considera sull'intersezione del piano di testa colla superficie d'estrados un punto qualunque (x,x'), si trova la posizione x_i , che esso prende sul piano verticale di proiezione, operando precisamente come si fece pel punto (u,u') onde ottenere il punto u_i . Nella stessa guisa si ottiene la posizione m_i che prende un punto qualunque (m,m') posto sull'intersezione di un giunto longitudinale colla corona di testa.

Nel fare le indicate costruzioni per ottenere più punti, nei quali sul piano verticale di proiezione si portano altrettanti punti delle due curve (GC, G'C') e (GS, L'S'), conviene considerare di preferenza quelli in cui le indicate curve sono incontrate dai giunti longitudinali, perchè così, nel mentre generalmente si ottengono punti sufficienti pel loro tracciamento, si hanno anche le estremità delle intersezioni delle superficie dei giunti longitudinali colla corona di testa sulla quale si opera.

Le due curve G'C₄ ed L'S₄ sono archi ellittici nel caso in cui sono archi circolari le due curve G'C' ed L'S'. Prendendo $\overline{G1} = \overline{O'C'}$ e $\overline{GK} = \overline{O'S'}$, ed innalzando per I e K le due perpendicolari IM e KN ad XY, queste perpendicolari determinano sul prolungamento di GC i due punti M ed N, e le lunghezze \overline{GM} e \overline{GN} rappresentano i semi-assi maggiori delle due ellissi a cui appartengono i due archi G'C₄ ed L'S₄. Se ora si ritengono le denominazioni già stabilite nel numero 470 per quanto si riferisce al raggio $\overline{O'C'}$ della sezione retta della superficie d'estrados, alla grossezza costante dell'arcata nella sezione retta, e all'angolo d'obliquità C GY, e se si chiamano

a il semi-asse maggiore dell'ellisse alla quale appartiene l'arco G'C'.

b il semi-asse minore della stessa ellisse,

A il semi-asse maggiore dell'ellisse di cui fa parte l'arco L'S' e B il suo semi-asse minore,

si ha

$$a = \frac{r}{\cos \alpha}$$
,

$$\Lambda = \frac{r+s}{\cos \alpha}$$
,

$$B = r + s$$
.

Il punto O' costituisce il centro comune delle due ellissi, ed i loro assi maggiori sono orizzontali.

Qualora sul prolungamento della retta L'O' siansi determinati i fuochi corrispondenti all'arco D'G'C' e ad altri archi ad esso concentrici, nella rotazione del piano di testa attorno alla verticale GL' i detti fuochi non si spostano, e quindi le tangenti alle reali intersezioni dei giunti longitudinali coi piani di testa continuano ad incontrare il prolungamento di L'O' negli stessi punti per cui passano le loro proiezioni verticali.

178. Angoli che le tangenti alle intersezioni dei giunti longitudinali coi piani di testa fanno colle tangenti alle rispettive eliche direttrici. - Essendo (M, M') (fig. 216) il punto in cui un giunto longitudinale taglia l'intersezione della superficie d'intrados col piano di testa di traccia orizzontale DC, si ha (num. 176): che la proiezione verticale della tangente all'elica direttrice nel punto (M, M') è data dalla retta M'T; che è la retta F'M'N' la projezione verticale della tangente nel punto (M, M') all'intersezione del giunto longitudinale passante pel punto stesso col piano di testa. Segue da ciò, che l'angolo TM' N' è la proiezione verticale dell'angolo fatto dalle or indicate tangenti, incontrantisi nel punto (M, M'). Se ora vuolsi la vera grandezza di quest'angolo, conviene ribaltare il piano in cui si trova sul piano verticale di proiezione. Ora, il piano di traccia verticale F'b', essendo stato determinato in modo da passare per la tangente all'elica direttrice del punto (M, M'), e di più contenendo esso la tangente nello stesso punto all'intersezione del giunto longitudinale col piano di testa, è appunto quello in cui trovasi l'angolo che si cerca; e che per conseguenza si deve ribaltare sul piano verticale di proiezione. Il punto (M, M') si porta sulla perpendicolare M'T ad F'b', e la sua distanza da b' deve risultare eguale alla distanza reale esistente fra i punti (b, b') ed (M, M'). Quest'ultima distanza già trovasi determinata in M" b", di maniera che, prendendo $\overline{b'}_{\mu} = \overline{M''} \overline{b''}$, si ha nel punto u la posizione presa dal vertice dell'angolo che si cerca, quando siasi ribaltato sul piano verticale di proiezione il piano in cui esso si trova. La tangente all'elica direttrice nel punto (M,M'), essendo la sua proiezione verticale perpendicolare

alla traccia verticale F'b', si dispone nella direzione della retta M'T; e la tangente nel punto (M,M') all'intersezione del corrispondente giunto longitudinale col piano di testa, avendo per proiezione verticale la retta F'N' ed il punto F' per traccia verticale, si dispone secondo la retta $F'\mu$ U. L'angolo domandato della tangente all'elica direttrice e dell'intersezione del giunto longitudinale col piano di testa, nel punto (M,M'), è adunque $T\mu$ U.

Ripetendo l'indicata costruzione per tutti i punti i quali, come il punto (M, M'), rappresentano le intersezioni delle eliche direttrici tracciate sulla superficie d'intrados colla corrispondente curva di testa, si possono determinare tutti gli angoli che le tangenti alle dette eliche fanno colle tangenti alle intersezioni dei giunti longitudinali coi piani di testa. Quest'operazione però è scuscettiva di una notevole semplificazione, a motivo di una singolare proprietà di cui gode il punto H determinato sulla retta F'G', coll'innalzare da μ la retta μ H perpendicolare ad M'T.

Attribuendo alle lettere r, α , ∂ e φ i significati che loro vennero dati nel numero 476, chiamando u la distanza $\overline{O'H}$ ed immaginando condotta per H la retta HL perpendicolare alle due parallele H μ ed O'M', si ha:

$$\begin{split} & \overline{Ga} = \overline{KM'} = r \operatorname{sen} \varphi \,, \\ & \overline{M''a''} = \overline{Ma} = r \operatorname{sen} \varphi \operatorname{tang} \alpha \,, \\ & \overline{b'\mu} = \overline{M''b''} = \frac{r \operatorname{sen} \varphi \operatorname{tang} \alpha}{\cos \delta} \,, \\ & \overline{b'M'} = \overline{b''a''} = r \operatorname{sen} \varphi \operatorname{tang} \alpha \operatorname{tang} \delta \,, \\ & \overline{LH} = \overline{M'\mu} = \overline{b'\mu} - \overline{b'M'} = \frac{r \operatorname{sen} \varphi \operatorname{tang} \alpha}{\cos \delta} (1 - \operatorname{sen} \delta) \,; \end{split}$$

e finalmente, dal triangolo rettangolo O'HL,

$$u = \frac{r \tan \alpha}{\cos \delta} (1 - \sin \delta) \tag{1}.$$

Se ora osservasi che

$$\frac{r\tan \alpha \sin \delta}{\cos \delta} = r\tan \alpha \tan \beta,$$

e che $r \tan \alpha \tan \beta$ (num. 176) rappresenta l'eccentricità ϵ , il valore di u diventa

$$u = \frac{r \tan \alpha}{\cos \delta} - \varepsilon \tag{2}.$$

Questo valore di u non contiene l'angolo φ , e quindi la lunghezza $\overline{O'H}$ è una quantità costante, la quale serve a trovare colla massima facilità gli angoli che le tangenti alle eliche direttrici delle superficie dei giunti longitudinali, nei punti in cui sono incontrate dai piani di testa, fanno colle tangenti alle intersezioni delle dette superficie coi piani medesimi. Così, per trovare l'angolo che la tangente all'elica fa colla tangente alla curva di giunto nel punto (M_i, M_i') si trovi la posizione del punto H o colla costruzione grafica già indicata o mediante la sua distanza u da O', calcolata colla formola (1), oppure colla formola (2); si conduca in M_i' la tangente $M_i'T_i$ all'arco D'G'C'; si abbassi da H la perpendicolare H μ_i su $M_i'T_i$ onde ottenere il punto μ_i ; e si tiri la retta F' μ_i U_i , L' angolo T_i μ_i U_i , O, per meglio dire, il suo supplemento, è l'angolo domandato.

Dal triangolo rettangolo GNP, in cui il cateto \overline{GN} vale r, mentre l'angolo PGN è eguale ad α , si ha

$$\overline{PN} = r \tan \alpha;$$

e dal triangolo QNP, il cui angolo QPN è d, risulta

$$\overline{PQ} = \frac{r \tan \alpha}{\cos \delta}$$
,

$$\overline{QN} = r \tan \alpha \alpha \tan \beta$$
.

Se ora si fa la disserenza fra le due lunghezze PQ e QN, si ha

$$\overline{PQ} - \overline{QN} = \frac{r \tan g \alpha}{\cos \delta} (1 - \sin \delta),$$

ossia la differenza $\overline{PQ} - \overline{QN}$ rappresenta appunto la lunghezza $\overline{O'H} = u$. Ma la lunghezza \overline{QN} rappresenta l'eccentricità ε (num. 476), e quindi

$$\overline{PQ} = \varepsilon + u$$
,

il qual risultato porta a conchiudere che l'ipotenusa PQ del trian-

golo rettangolo PNQ rappresenta quella lunghezza che bisogna portare sulla F'G' a partire dal fuoco F' per avere quel punto H, il quale serve alla spedita e facile determinazione degli angoli che le tangenti alle intersezioni dei giunti longitudinali coi piani di testa fanno colle tangenti alle rispettive eliche direttrici nei loro punti estremi.

Qualora poi vogliasi calcolare l'angolo $T \mu U$, riesce facile dedurlo dal triangolo rettangolo $\mu b' F'$ in cui l'angolo $F' \mu b'$ è eguale all'angolo domandato e per cui riesce agevole trovare le lunghezze dei due cateti $\overline{F'b'}$ e $\overline{\mu b'}$. Il primo degli indicati cateti viene dato da

$$\overline{F'b'} = \overline{F'I} + \overline{O'M'} = \varepsilon \cos \varphi + r$$
,

ed il secondo da

$$\overline{\mu b'} = \overline{0'} \overline{1} + \overline{H} \overline{L} = (\varepsilon + u) \operatorname{sen} \varphi;$$

di maniera che, chiamando ω l'angolo T μ U che la tangente all'elica direttrice nel punto (M, M') fa colla tangente all'intersezione del giunto longitudinale col piano di testa nello stesso punto, si ha

$$tang \omega = \frac{\varepsilon \cos \varphi + r}{(\varepsilon + u) \sin \varphi}$$
 (3).

Dando a φ i diversi valori che corrispondono alle intersezioni dei giunti longitudinali coll'arco secondo il quale il piano di testa taglia la superficie d'intrados, si ottengono i valori di ω corrispondenti.

179. Cunei componenti un'arcata obliqua e cuscinetti d'imposta. — Nella costruzione di un'arcata obliqua in pietra da taglio conviene distinguere i cunei da porsi fra quelli delle due corone, i cunei che hanno una loro faccia sulle corone di testa ed i cuscinetti d'imposta.

I primi riescono di assai facile esecuzione, giacchè due delle loro facce sono superficie cilindriche e le altre quattro porzioni di elicoidi sghembi facili ad ottenersi mediante le loro generatrici rettilinee. Nel tracciare le linee dei giunti sullo sviluppo della superficie d'intrados, si procura generalmente di fare in modo che le facce di questi cunei, appartenenti alla detta superficie, risultino eguali, perchè così si ha il notevole vantaggio della perfetta loro eguaglianza.

Per quanto spetta ai cunei aventi una loro faccia sulle due corone di testa, è da dirsi: che essi ammettono due facce cilindriche, i cui sviluppi risultano dagli sviluppi delle superficie d'intrados e d'estrados dell'arcata; che hanno tre facce elicoidali; e che è piana quella faccia che deve trovarsi sul piano di testa, la quale, nella vera sua forma, si ha dalla figura che rappresenta le corone di testa e le loro intersezioni coi giunti longitudinali, portate a trovarsi sul piano verticale di proiezione. Questi cunei sono diseguali per uno stesso piano di testa, ed un cuneo qualunque, avente una faccia su un piano di testa, ha generalmente il suo eguale dalla parte dell'altro piano di testa.

Per farsi un'idea precisa dei cuscinetti d'imposta, si consideri una porzione (MBCL, G'C') (fig. 224) della superficie d'intrados ed una porzione (MPSL, L'S') della superficie d'estrados dell'arcata, assumendo il piano verticale di proiezione parallelo ad una sezione retta qualunque delle indicate superficie. Siano (BC, C') e (PS, S') le due generatrici d'imposta corrispondenti delle superficie d'intrados e d'estrados: i triangoli, addossati alle due rette B"C" e P"S", rappresentino quelli che risultano disposti lungo le dette generatrici, quando si facciano gli sviluppi delle due accennate superficie; anche le figure quadrilatere a"b"c" e d"e"f"S" siano quelle provenienti dai citati sviluppi; e le rette B"C" e P"S" siano disposte in modo da essere rettangolari le figure B"BCC" e P"PSS".

Se vuolsi ottenere la proiezione orizzontale del cuscinetto le cui facce sviluppabili si hanno nei due triangoli a" g" h" e d" i" k", si conducano le due rette h" l" e k" m" parallele a BC e rappresentanti sugli sviluppi le generatrici passanti pei vertici h" e k"; si prendano le distanze C"l" ed S"m" di queste rette dalle C"B" e S"B" ossia i massimi archi di sezioni rette che il cuscinetto abbraccia sull'intrados e sull'estrados; queste lunghezze si portino rispettivamente in C'h' ed S'k' sugli archi C'G' ed S'L', per avere in h' e k' le projezioni verticali delle ultime indicate generatrici; e dai punti h' e k' così determinati, si conducano due parallele a BC, le quali danno le projezioni orizzontali delle stesse generatrici. Conducendo da h" una perpendicolare a BC, essa passa anche per k" e, nelle indicate parallele a BC, va ad individuare i due punti h e k, che sono i rappresentativi di quei vertici del cuscinetto, i quali sugli sviluppi sono rappresentati nei punti h" e k". La retta hk poi dà la projezione orizzontale di uno spigolo del cuscinetto. Conducendo per a" una perpendicolare a BC, essa passa anche per d",

e la sua parte ad, intercetta fra BC e PS, è la proiezione orizzontale di uno spigolo posto nel piano d'imposta dell'arcata. Analogamente, se per q" si conduce una perpendicolare a BC, essa passa anche per i", e la sua parte gi intercetta fra BC e PS è la proiezione orizzontale di un secondo spigolo situato nel piano d'imposta. Unendo a con h e d con k mediante le projezioni orizzontali di due archi di eliche longitudinali, ed unendo q con h ed i con k mediante le proiezioni orizzontali di due archi di eliche trasversali, si hanno le proiezioni orizzontali di altri quattro spigoli del cuscinetto; e le proiezioni orizzontali di altri due spigoli sono date dalle rette aq e di. Le due facce orizzontalmente projettate nei triangoli mistilinei agh e dik sono cilindriche, ed appartengono rispettivamente alle superficie d'intrados e d'estrados: le due facce, le cui proiezioni orizzontali cadono nei quadrilateri mistilinei ahkd e qikh sono elicoidali, la prima facente parte di un giunto longitudinale e la seconda di un giunto trasversale; e finalmente la faccia rettangolare, orizzontalmente proiettata in a di q, sarebbe quella secondo la quale il cuscinetto appoggierebbe sull'imposta, qualora esso cuscinetto si costruisse in modo da far solamente parte della vôlta e non del piedritto. Generalmente però avviene che al cuscinetto si lascia annessa un'appendice proiettata orizzontalmente in anog e verticalmente in q'p'n'S'C', e quindi la faccia di proiezione orizzontale adiq realmente non esiste nel cuscinetto e soltanto va risguardata siccome una faccia ideale, separante la parte di cuscinetto che appartiene all'arcata dall'altra parte spettante al piedritto. L'intiero cuscinetto, di cui si parla, orizzontalmente si proietta in anogh e verticalmente in q'p'n'S'k'h'C'.

Ciascuno dei due cuscinetti d'estremità, i quali trovansi in corrispondenza degli angoli acuti dei piedritti, ha le due facce d'intrados e d'estrados rappresentate sugli sviluppi in due quadrilateri mistilinei, come a''b''c''C'' e d''e''f''S''. Conducendo per a'' una perpendicolare a CB, essa passa pure per d'', e la sua parte \overline{ad} , compresa fra CB ed SP, rappresenta la proiezione orizzontale di quello spigolo, il quale trovasi nel piano d'imposta dell'arcata, cui appartiene il cuscinetto che si considera. Le rette x''b'' ed y''e'', passanti pei vertici b'' ed e'' ed aventi direzioni parallele a CB, sono rispettivamente, sugli sviluppi, le generatrici delle superficie d'intrados e d'estrados corrispondenti ai detti vertici; di maniera che, prendendo, sull'arco C'G', la parte C'b' lunga come $\overline{G''x'}$ e, sull'arco S'L', la parte S'e' lunga come $\overline{S''y''}$, si ottengono nei

punti b' ed e' le proiezioni verticali delle accennate generatrici. Se per b' ed e' si tirano due parallele a CB, si hanno in esse le proiezioni orizzontali delle stesse generatrici. Abbassando da b" una perpendicolare alla direzione CB, essa passa anche per e" e, sulle definite parallele a CB, determina i due punti b ed e, i quali nella retta \overline{be} danno la proiezione orizzontale di un secondo spigolo del cuscinetto. I due punti c" ed f" hanno le rispettive proiezioni orizzontali in c ed f, dove le perpendicolari, condotte da essi sulla CB, incontrano la retta F L. Unendo c con b ed f con e, mediante le proiezioni orizzontali di due archi di eliche longitudinali, ed unendo a con b e d con e, mediante le projezioni orizzontali di due archi di eliche trasversali, si ottengono le proiezioni orizzontali di altri quattro spigoli. In Cc ed Sf cadono le proiezioni orizzontali di quegli spigoli curvilinei, che corripondono alle intersezioni del piano di testa colle superficie d'intrados e d'estrados; in cf si ha la proiezione orizzontale di quello spigolo, pure curvilineo, che rappresenta l'intersezione del piano di testa col giunto longitudinale, cui, sugli sviluppi delle superficie d'intrados e d'estrados, corrispondono le rette c''b'' ed f''e''; e finalmente in \overline{Ca} e \overline{Sd} cadono le proiezioni orizzontali di quegli spigoli che sono diretti secondo le generatrici d'imposta delle superficie d'intrados e d'estrados. Le due facce, orizzontalmente proiettate nei quadrilateri mistilinei Cabc ed Sdef, sono cilindriche, ed appartengono rispettivamente alle superficie d'intrados e d'estrados dell'arcata; le due facce, le cui proiezioni orizzontali trovansi nei quadrilateri mistilinei chef ed abed, sono elicoidali, e fanno rispettivamente parte di un giunto longitudinale la prima, di un giunto trasversale la seconda; la faccia, avente nella retta S c la sua proiezione orizzontale, è piana, ed è contenuta nel piano di testa; e finalmente il trapezio avente la sua proiezione orizzontale in CadS, costituisce quella figura piana che separa la parte di cuscinetto appartenente al vôlto dall'altra parte spettante al piedritto. Per determinare quest'ultima parte, ben di frequente adottasi la pratica di abbassare da n la perpendicolare nF sulla direzione LS, cosicchè la proiezione orizzontale dell'intiero cuscinetto si ha nella figura c F n a b, mentre la corrispondente proiezione verticale risulta dalla figura q' H' D' S' c' b' C'.

Per uno dei due cuscinetti estremi, posti in corrispondenza degli angoli ottusi dei piedritti, ossia per quello le di cui facce sviluppabili sono rappresentate nei due triangoli mistilinei r''B''s'' e t''B''u'', ecco come si può farne la rappresentazione, mediante le sue due

proiezioni orizzontale e verticale. Se dal punto r' si conduce una perpendicolare a CB, questa perpendicolare passa anche per t", una parte rt di essa trovasi intercetta fra le due rette parallele CB ed SP, e si ottiene così la proiezione orizzontale di quello spigolo, il quale giace nel piano d'imposta. Tirando pei due punti s" ed u" due perpendicolari a CB, fino ad incontrare la PM in s ed u, si hanno quei due punti i quali, uniti rispettivamente coi punti r e t, dànno, nelle proiezioni orizzontali rs e tu di due archi d'eliche longitudinali, le proiezioni orizzontali di due altri spigoli del cuscinetto. In Bs e Pu cadono le proiezioni orizzontali di altri due spigoli curvilinei posti, uno sulla superficie d'intrados e l'altro sulla superficie d'estrados dell'arcata; in su si ha la proiezione orizzontale di quello spigolo, pure curvilineo, il quale rappresenta l'intersezione del piano di testa col giunto longitudinale di proiezione orizzontale rtus; e finalmente in rB e tP risultano le proiezioni orizzontali di quei due spigoli che sono diretti secondo le generatrici d'imposta delle superficie d'intrados e d'estrados. Le due facce orizzontalmente proiettate nei triangoli mistilinei rBs e tPu sono cilindriche, ed appartengono rispettivamente alle superficie d'intrados e d'estrados; è elicoidale la faccia avente per projezione orizzontale il quadrilatero mistilineo rtus; la faccia orizzontalmente proiettata nella retta Ps è piana ed è quella che trovasi nel piano di testa. Finalmente il trapezio, la di cui proiezione orizzontale è rtPB, è la figura piana che marca la separazione della parte di cuscinetto che appartiene all'arcata, dall'altra parte che spetta al piedritto. Per determinare quest'ultima parte e principalmente per togliere l'inconveniente d'un angolo acuto in z, usasi generalmente assumere PD=SF, elevare per D la retta DE perpendicolare a DM e di lunghezza eguale a quella di Fn, e finalmente unire E con v. La proiezione orizzontale dell'intiero cuscinetto in quistione trovasi nella figura rvEDs, e la proiezione verticale iu q' I'ES' u' s' C' q'.

È rimarchevole come i cuscinetti estremi di una stessa imposta, uniti assieme secondo le loro facce piane, costituiscano, quando non si tiene conto delle parti appartenenti al piedritto, un cuscinetto della stessa forma e di lunghezza doppia di ciascuno di quelli intermedii, giacchè si possono disporre le diverse facce corrispondenti in continuazione l'una dell'altra, e giacchè, per essere $\overline{Ca} = \overline{Br} = \overline{ag}$, $\overline{Ca} = \overline{B\beta}$ e $\overline{Sd} + \overline{Pt} = \overline{Ca} - \overline{Ca} + \overline{Br} + \overline{B\beta} = \overline{Ca} + \overline{Br} = 2.\overline{ag}$, risulta $\overline{r\gamma} = t\overline{\delta} = \overline{Ca} + \overline{Br} = 2.\overline{ag}$. Segue da ciò che, costruendo il modello di un cuscinetto intermedio con lunghezza doppia della sua

lunghezza effettiva, e colle sue facce appartenenti alla superficie d'intrados, d'estrados, ed ai giunti longitudinali e trasversali prolungate come lo comporta questa doppia lunghezza, si ha in esso un corpo il quale, tagliato in due parti con un piano verticale passante pel punto di mezzo di quello spigolo rettilineo che è disposto secondo la generatrice d'imposta della superficie d'intrados e facente colla sezione retta un angolo eguale a quello d'obliquità, dà in queste parti il vero modello di ciascuno dei due cuscinetti estremi.

Nelle figure 212 e 215 sono rappresentati in proiezione orizzontale i tre diversi cuscinetti d'imposta per un'arcata obliqua, senza l'imbarazzo di linee estranee ai loro spigoli e colle facce visibili

tratteggiate, onde meglio far risaltare le loro forme.

480. Apparecchio elicoidale applicato solamente alle estremità di un'arcata obliqua. — Si presentano parecchie circostanze nelle quali è necessario costrurre delle arcate oblique molto lunghe, e, quando questo avviene, può tornare utile di applicare l'apparecchio elicoidale solamente alle due estremità e di costrurre vôlte a botte rette per le loro parti di mezzo.

Essendo DABC (fig. 222) la projezione orizzontale di una parte della superficie d'intrados dell'arcata da costruirsi, A' G' B' la projezione verticale della stessa superficie su un piano parallelo alle sue sezioni rette, e D"A"G"B"C" una porzione del suo sviluppo, si divida la corda B"A" della sinusoide B"G"A" in un numero impari di parti eguali, le cui lunghezze siano nei limiti delle grossezze che è permesso assegnare ai cunei, e si tiri la retta B"H" perpendicolare alle due parallele B"C" ed A"D". Se dal punto H" si abbassa la perpendicolare H"I" alla B"A", dovrebbe essa rappresentare la direzione delle linee dei giunti longitudinali sullo sviluppo della superficie d'intrados; ma, siccome questa perpendicolare non soddisfa generalmente alla doppia condizione di passare per un punto di divisione della corda B"A" e di intercettare fra A" ed il suo piede un numero pari di divisioni, è d'uopo assumere per direzione delle linee dei giunti longitudinali sullo sviluppo della superficie d'intrados quella retta la quale, passando per H" e soddisfacendo alle indicate due condizioni, si scosta il meno possibile dalla H"I". Nel caso della figura 222, la direzione delle indicate linee dei giunti longitudinali viene adunque determinata dalla retta H"K". Fatto questo, dai punti di divisione della retta B"A", i quali trovansi fra A" e K", si conducano altrettante parallele alla H"K", e si segnino i punti che esse individuano sulla A"H", dividendola in tante parti eguali quante ve ne sono in A"K". Una di

queste parti di AH" si porti un numero arbitrario di volte, per esempio tre, da H" in F", e per quest'ultimo punto si conduca la comune perpendicolare F" E" alle rette A" D" e B" C". La figura quadrilatera A"F" E"B"G" è lo sviluppo della superficie d'intrados di una delle due parti dell'arcata obliqua, alla quale si può applicare l'apparecchio elicoidale.

Dividendo la retta E"B" nello stesso numero di parti eguali in cui trovasi divisa la F"H" e la retta E"F" nel numero di parti che contiene la B"K", apponendo i numeri 1, 2, 3, 4, 5, 6, 7, a partire da E", tanto per la spezzata costituita dalle due rette E"B" e B"A", quanto per l'altra formata dalle due rette E"F" ed F"A", ed unendo mediante linee rette i punti di divisione aventi gli stessi numeri, si ottengono tante rette parallele fra loro, e quindi anche alla H"K", determinanti le linee dei giunti longitudinali sullo sviluppo della superficie d'intrados, quando si considerino esse per la parte intercetta nella figura quadrilatera E"B"G"A"F". Le linee dei giunti trasversali si assumono secondo direzioni parallele alla corda B"A" della sinusoide B"G"A".

Le figure coperte di tratteggi sono gli sviluppi delle superficie d'intrados dei cuscinetti d'imposta, e le rette condotte pei punti di divisione della E"F" parallelamente a B"C" danno le linee dei giunti longitudinali per la parte di vôlta a botte retta. Per ottenere poi che questa parte di vôlta ben si connetta a quella costrutta coll'adottare l'apparecchio elicoidale, conviene che i cunei, i quali trovansi dove l'una si separa dall'altra, penetrino contemporaneamente in ambedue e che abbiano per conseguenza la disposizione che apparisce dalla figura sullo sviluppo della superficie d'intrados.

Con metodi in tutto analoghi a quelli che vennero svolti nel numero 175 e successivi, riesce agevole fare tutte le operazioni che diffusamente vennero spiegate per le arcate oblique coprenti un'area parallelogrammica, determinare le facce sviluppabili dei diversi cunei, trovare le intersezioni delle superficie dei giunti longitudinali col piano di testa di traccia verticale AB, ottenere gli angoli delle tangenti alle eliche direttrici dei giunti longitudinali colle accennate intersezioni nei punti in cui esse incontrano la superficie d'intrados, e studiare i cuscinetti d'imposta.

481. Arcate oblique di struttura laterizia. — Quanto sinora si è detto sull'apparecchio elicoidale suppone che, nella costruzione delle arcate oblique, vogliansi impiegare cunei in pietra da taglio. Riesce però facile il comprendere come questo sistema d'apparecchio

serva anche per le arcate oblique da costruirsi con mattoni; purchè questi si dispongano per filari, diretti secondo gli andamenti delle eliche corrispondenti alle direzioni delle linee dei giunti longitudinali sullo sviluppo della superficie d'intrados, e misuranti su questa superficie una larghezza eguale alla loro dimensione minima. Le superficie poliedriche continue, separanti un filare dall'altro, che così si ottengono, sensibilmente si confondono colle superficie elicoidali costituenti i giunti longitudinali; e d'altra parte la malta, che di necessità si pone tra un mattone e l'altro, contribuisce a togliere gli inconvenienti del non perfetto combaciamento delle facce di un mattone qualunque con quelle dei mattoni che lo circondano.

I mattoni da porsi sui due piani d'imposta delle arcate oblique, non possono conservare la forma parallelepipeda; ed importa tagliarli in modo che le loro facce, da posarsi sul detto piano d'imposta, siano inclinate alle facce, da collocarsi nelle direzioni dei giunti longitudinali, di angoli eguali a quelli che le linee dei giunti longitudinali stessi fanno colle generatrici negli sviluppi delle superficie cilindriche sulle quali i mattoni devono essere posti in opera. Pei mattoni che devono avere una loro faccia sulla superficie d'intrados, l'angolo d'inclinazione della faccia da collocarsi sul piano d'imposta colla faccia da porsi nella direzione dei giunti longitudinali, è quello che nel numero 172 venne indicato colla lettera d: per i mattoni componenti gli strati superiori il detto angolo è compreso fra l'angolo de quello che nel numero 174 venne chiamato A. Per schivare l'inconveniente di far eseguire con forme speciali o di tagliare tutti i mattoni da porsi sul piano d'imposta, ben di frequente si costruiscono i cuscinetti d'imposta in pietra da taglio colle norme che vennero date nel numero 179, ma in modo che gli sviluppi delle loro facce d'intrados presentino le direzioni ab, cd, ef,..., (fig. 214) delle linee dei giunti trasversali parallele alla corda di una sinusoide di testa, e le direzioni qb, ad, cf.... delle linee dei giunti longitudinali rigorosamente perpendicolari alla stessa corda.

Anche i mattoni, i quali presentano una loro faccia sui piani di testa, non possono conservare la forma parallelepipeda: giacchè, considerando per ciascuno di essi una delle due facce che trovasi nella direzione di un giunto longitudinale, lo spigolo di questa, che deve cadere nel piano di testa e che fa parte dell'intersezione del piano stesso col giunto longitudinale, invece di fare un angolo retto colla tangente all'elica direttrice del giunto considerato, fa un angolo differente che si imparò a determinare e che venne indicato colla let-

tera w nel numero 478. Segue da ciò, che tutti i mattoni, i quali hanno da presentare una loro faccia sulla fronte, dovrebbero essere tagliati in modo, che gli spigoli destinati a rimanere nella fronte stessa facciano angoli differenti cogli spigoli della faccia d'intrados diretti secondo le eliche direttrici longitudinali. La determinazione di questi angoli costituisce un'operazione lunga, ma possibile; il lavoro però di tagliare tutti i mattoni, a seconda degli angoli determinati, risulta di difficile esecuzione e non conveniente, giacchè guasta appunto i mattoni sulla faccia che maggiormente importa di conservare intatta. Generalmente trovasi conveniente nella pratica, di considerare diverse parti dell'intersezione di un piano di testa colla superficie d'intrados; di determinare per il punto di mezzo di ciascuna di queste parti l'angolo che la tangente all'intersezione del giunto longitudinale, collo stesso piano di testa, fa colla corrispondente tangente all'elica direttrice; e di far costrurre, con forme speciali a seconda degli angoli determinati, i mattoni necessari all'eseguimento delle porzioni delle fronti corrispondenti alle parti considerate sull'intersezione di un piano di testa colla superficie d'intrados. Con questo ripiego, si ottengono mattoni la cui forma assai facilmente si presta ad un accurato lavoro delle fronti, purchè le diverse parti considerate sulla detta intersezione non siano troppo lunghe e non eccedano la lunghezza di 1 metro.

Per due mattoni, da porsi in una stessa fronte simmetricamente alla chiave, avviene che, collocandoli l'uno di seguito all'altro, in modo che siano in perfetto combaciamento le due facce destinate a restare sulla fronte, le quattro facce laterali dell'uno si portano in prosecuzione delle corrispondenti facce laterali dell'altro. Quest'osservazione, la cui esattezza è confermata dalla formola (5) del numero 178, giacche per due valori dell'angolo o eguali e di segno contrario si hanno pure due valori di tang o eguali e di segno contrario e quindi due valori supplementari dell'angolo ω, ha la sua utilità pratica. Essa fa vedere che, quando si ottengono i mattoni per le fronti tagliando mattoni parallelepipedi, le due parti di ognuno di questi si possono disporre simmetricamente per rapporto alla chiave; e che, quando i mattoni di fronte si vogliono fabbricare con forme speciali, queste devono essere talmente fatte che due a due somministrino mattoni, i quali, pure a due a due, posti in contatto per la faccia che deve rimanere sulla fronte, compongano un parallelepipedo rettangolo.

Ben di frequente si costruiscono arcate oblique di struttura late-

rizia, coi coronamenti, ossia coi cunei delle fronti, in pietra da taglio.

182. Costruzione delle arcate oblique. - Quanto sinora si è detto sull'apparecchio elicoidale, pone il costruttore in grado di dare il progetto di un'arcata obliqua qualunque, mette in evidenza quali siano le forme delle diverse parti componenti l'arcata, e facilmente conduce ad ottenere le principali ed essenziali loro dimensioni. Per rapporto al modo di far eseguire il taglio dei diversi cunei, quando devono essere di pietra, non si possono incontrare difficoltà di sorte; le costruzioni geometriche, di cui lungamente si parlò, colla massima facilità conducono ad ottenere i pannelli delle facce piane e delle facce sviluppabili, non che le necessarie dimensioni lineari ed angolari; il sistema di generazione delle facce sghembe trovasi ben definito, ed è facile fissare sui pannelli d'intrados e d'estrados gli estremi di quante generatrici si vogliono di queste superficie. Per due pannelli dell'intrados e dell'estrados di uno stesso cuneo intermedio, i vertici corrispondenti si riferiscono agli estremi di generatrici delle superficie elicoidali; e, dividendo in parti eguali due lati corrispondenti, i punti di divisione situati nello stesso modo sull'uno e sull'altro lato si riferiscono ad altre generatrici delle stesse superficie elicoidali. Pei cunei di fronte, conviene che sui pannelli delle loro facce d'intrados e d'estrados siano anche segnate le parti, che loro corrispondono, delle rette a cui sono parallele le linee dei giunti trasversali negli sviluppi delle superficie d'intrados e d'estrados delle arcate, perchè così la determinazione di punti riferentisi agli estremi di generatrici delle superficie elicoidali longitudinali si fa precisamente come per un cuneo intermedio. Del resto, il taglio dei cunei per arcate oblique si fa colle norme che vennero date nei nnmeri 28, 29, 30, 31, 32, 35 e 34 del volume il quale tratta dei materiali da costruzione.

Alcuni ingegneri vogliono che prima di dar mano all'esecuzione di un'arcata obliqua in pietra da taglio, debbasi fare in grandezza naturale il disegno delle figure necessarie a ben determinare le facce sviluppabili ed a ben definire le fronti dei diversi cunei. Questo disegno, pel quale è indispensabile di ben verificare le dimensioni, si eseguisce in prossimità del cantiere della pietra da taglio, su un suolo orizzontale di pianelle, di mattoni, di gesso, di cemento o di legno, solidamente costrutto, affinchè le linee, che si dovranno segnare sopra, possano conservarsi per tutto il tempo della durata del lavoro. Esso serve di guida agli scarpellini nell'esecuzione del lavoro di tagliare le pietre, in quanto permette ai medesimi il

confronto delle facce piane dei cunei che stanno lavorando, con quelle che effettivamente devono presentare, e la verificazione delle dimensioni che ai medesimi devono dare. Conviene però osservare che, per le arcate molto grandi, questo disegno al naturale può riuscire di difficile esecuzione a motivo delle difficoltà che s'incontrano nel maneggio di lunghi regoli e di grandi compassi, per cui, in tali circostanze, molti pratici reputano miglior consiglio di fare il detto disegno nella scala di 1/10. Non è però da dirsi che sia impossibile la costruzione di un'arcata obliqua senza questo disegno al naturale od in iscala molto grande: le costruzioni stesse, di cui lungamente si è parlato nei precedenti numeri e che l'ingegnere deve eseguire per dare il progetto del lavoro, permettono di dedurre tutti quei dati che possono occorrere agli scarpellini per il taglio dei cunei, e quando l'ingegnere usi le debite cure nella somministranza di questi dati, si può benissimo fare senza l'indicato disegno.

Il collocamento in opera dell'armatura è, come per tutte le vôlte in generale, il lavoro che precede l'esecuzione della muratura delle arcate oblique. I cavalletti delle armature si dispongono in modo che gli assi dei loro pezzi principali si trovino in piani paralleli ai piani di testa, ed il manto si costruisce generalmente con tavole di spessezza più o meno grande, secondo che i cavalletti sono più o meno spaziati fra di loro, e secondo che la vôlta deve essere più o meno pesante. I primi, e si può dire i principali movimenti che si verificano nelle armature, hanno luogo durante la costruzione delle arcate che devono sopportare, ed è appunto in questo periodo che importa adoperare tutti i mezzi per evitarli. Oltre la contrazione dovuta alla compressione dei legnami ed alle imperfezioni nelle unioni, a cui le armature trovansi soggette nella costruzione di qualsiasi vôlta, in quelle destinate alla costruzione di arcate oblique si verifica un movimento di torsione, che ha per effetto di spingerle all'infuori dei piani di fronte dalle parti degli augoli acuti dei piedritti, ed all'indentro dalle parti degli angoli ottusi. Lo stesso effetto ha luogo sui cunei: quelli situati dalle parti dei detti angoli acuti hanno tendenza a sortire dai piani di testa; a rientrare quelli posti dalle parti degli angoli ottusi; e questo fa si che, malgrado tutte le precauzioni che si possono prendere per evitare tali movimenti, pure riesce assai difficile ottenere che risultino perfettamente piane le fronti delle arcate oblique. Dopo la loro ultimazione, si trova quasi sempre una leggiera sporgenza verso i piedritti con angolo acuto ed una rientranza verso quelli con angolo ottuso. La spiegazione di questi fenomeni è assai facile a darsi: i filari dei cunei, che si posano sul manto a misura del progresso della costruzione di un'arcata obliqua, sono in discesa verso gli indicati angoli acuti dei piedritti; essi dunque tendono a portarsi verso queste parti spingendosi all'infuori dei piani di testa, spingendo l'armatura poi nello stesso senso, e facendo nascere i fenomeni contrarii dalle parti dei piedritti cogli angoli ottusi.

Le precauzioni che abitualmente si prendono onde opporsi, per quanto è possibile, ai notati inconvenienti, consistono in un perfetto sbadacchiamento di tutti i cavaletti dell'armatura, collegandoli nel senso perpendicolare alle fronti, mediante tiranti accuratamente posti in opera ed assicurati mediante chiavarde ed allacciature di ferro, e facendo anche contribuire il manto a questo concatenamento dei diversi cavalletti, coll'inchiodare ad essi tutte le tavole di cui è costituito. È anche prudente di puntellare all'infuori i cavalletti delle fronti in vicinanza dei piedritti cogli angoli acuti, e questo si può fare mediante robusti puntelli inclinati, solidamente infissi nel suolo od appoggiati a ritegni immobili. Quando si teme qualche movimento nei cunei delle fronti, si possono rilegare a due a due i primi quattro o cinque dalle parti degli spigoli di angoli diedri acuti, ed impiegare, per quest'operazione, barre di ferro uncinate, che, penetrando nei cunei, vanno ad ancorarsi nella muratura dei piedritti ove sono stabilmente assicurate.

Dalle parti verso le quali trovansi gli angoli ottusi dei piedritti non sono necessarie le indicate precauzioni, giacchè al movimento di rientranza delle centine si oppone il complesso dell'armatura, ed all'analogo movimento dei cunei di fronte fa ostacolo la muratura. Dalle parti dei piedritti cogli angoli acuti, la cosa è ben diversa, giacchè, tendendo effettuarsi all'infuori i detti movimenti, non sono essi contrastati da alcun ostacolo materiale.

Sovente, invece di fare il manto con grosse tavole poste a contatto, si dispongono sui cavalletti dei travicelli ad intervalli eguali alla loro larghezza, e trasversalmente ad essi si inchiodano sottili tavole a contatto, le quali permettono di avere una superficie, per continuità e generazione, più conveniente di quella che si ottiene con grosse tavole disposte nel senso delle generatrici della superficie d'intrados dell'arcata da costruirsi.

Fatta l'armatura, prima di dar mano a collocare sul manto i materiali che devono formare il vôlto, è necessario tracciare su esso alcune linee e principalmente le due curve di testa e le eliche rappresentanti i giunti longitudinali sulla superficie d'intrados. Per segnare le curve di testa, si fissano dei regoli verticali in corrispondenza delle imposte; da un regolo all'altro, all'altezza dell'estradosso e nel piano di ciascuna fronte, si distende una funicella o meglio un filo di ferro; mediante un filo a piombo, lasciato cadere o dalla detta funicella o dal detto filo di ferro, si determinano sul manto diversi punti; e con un'asta flessibile si uniscono tutti questi punti fra di loro, onde ottenere le due cnrve secondo le quali devono essere posti gli spigoli esteriori dei cunei aventi una loro faccia sulle fronti. È indispensabile che gli indicati regoli verticali siano fissati ai piedritti ed affatto indipendenti dall'armatura, affinchè i movimenti che questa può prendere non facciano variare le loro posizioni. Tracciate le due curve di testa, si fa su esse la divisione che vi determinano le linee dei giunti longitudinali dell'intrados, desumendo i dati necessarii dallo sviluppo della superficie d'intrados e dalla corona di testa; si marca il posto che devono occupare i cunei componenti le corone; e si tracciauo sul manto, mediante cordicelle o mediante regoli flessibili, tanto gli archi d'elica corrispondenti ai giunti continui, quanto quelli che si riferiscono ai giunti discontinui. Per fare questi tracciamenti è necessario avere due punti per ciascuna delle eliche longitudinali e per ciascuna delle eliche trasversali che si vogliono tracciare. È facile desumere le posizioni delle due estremità delle indicate eliche dallo sviluppo della superficie d'intrados, il quale serve anche a verificare se il fatto tracciamento è esatto, coll'osservare se le eliche incontrano le diverse generatrici della superficie d'intrados, di cui si hanno le rappresentative sullo sviluppo, alle convenienti distanze da uno dei piani di fronte.

Dopo il tracciamento delle curve di testa, delle linee dei giunti longitudinali e delle linee dei giunti trasversali sul manto viene il collocamento in opera dei materiali che devono formare l'arcata. Questi materiali si pongono in opera per porzioni di filari elicoidali, limitati nel senso della loro lunghezza, secondo risalti posti nella direzione delle generatrici della superficie d'intrados dell'arcata. Quest'avanzamento della costruzione della vôlta, in modo simmetrico rispetto alle imposte e parallelamente alle generatrici, deve essere rigorosamente osservato, onde ripartire egualmente il peso della vôlta su ciascuna delle due parti caricate dell'armatura, ed evitare i dannosi accidenti che avvengono sovente quando si collocano i materiali del vôlto per filari intieri determinati dai giunti continui.

A motivo delle modificazioni di curvatura che subisce la superficie

superiore del manto pel costiparsi e pei movimenti dell'armatura, è prudente consiglio quello di tagliare i cunei di chiave e quelli a essi adiacenti quando trovasi già eseguito tutto il resto dell'arcata; e, per dare più sicuramente a questi cunei le dimensioni convenienti, riesce vantaggioso di rilevare esattamente lo spazio che essi devono occupare.

Durante la posa dei materiali sul manto di un'arcata obliqua, bisogna verificare se le due curve di testa, tracciate come precedentemente si è detto, non si alterano per l'inflettersi del manto e per gli spostamenti dell'armatura; e, trovandosi qualche deviazione, importa di subito rettificare il loro tracciamento.

Allorquando trattasi di costrurre un'arcata obliqua con struttura laterizia, si segnano sul manto alcune eliche longitudinali, poste a tali distanze da comprendere un certo numero esatto di filari di mattoni, e generalmente un numero non maggiore di cinque o di sei. Se l'arcata deve essere fatta con cuscinetti d'imposta in pietra da taglio, è bene che queste eliche siano quelle nelle cui direzioni trovansi i lati curvilinei longitudinali delle loro facce d'intrados.

185. Brevi cenni su altri apparecchi per la costruzione delle arcate oblique. — Apparecchio ortogonale parallelo. Quest'apparecchio consiste nell'assumere: per linee dei giunti trasversali sullo sviluppo della superficie d'intrados, sinusoidi parallele alle sinusoidi di testa, e per linee dei giunti longitudinali, curve, i cui elementi siano normali alle dette sinusoidi, quando si suppongano esse infinitamente vicine, ossia le traiettorie ortogonali delle sinusoidi stesse; per linee dei giunti longitudinali e trasversali sull'intrados, le curve secondo cui su esso si dispongono le accennate traiettorie e sinusoidi, e per generatrice delle superficie dei giunti longitudinali e dei giunti trasversali, una linea retta la quale si muova restando normale alla superficie d'intrados e passando per le curve secondo cui si saranno disposte, le traiettorie ortogonali, se trattasi dei giunti con tinui, le sinusoidi, se è quistione dei giunti discontinui.

Apparecchio ortogonale convergente. Quest'apparecchio conviene per le arcate oblique molto lunghe, allorquando la loro parte centrale si vuol costrurre adottando le disposizioni convenienti alle arcate rette, e quindi serve esso per porzioni di arcate coprenti figure trapezie, in cui uno dei lati non paralleli è perpendicolare alle due basi, che hanno la direzione delle linee d'imposta. I piani verticali passanti pei due lati non paralleli del trapezio, sufficientemente prolungati, s'incontrano secondo una retta verticale, e si può imma-

ginare divisa la superficie d'intrados della vôlta in zone, mediante piani verticali convergenti nell'indicata intersezione. Le linee, che così restano determinate sulla superficie d'intrados, si dispongono sullo sviluppo di questa superficie secondo curve sinusoidali facili a tracciarsi. Secondo porzioni di queste curve, si assumono le linee dei giunti trasversali, e secondo le loro traiettorie ortogonali le lince dei giunti longitudinali. Per quanto spetta alle superficie dei giunti, si sogliono esse determinare in modo: che quelle dei giunti longitudinali o continui siano generate da una retta, la quale si muove restando normale alla superficie d'intrados e passando per le curve, secondo cui sulle superficie d'intrados si dispongono le dette traiettoie ortogonali; che quelle dei giunti trasversali, o discontinui, siano piane e passanti per l'intersezione dei piani verticali determinati dai due lati non paralleli del trapezio coperto dalla vôlta. Invece di assumere piane le superficie dei giunti trasversali, si può anche dar loro quella forma che corrisponde alle superficie sghembe generate da una retta la quale, passando per le sezioni prodotte nella superficie d'intrados dai piani verticali convergenti nell'intersezione di quelli che limitano la vôlta obliqua, si mantenga normale alla superficie d'intrados di quest'ultima.

Apparecchio cicloidale. L'ingegnere francese signor Hachette fu il primo ad ideare ed a mettere in pratica l'apparecchio cicloidale. In quest'apparecchio, s'incomincia a determinare la lunghezza l dei cunei di fronte in modo che essa sia una parte aliquota del prodotto p della lunghezza dell'asse dell'arcata per il seno dell'angolo d'obliquità. Si assume per intersezione della superficie d'intrados col piano di testa un arco circolare, che abbia tale lunghezza da contenere un numero impari n delle accennate lunghezza dei cunei. Di quest'arco poi, per cui si conosce la corda e lo sviluppo, si determinano il raggio, l'ampiezza, la saetta e si segnano su esso tutte le divisioni in parti eguali di lunghezza l.

Dopo di ciò, s'immagina un cilindro retto avente la stessa base e la stessa altezza del cilindro obliquo, a cui appartiene la superficie d'intrados dell'arcata; ed il primo si suppone tagliato con piani infinitamente vicini e paralleli alle sue basi. Sullo stesso cilindro retto che, avendo una base comune col cilindro obliquo, contiene anche l'arco di testa della superficie d'intrados dell'arcata, si considerano le generatrici corrispondenti ai già indicati punti di divisione del detto arco, non che altre aventi sulla superficie cilindrica la stessa distanza di quelle; e si suppone che gli infiniti circoli corrispondenti agli accennati piani seganti ruzzolino sul piano simul-

taneamente tangente al cilindro retto ed al cilindro obliquo secondo le loro generatrici più alte, e che si fermino quando i loro centri sono venuti sull'asse del cilindro obliquo. In questo movimento i diversi punti delle definite generatrici descrivono archi di cicloide, ed il luogo geometrico di tutti i punti di una stessa generatrice del cilindro retto è, sul cilindro obliquo, una certa curva, chiamata elica cicloidale dal signor Hachette. Le eliche cicloidali, corrispondenti ai diversi punti che si determinano sui due archi di testa della superficie d'intrados, col dividerli in parti eguali di lunghezza l, rappresentano le linee dei giunti longitudinali sulla detta superficie d'intrados. Le superficie di questi giunti poi sono superficie rigate, e la generazione di una di esse risulta dal movimento di una retta la quale, passando costantemente per l'asse del cilindro obliquo e per un'elica cicloidale, si conserva parallela ai piani di testa; cosicchè le intersezioni delle superficie dei giunti longitudinali coi piani di testa sono rette normali all'arco di testa della superficie d'intrados, ossia altrettanti raggi dell'arco stesso. Le superficie dei giunti trasversali si fanno piane e parallele ai piani di testa.

Sullo sviluppo della superficie d'intrados, le linee dei giunti longitudinali, che incontrano le linee d'imposta, dividono queste in tante parti eguali quante sono unità nel rapporto $\frac{p}{l}$ —q. Tracciando

le n-1 generatrici corrispondenti ai punti, che danno le n divisioni dell'arco di testa in parti eguali di lunghezza l, non che le q-1 sinusoidi passanti pei punti di divisione delle linee d'imposta è parallele alle sinusoidi di testa, si hanno in totale sullo sviluppo n+1 generatrici e q+1 sinusoidi, e, convenientemente unendo tutti i punti nei quali queste linee s'intersecano, si ottengono le linee dei giunti longitudinali. In quanto poi al modo di unire fra di loro gli accennati punti d'intersezione, è facile il dedurlo quando si ricordi la trasformazione del cilindro retto in cilindro obliquo, per ottenere le eliche cicloidali. Risulta da questa trasformazione che l'andamento di un'elica cicloidale qualunque si può determinare sulla superficie del cilindro obliquo, portando su diverse sue sezioni parallele ai piani di testa, a partire dalla generatrice che passa per l'estremo dell'elica cicloidale che vuolsi tracciare, altrettante lunghezze, le quali stiano alle distanze delle dette sezioni dell'accennato estremo (contate queste distanze sulla generatrice), come la lunghezza p sta alla lunghezza dell'asse del cilindro obliquo; di maniera che, per ottenere l'andamento di una linea dei giunti longitudinali sullo sviluppo della superficie d'intrados, basta unire fra

loro quei punti d'intersezione delle generatrici colle sinusoidi, per cui si ha, che la distanza dalla generatrice passante per l'estremo della linea di giunto che si considera (contata questa distanza sulla sinusoide) sta alla parte di generatrice intercetta fra la sinusoide stessa ed il detto estremo. come la lunghezza p sta alla lunghezza dell'asse del cilindro obliquo. In quanto alle linee dei giunti trasversali, sono esse archi di sinusoide parallele a quelle di testa.

Apparecchio in cui, sulla superficie d'intrados, sono eliche le linee dei giunti longitudinali e archi paralleli ai piani di testa le linee dei qiunti trasversali. L'apparecchio cicloidale fa nascere l'idea di un altro apparecchio, il quale si può considerare come una modificazione di quello elicoidale. Esso consiste nell'assumere un arco circolare per intersezione della superficie d'intrados con un piano di testa, linee rette perpendicolari alle corde delle sinusoidi di testa per linee dei giunti longitudinali sullo sviluppo della superficie d'intrados, ed archi di sinusoidi paralleli alle dette sinusoidi di testa per linee dei giunti trasversali. In quanto alle superficie dei giunti, possono essere piane e parallele ai piani di testa quelle dei giunti trasversali, rigate quelle dei giunti longitudinali. Per la generazione di queste ultime, si può supporre che una retta si muova, conservandosi in un piano parallelo ad un piano di testa e passando costantemente per l'asse della superficie cilindrica costituente l'intrados dell'arcata, nonchè per le eliche secondo le quali su essa si dispongono le linee dei giunti longitudinali dello sviluppo,

Quest'apparecchio, al pari dell'apparecchio cicloidale, può riuscire di qualche utilità pratica, a motivo della facilità con cui permette di eseguire la lavoratura dei cunei; giacchè, oltre di riescire eminentemente facile il taglio delle facce piane, quello delle superficie d'intrados, basta una semplice squadra, con un braccio curvo sagomato secondo un arco circolare di raggio eguale a quello dell'arco circolare costituente l'intersezione della superficie d'intrados col piano di testa, per ottenere diverse generatrici delle superficie dei giunti longitudinali. Questa squadra si dispone col suo lato curvo sulla superficie d'intrados del cuneo per cui si vogliono lavorare i giunti longitudinali, in modo che il detto lato risulti parallelo alle facce piane, ossia ai giunti trasversali. Il lato rettilineo avendo una direzione perpendicolare a quello curvo, converge al centro della sezione dell'intrados, in corrispondenza della quale trovasi il detto lato curvo della squadra, e quindi si dirige secondo una generatrice di un gianto longitudinale.

184. Maniere di togliere gli spigoli degli angoli acuti nelle

arcate oblique e nei loro piedritti. — Nei ponti, i quali presentano una grande obliquità, l'angolo formato dai piani di testa colle facce laterali delle spalle è assai ottuso da una parte, mentre dall'altra è troppo acuto, di maniera che lo spigolo corrispondente può venir rotto al minimo urto, se pur si giunge a poterlo conservare fino al termine della costruzione. Per ovviare a quest'inconveniente, molti mezzi si presentano, ed in questo numero si parlerà di quelli maggiormente usati.

S'immagini la sezione fatta al livello dell'imposta nei due piedritti di un ponte obliquo con una sola arcata, e siano ACB (fig. 225) ed FED i due angoli che questa sezione presenta verso la medesima fronte, acuto il primo, ottuso il secondo. Sul lato CA dell'angolo acuto prendasi un punto G, per questo punto elevisi la perpendicolare GH ad AF, e si trovi il suo incontro H colla ED. La detta perpendicolare interseca la linea d'imposta CB nel punto I e, immaginando per I il piano verticale di traccia orizzontale IK, parallelo ad AF, questo piano, che si suppone parallelo al piano verticale di proiezione, taglia la superficie d'intrados dell'arcata secondo una curva ben determinata (IK, I'L'K'). Se ora s'immagina descritta la superficie conica, che ha il suo vertice nel punto H e che ha per direttrice l'indicata curva, riesce agevole determinare l'intersezione (GE, I'M'E') di questa superficie col piano di testa; e, se prendesi per superficie d'intrados dell'arcata fra i due piani verticali IK ed AF, quella parte delle definita superficie conica che fra essi trovasi intercetta, si ha una strombatura che toglie dal vôlto ogni angolo acuto. Questa strombatura chiamasi a bocca di campana; venne ideata da Buck, distinto costruttore inglese, il quale fece accurati studi sull'apparecchio elicoidale; ed assai facilmente si può essa ottenere, segnando sull'intrados dei diversi cunei di fronte e sulla loro faccia di testa quelle parti che loro corrispondono delle due curve I'L'K' ed I'M'E' e facendo saltare in ischeggie la parte di pietra che resta al di fuori della superficie conica sulla quale le dette curve si trovano. È bene determinare il punto G in modo che, essendo C'b' la direzione dell'intersezione del piano d'imposta col piano di testa, la parte I'c' della curva I'M'E' sia apparentemente lunga come le altre parti della stessa linea, che trovansi intercette fra le intersezioni della superficie dei giunti longitudinali col piano di testa. Si toglie l'angolo acuto del piedritto, facendolo di tal forma che nella sua sezione orizzontale non siavi il triangolo CGI.

La strombatura a bocca di campana è adunque un mezzo, il quale serve a togliere gli angoli acuti delle spalle e delle teste delle

arcate oblique; esso però produce uno smanco un po' forte nelle arcate cui si applica, e non riesce conveniente che nei ponti obliqui a grandi luci. Un altro mezzo per togliere i detti angoli acuti, il quale conviene per arcate di qualsiasi dimensione, è il seguente. Preso il punto G (fig. 224) ad una certa distanza dal vertice dell'angolo acuto, si conduca per esso la retta GI perpendicolare ad AF, si divida per mezzo la CE in L, e si tiri la retta IL. Fatto questo, s'immagini il piano verticale di traccia orizzontale IL, e, come risulta dall'ultima citata figura, in cui si suppone preso per piano verticale di proiezione un piano parallelo alla sezione retta dell'arcata, si determini l'intersezione (IL, I'L') di questo piano colla superficie d'intrados. La superficie cilindrica, avente per direttrice la detta intersezione e le sue generatrici orizzontali e parallele a GI, taglia il piano di testa secondo la curva (GL, G'L'), e produce uno smanco o strombatura che toglie l'angolo acuto della testa della vôlta. Sovente, per ragione di simmetria, si fa la strombatura anche dalla parte dell'angolo ottuso. Si prendono EM = CG ed EK = CI, si tira la retta KL, si trova l'intersezione (KL, K'L') del piano verticale di traccia orizzontale KL colla superficie d'intrados dell'arcata, s'immagina la superficie cilindrica avente per direttrice la detta intersezione e le sue generatrici orizzontali parallele a KM, e si trova l'incontro (ML, M'L') di queste superficie col piano di testa. L'esecuzione materiale di queste strombature non presenta difficoltà alcuna. Segnando sull'intrados dei diversi cunei di fronte e sulla loro faccia di testa quelle parti che loro corrispondono delle curve (GL, G'L'), (IL, I'L'), (ML, M'L') e (KL, K'L'), ed individuando su queste curve alcuni punti che siano gli estremi di generatrici delle definite superficie cilindriche, si ha quanto basta per dare allo scarpellino una guida sicura, affinchè convenientemente possa lavorare le superficie delle strombature. - Per togliere l'angolo acuto ACB, basta fare il relativo piedritto di tal forma, che nella sua sezione orizzontale non siavi il triangolo IGC; e, quando si fa la strombatura anche dalla parte dell'angolo ottuso, generalmente si fa in modo che non siavi il triangolo KME nella sezione orizzontale del relativo piedritto.

Quando l'obliquità di un ponte ad una sola arcata non è molto grande, si ommettono generalmente le strombature, e solo si cerca di togliere gli angoli acuti delle spalle. Per raggiungere lo scopo, può convenire il ripiego di addossare ad ogni fronte di ponte due paraste, disposte come, in elevazione ed in sezione orizzontale secondo il piano determinato dalla retta XY, appare dalla figura 225.

La lunghezza \overline{ab} si assume eguale alla larghezza \overline{cd} ; è un rettangolo la sezione orizzontale della parasta situata dalla parte del piedritto coll'angolo acuto, un trapezio quella della parasta situata dalla parte del piedritto coll'angolo ottuso. Queste paraste sono tagliate nel senso della loro altezza dalla cornice d'imposta dell'arcata e, al disopra di questa cornice, continuano per tutta l'altezza della fronte del ponte con sezioni orizzontali rettangolari perfettamente identiche di larghezza $\overline{a'b'} = \overline{c'd'} = \overline{ab} = \overline{cd}$. Questa disposizione fa sì che al livello dell'imposta e dalla parte del piedritto coll'angolo ottuso siavi un risalto $\overline{b'e'}$, il quale non trovasi dalla parte del piedritto coll'angolo acuto, e, per togliere questo piccolo inconveniente di dissimetria, si può fare in modo che l'addossamento delle paraste ai piedritti, sotto l'imposta, abbia luogo come risulta dalla figura 226.

Nei ponti obliqui con più arcate, la necessità di tenere le facce laterali delle pile parallele alla corrente, obbliga di assegnar loro una sezione orizzontale parallelogrammica, la quale non permette più che i rostri abbiano sezioni orizzontali semicircolari. Queste sezioni devono riuscire simultaneamente tangenti ai due lati delle sezioni delle pile, i quali sono diretti nel senso delle loro lunghezze, e riesce facile ottenere i loro contorni con due archi circolari convenientemente raccordati. Sia EABF (fig. 227) una porzione della sezione orizzontale di una pila di ponte obliquo, XY la direzione del suo asse ed AB quella retta che definisce il piano verticale secondo cui il rostro si può immaginare addossato alla pila. Prolungando le due rette AE e BF in modo che abbiasi $\overline{Aa} = \overline{Bb} = 1/2\overline{AB}$, risulta la retta ab incontrante in C l'asse XY, e, conducendo pei punti C, A e B tre rette rispettivamente perpendicolari ad ab, EA ed FB, la prima viene incontrata dalle altre due nei punti O ed O'. Se si fa centro in O e con raggio OA si descrive un arco di circolo, esso è tangente in A alla direzione EA, passa per C ed è tangente in questo punto alla retta ab; giacchè le rette OA ed OC, per costruzione, sono perpendicolari ad EA ed ab, e giacchè, per l'eguaglianza dei due triangoli rettangoli aAO ed aCO siccome aventi l'ipotenusa Oa comune ed i due cateti Aa e Ca eguali fra di loro, si ha $\overline{0}$ A = $\overline{0}$ C. Se poi si fa centro in 0' e si descrive un arco di circolo con raggio O'C, quest'arco è tangente in C colla retta ab, passa per B ed è tangente in quest'ultimo punto alla direzione FB; perchè le rette O'C ed O'B sono per costruzione perpendicolari alle rette ab ed FB, e perchè, a motivo dell'eguaglianza dei due triangoli rettangoli O'Cb ed O'Bb, siccome aventi comune l'ipotenusa O'b ed eguali i due cateti \overline{Cb} e \overline{Bb} , risulta $\overline{O'C} = \overline{O'B}$. I due archi circolari AC e BC e la retta AB costituiscono il totale contorno della sezione orizzontale del rostro.

I rostri con sezione orizzontale triangolare mistilinea sono anche possibili nei ponti obliqui. Preso un punto qualunque C (fig. 228) sull'asse XY della pila, ma in modo che abbiasi DC maggiore della metà di AB, si tirano le due rette AC e BC, si dividono per metà nei due punti G ed H, si innalzano in questi punti due rette ad esse perpendicolari, e si determinano le loro intersezioni O ed O' colle perpendicolari rispettivamente condotte per A e B alle due direzioni AE e BF. Il contorno della sezione orizzontale del rostro viene dato dalla retta AB, dall'arco circolare AC di centro O e di raggio OA, e dell'arco circolare BC di centro O' e di raggio O'B.

ARTICOLO III.

Ponti di legname.

485. Principali tipi di ponte di legname. — I ponti con incavallature rette, quelli a travate rettilinee e quelli con archi, costituiscono i principali tipi dei ponti di legname che ancora si adottano nelle moderne costruzioni.

I sostegni di questi ponti ben di frequente sono di legname, alcune volte però si fanno di struttura murale, e questa principalmente viene adottata per la costruzione delle spalle o testate. Gli appoggi intermedii prendono il nome di pile allorquando sono di muratura, e chiamansi palate ovvero stilate quando sono di legname.

486. Palate. — Una palata consta generalmente di robusti pali C (fig. 229), detti colonne, fitti nel terreno e disposti in una fila parallela alla direzione della corrente. Un architrave A è situato sulle teste delle colonne, tagliate in guisa da trovarsi le loro estremità superiori in uno stesso piano orizzontale. Uno o più ordini di fasce orizzontali F, e, se fa bisogno, altre fasce oblique F', saldamente riuniscono il sistema. Queste fasce talvolta sono semplici e congiunte alle colonne senza incastro, ma soltanto con caviglie; tal'altra, nell'intento di dare maggiore fermezza al sistema, si fanno doppie, ossia si dispongono a mo' di filagne e controfilagne, affinchè da una parte e dall'altra abbraccino ad incastro le colonne. Le palate poi devono estendersi a tutta la larghezza del ponte; e la fascia orizzontale più bassa si mette generalmente appena al di sotto del livello delle acque magre. — Le colonne si

pongono a distanze eguali nelle palate per ponti di strade carreggiabili; e generalmente in quelle per ponti di strada ferrata si pone una colonna sotto ciascuna rotaia ed una colonna in corrispondenza di ciascuna delle due fronti del ponte.

In protrazione delle palate, al di qua ed al di là, si piantano ordinariamente dei pali P, che sono rilegati alle colonne per mezzo della fascia orizzontale più bassa. Servono questi pali per maggior rinforzo della palata; e quelli che si trovano dalla parte verso la quale arriva la corrente, tagliati con altezza decrescente fino alle acque magre, si collegano, per ogni palata, mediante una trave C', chiamata cappello o parti acqua, destinata a difendere la palata stessa contro la violenza degli urti che potrebbero aver luogo nei corsi d'acqua che in tempi di piene trascinano ghiacci, tronchi di alberi ed altre ingenti moli galleggianti. Alla trave costituente il cappello trovasi generalmente addossato un prisma di legno, che rivolge contro la corrente uno spigolo o una faccia arrotondata, che generalmente si guernisce di lamiera di ferro inchiodata alle due facce adiacenti.

Se il corso d'acqua attraverso il quale vuolsi costrurre un ponte di legno è tale che in tempi di piena discendano copiosi e grossi galleggianti, può convenire l'uso di speroni isolati o staccati dalle palate, affinchè a queste non si comunichino gli urti ricevuti da quelli. Questi speroni si pongono innanzi, ma assai vicini alle palate; generalmente si assegna loro la forma risultante dalla figura 250, e gli assi dei loro pali P sono nello stesso piano degli assi delle colonne della palata che difendono. Se però la stabilità delle palate trovasi ben assicurata e dall'abbondante loro lunghezza e da una robusta struttura, diviene superflua l'indicata precauzione degli speroni isolati; e più frequentemente torna conveniente il collocare innanzi ciascuna palata e sul prolungamento della sua direzione uno o più pali, i quali giovino a distogliere i galleggianti dal correre ad urtare, obbligandoli a dirigersi verso gli spazii liberi intermedii alle palate.

Trattandosi di costrurre palate molto alte, non sempre riesce facile di trovare pali sufficientemente lunghi da impiegarsi come colonne, ed in questo caso si ha ricorso ad appositi espedienti, i quali sono diretti ad ottenere una solida fondazione, mediante pali piantati nel terreno, per stabilirvi sopra le colonne.

Uno di questi espedienti consiste: nel piantare a rifiuto di maglio tanti pali P (fig. 251) quante devono essere le colonne C; nel tagliarli allo stesso livello, di qualche poco inferiore a quello delle

acque magre; nello stringere le sommità dei detti pali con un ordine orizzontale f di filagne e controfilagne; nel piantare nei pali P dei robusti perni in ferro, disposti secondo i loro assi; nel collocarvi sopra le corrispondenti colonne C, facendo in modo che in questi penetrino pure i detti perni; nel serrare i piedi delle colonne fra un secondo ordine f' di filagne e controfilagne; e nello stringere bene tutto il sistema mediante caviglie di ferro orizzontali ed altre verticali. La palata trovasi così divisa in due parti; quella inferiore serve di basamento alla superiore ed è da questa affatto indipendente. Segue da ciò che, avvenendo di dover rinnovare le colonne, le quali vanno soggette a sollecito deperimento, specialmente nelle loro estremità inferiori, ove sono frequentissime le vicende dell'umido e del secco, non è necessaria la demolizione della parte inferiore della palata, la quale, trovandosi costantemente sott'acqua, per lungo tempo si può conservare illesa.

In quei fiumi nei quali trovasi una considerevole altezza d'acqua, è prudente consiglio stabilire le colonne C (fig. 232) di ciascuna palata sopra un basamento formato di un doppio ordine di pali P. Si dispongono i pali in due file parallele, in modo che gli assi dei pali che compongono una stessa fila, sieno tutti in un piano verticale distante di poco più di un metro dall'altro piano verticale in cui giacciono gli assi dei pali dell' altra fila. Le sommità dei pali di ciascuna fila sono strette dalle filagne e controfilagne f; alle due file di pali sono appoggiate per traverso le banchette B, in modo che ciascuna di queste riposi sopra due pali posti uno incontro all'altro; e sul mezzo di tali banchette si elevano le colonne, chiudendo ed assicurandone le basi con un ordine f' di filagne e controfilagne. Tutti i pezzi del sistema devono essera solidamente uniti mediante caviglie, alcune orizzontali ed alcune verticali.

Qualora non si giudichino sufficientemente assicurate le estremità delle colonne C coll'appoggiarle sulle banchette B e col serrarle fra le filagne e controfilagne f', si può far uso di puntelli o gambi di forza G, disposti come appare dalla figura 233.

Le dimensioni da darsi alle sezioni rette dei pali componenti le stilate, variano coll'essenza del legname, colla distanza dei pali di una stessa stilata, colla distanza delle stilate, colla loro altezza e col massimo carico che esse devono sopportare. Generalmente si può ritenere: che i pali di una stessa stilata si pongono a distanza di metri 0,75 a 1,50 da asse ad asse; che la loro sezione retta ha il diametro di metri 0,35 a metri 0,50 quando è circolare, ed il lato di metri 0,25 a 0,40 quando è quadrata.

187. Palate a cavalletto. — Pei ponti molto alti, destinati a sopportare grandi pesi e nei quali agli appoggi si vogliono assegnare distanze un po' considerevoli, invece delle semplici palate di cui si è parlato, altre se ne possono adoperare più complesse e più resistenti. Nella figura 254, in proiezione su un piano normale all'asse del ponte ed in sezione orizzontale secondo il piano determinato dalla retta XY, si ha la rappresentazione di una di queste palate. Essa consta di undici pali di fondazione, otto dei quali sono disposti in due file parallele.

I pali P, in numero di sei, sono quelli che direttamente sopportano la palata e la pressione che questa riceve dal ponte; i tre pali P' costituiscono le fondazioni dell'avambecco della palata; ed i due pali P' danno le fondazioni del retrobecco, fatto per meglio consolidare la palata contro l'azione della corrente. Le teste superiori degli accennati undici pali di fondazione sono collegate fra loro mediante travi orizzontali F, disposte in senso longitudinale, trasversale e diagonale. Superiormente ai pali intermedii P si elevano otto grosse travi T, inclinate in senso opposto, le quali si riuniscono ad un architrave orizzontale A. Il cavalletto formato colle indicate otto travi e coll'architrave è rinforzato dalle filagne F', dai puntoni P'" e dal cappello o parti-acqua C. Tre ordini di staffe S saldamente collegano il cappello alle travi P" ed alle due anteriori delle travi T. La fronte arrotondata del parti-acqua è coperta di lamiera di ferro, e questo per meglio proteggerla contro l'urto della corrente. Contro le otto travi T ed al livello dell'ordine superiore delle filagne F', trovano appoggio altrettanti saettoni s, che, inclinati in senso opposto a quello delle travi suddette, servono a sostenere due mensole orizzontali M, le quali compiono la palata. I varii pezzi componenti la descritta palata trovansi connessi fra loro mediante convenienti incastri e calettature, mediante robuste staffe e chiavarde di ferro.

Per quanto spetta alle dimensioni da darsi ai diversi pezzi componenti una palata a cavalletto, è da dirsi che esse dipendono essenzialmente dalla qualità del legname che entra nella sua composizione, dal modo con cui i diversi pezzi trovansi distribuiti e connessi, dall'altezza della palata e dal massimo carico che essa deve sopportare. Nella costruzione del ponte provvisorio in legno sul Po, presso Pontelagoscuro, per la ferrovia Bologna-Padova, si adottarono palate a cavalletto del tipo di quella descritta. La distanza fra mezzo e mezzo di due palate successive è di metri 25,50; l'altezza delle palate sul piano passante per le teste dei pali di fondazione è poco

più di 7 metri; ed è larice rosso il legname impiegato nella loro costruzione. I pali di fondazione P, P' e P', si impiegarono col diametro di metri 0,50; le travi T, i puntoni P''', il cappello C e le mensole M hanno sezione retta rettangolare i cui lati sono metri 0,40 e metri 0,35; l'architrave A ha sezione retta quadrata di metri 0,40 di lato; le filagne F, F' e le staffe S' hanno sezione retta rettangolare di metri 0,50 per 0,20; ed i saettoni s hanno sezione rettangolare di metri 0,50 per 0,25.

183. Testate di legname. — Le testate di legname si costruiscono con forme e con disposizioni analoghe a quelle che si usano per le palate.

Per un ponte sostenuto da palate semplici (num. 186), come in sezione orizzontale chiaramente appare dalla figura 235, ogni testata consta: delle colonne C, eguali in numero a quelle delle palate, ben rilegate da superiore architrave, da fasce orizzontali e da fasce oblique; delle colonne C', coi loro assi posti in due piani verticali simmetricamente disposti rispetto l'asse del ponte e divergenti dalla parte del terrapieno che conduce la strada sul ponte; e di un tavolato composto di tavoloni inchiodati dietro le dette colonne, oppure piantati fra diversi ordini di filagne e controfilagne, che rilegano il sistema delle colonne. Le colonne C' non sono di eguale altezza, ed esse decrescono a misura che si allontanano dall'asse della strada, in modo da assecondare il pendio delle terre che devono sostenere: le stesse colonne sono superiormente rilegate da una trave inclinata. Qualora si dubiti che l'azione della spinta delle terre possa danneggiare la palata e produrre il suo rovesciamento verso il corso d'acqua, riesce facile l'opporvisi, piantando una fila di pali P e rilegandoli alle colonne C mediante tiranti t. I pali P hanno le loro teste ad un livello più basso di quello a cui si trovano le teste delle colonne C, ed i tiranti t si dispongono in modo che ascendano andando dai pali P alle corrispondenti colonne C.

Ben di frequente le testate dei ponti di legname non diversificano dalle palate intermedie. L'argine stradale si termina quanto più si può vicino alla testata, assegnando alle sue facce il natural declivio delle terre e fortificandolo al suo piede con opportune opere di difesa contro le acque. Fra la palata poi che serve di testata e l'argine stradale, si pongono opportune travi appoggiate su questo e su quella; e su queste travi si stabilisce quella parte di suolo stradale che cade fra l'argine ed il ponte propriamente detto.

189. Ponti di legname con incavallature rette. — Le palate di questi ponti sono generalmente del tipo di quelle che vennero

descritte nel numero 186, ed il sistema che esse portano è costituito di più pezzi, il cui numero e la cui disposizione, varia generalmente colla distanza delle palate stesse.

Sugli architravi che coronano le singole palate vi sono le mensole M (fig. 236), il cui numero è eguale a quello delle colonne delle palate stesse. Queste mensole sono disposte in modo che ciascuna di esse corrisponde direttamente al di sopra d'una colonna, e danno appoggio ad altrettante travi longitudinali T costituenti la principale ossatura del palco. Per impedire che le dette travi longitudinali si abbassino nei loro mezzi, si pongono due saettoni S incontranti le palate non al disotto del livello delle acque massime, e a questi si aggiunge generalmente una sottotrave o chiave intermedia C. Qualora anche le mensole M siano un po'lunghe, nell'intento di impedire che le loro estremità si abbassino, conviene rinforzarle mediante la saetta s. Se finalmente i saettoni S risultano molto lunghi, per impedire che s'inflettano, si stabiliscono appositi ritegni sulla loro lunghezza, e questi ritegni generalmente si ottengono mediante staffe O ed o, dirette perpendicolarmente ai saettoni e fissate alle mensole ed alle travi longitudinali. Su queste travi longitudinali si stabilisce la strada, e per questa si usano le disposizioni che verranno indicate in apposito numero.

I ponti di legname, aventi tutti i membri rappresentati nella citata figura 256, convengono per portate, ossia per distanze fra le palate, comprese fra 12 e 16 metri; per portate comprese fra 9 e 12 metri si possono tralasciare le piccole saette s e le piccole staffe o; per palate variabili fra 7 e 9 metri basta rinforzare le travi longitudinali coi soli saettoni S e colla sottotrave C; per portate fra 4 e 7 metri sono sufficienti i soli saettoni S; e finalmente per portate inferiori a 4 metri non è necessario alcun rinforzo alle travi longitudinali, di cui, tutto al più, si può diminuire la portata libera facendo uso delle mensole M.

La descritta struttura, applicata a portate che raggiungono o che sono prossime a 16 metri, esige sovente che le travi longitudinali fra due palate successive si formino con due pezzi congiunti testa a testa; ed importa che questa congiunzione non si faccia cadere fuori della sottotrave C. I membri componenti l'intiero sistema vogliono essere uniti e rinforzati mediante fasciature e mediante chiavarde di ferro; e, quale debba essere l'opportuna distribuzione di questi mezzi di collegamento e di consolidamento, potrà ciascuno facilmente comprenderlo da sè medesimo. In quanto alle dimensioni delle sezioni rette dei diversi pezzi componenti le incaval-

lature, si può ritenere che esse variano tra metri 0,25 e 0,40, convenendo: il limite inferiore pei piccoli ponti sui quali non si deve effettuare il passaggio di grandi pesi, il limite superiore per le grandi portate e per ponti sui quali devesi operare il transito di grandi carichi.

La lunghezza di 16 metri non si deve ancora ritenere come il limite massimo delle portate da adottarsi nei ponti con incavallature rette, e non si può andare incontro ad inconvenienti, quando si spinge questo limite fino a 20 metri. Volendosi però adottare portate maggiori, è imperiosa necessità di adoperare legnami con grandi dimensioni e quindi costosi, per cui conviene rinunziare al tipo dei ponti con incavallature rette e ricorrere ad altro tipo più conveniente.

Nei ponti con incavallature rette, per strade carreggiabili, le colonne delle palate, le travi longitudinali e tutti i membri che a queste servono di rinforzo si pongono sempre a distanze eguali. Quest'equidistanza però non si osserva nei ponti per strade ferrate, nei quali si pone generalmente una trave longitudinale coi corrispondenti membri di rinforzo sotto ciascuna rotaia ed in corrispondenza di ciascuna fronte.

Allorquando un ponte di legname con incavallature rette deve servire per strada carreggiabile, sopra le travi longitudinali T (fig. 257), poste a distanze eguali, si mettono le travi trasversali o traversoni t coi lati della sezione retta variabile da metri 0.20 a 0.50 e distanti di circa 1 metro l'uno dall'altro. Questi traversoni servono d'appoggio alla coperta formata di tavoloni longitudinali della grossezza di metri 0,10 a 0,12, inchiodati ai traversoni medesimi. Ai limiti della larghezza del palco sono infitte nei trasversoni colonnette verticali c, costituenti i membri principali del parapetto, da cui vuol essere attorniato il ponte per la sicurezza delle vetture e dei passeggieri. Queste colonnette possono essere assicurate dai puntelli interni i e dai puntelli esterni e, connessi alle estremità dei rispettivi traversoni. Il parapetto si compie generalmente mediante una trave orizzontale o cappello o, assicurato sulle teste delle colonnette con incastro a maschio e femmina, e mediante le spalliere pure orizzontali s inserite con eguali incastri nei fianchi delle colonnette. Non occorre che le colonnette sieno tante quanti sono i traversoni, ma generalmente basta che esse si trovino di due in due traversoni. Sulla coperta si stabilisce ben di frequente uno strato di tavoloni posti per traverso, ed inchiodati alla coperta medesima. Invece di questo suolo di tavoloni per traverso, sovente si costruisce

sulla coperta un pavimento a schiena (fig. 253), ossia un'inghiaiata oppure una selciata. Per tenere bene incassato il pavimento si collocano ai fianchi del tavolato due travi o due grossi tavoloni P aderenti ed assicurati alle colonnette dei parapetti, che prendono il nome di sponde od anche di paraghiaia. Sì l'uno che l'altro degli indicati due metodi, diretti ad ottenere il suolo stradale sul ponte, hanno i loro vantaggi ed i loro inconvenienti. Quello che con ogni cura bisogna procurare di ottenere, consiste nel fare in modo che i tavoloni della coperta possano fruire, per quanto si può, del beneficio dell'aria, non ponendoli a contatto l'uno dell'altro: convien coprirli con una spalmatura di sostanze idrofughe, per difenderli, per quanto è possibile, dall'umidità, che è la causa per cui presto s'infradiciano e per cui frequentemente occorre di rinnovarli.

Nei ponti provvisorii di legname ad incavallature rette, che talvolta avviene di dover costrurre per le strade ferrate, quasi sempre si stabiliscono le incavallature sotto le rotaie, e queste si pongono in opera su longarine insistenti alle travi longitudinali delle dette incavallature. L'intiero ponte si copre generalmente con un tavolato costituito da tavoloni disposti trasversalmente ed inchiodati sulle travi longitudinali, e la parte di questo tavolato che trovasi fra le due rotaie dello stesso binario si copre con lamiera metallica, per riparare il nonte dai gravi danni che vi potrebbe apportare la caduta di carboni accesi nel passaggio delle locomotive. Si può anche sopprimere il tavolato in mezzo alle due rotaie del binario, ed in sua vece si pone una coperta formata con piastre di ghisa. Volendosi, si possono anche porre in opera le rotaie sopra traversine, e per fare questo si inchioda alle travi longitudinali un tavolato di robusti tavoloni; su questo si mette uno strato di minuta ghiaia, o di quelle materie che si impiegano nella formazione dei ballast, contenuto fra appositi paraghiaia; e quindi si pongono le traversine che devono ricevere le rotaie.

190. Norme per la determinazione delle dimensioni dei diversi pezzi dei ponti con incavallature rette. — Per questa determinazione è necessario innanzi tutto conoscere: il peso dell'unità di volume del legname che vuolsi impiegare nel costrurre il ponte, il qual legname generalmente suol essere larice rosso; il peso dell'unità di volume dei ferri che occorre impiegare per le solide connessioni dei legnami; il peso dell'unità di volume di quello strato di materiale che sovente trovasi sulla coperta, come inghiaiata, selciata, ballast; il sovraccarico riferito al metro quadrato di suolo stradale o al metro lineare di via ferrata ad un solo binario, secondo

che trattasi di una strada carreggiabile o di una strada ferrata. In seguito alle indicazioni che vennero date nel numero 150, dove si parlò dei carichi permanente ed accidentale gravitanti sulle arcate dei ponti di struttura murale, riesce agevole dedurre gli indicati elementi in modo conveniente alla risoluzione del problema che costituisce lo scopo del presente numero.

Suppongasi di dover calcolare una delle dimensioni della sezione retta di ciascuno dei pezzi di un ponte di legname con incavallature rette per strada carreggiabile, in cui le travi longitudinali sono rinforzate dalle mensole M, dalla sottotrave C, dai saettoni S e dalle saette s, come risulta dalla figura 259.

La grossezza del tavolato costituente la coperta ed una delle due dimensioni della sezione retta delle travi trasversali t sono i primi elementi da determinarsi. Per questa determinazione si procede precisamente come nel numero 66, dove si parla della grossezza dei tavolati dei solai e di una delle dimensioni della sezione retta dei travicelli, giacchè la coperta di un ponte in legno per via carreggiabile e le sue travi trasversali si possono supporre nelle precise ed identiche condizioni dei tavolati e dei travicelli dei solai.

Premesso questo, si consideri la metà \overline{AB} della trave longitudinale compresa fra gli assi di due pali corrispondenti di due palate successive; tenendo conto del sovraccarico, del materiale costituente il suolo stradale, della coperta, delle travi trasversali e dei ferramenti necessarii a porre in opera quanto trovasi sulle travi longitudinali, si faccia il totale peso, sopportato dalla definita metà di trave longitudinale, supposta appartenere ad un'incavallatura intermedia; e questo peso dividasi per la metà della distanza, fra asse ed asse, delle due palate successive fra cui trovasi l'incavallatura che si considera. Così facendo, ottiensi nel quozieute il peso p riferito all'unità di lunghezza di trave longitudinale, supposto questo peso uniformemente distribuito.

Dopo di ciò, bisognerebbe trovare quali pressioni la trave longitudinale esercita sulla parte \overline{AE} della mensola M e sulla parte \overline{DB} della sottotrave C, onde poter studiare l'equilibrio dei pezzi di rinforzo M, C, S ed s. Trattandosi però di pressioni su basi estese, non si conosce secondo quali leggi esse si ripartiscono, ed è necessario ricorrere ad ipotesi, le quali non possono a meno che condurre a risultati d'approssimazione.

Siccome le travi longitudinali, mediante fasciature e mediante chiavarde di ferro, sono generalmente fermate e fortemente assicurate alle mensole ed alle sottotravi, e siccome d'altronde il peso delle travi longitudinali stesse, delle travi trasversali, del tavolato e di quanto su esso permanentemente ed accidentalmente può trovarsi, contribuiscono a mantenere le travi longitudinali contro le mensole e le sottotravi, la parte ED di una trave longitudinale può essere considerata siccome un solido prismatico orizzontalmente collocato sui due appoggi E e D, incastrato alle sue due estremità e caricato, per ogni unità della sua lunghezza, del peso p, più ancora del peso proprio q per l'unità di lunghezza di trave longitudinale. Partendo da questa ipotesi, riesce facile instituire la conveniente equazione di stabilità, affinchè la trave longitudinale non si rompa per pressione, e determinare una dimensione della sua sezione retta, oppure la lunghezza $E\overline{D}$ di quella parte della trave longitudinale che deve trovarsi fra la mensola e la sottotrave, quando siano note le accennate dimensioni.

Alcuni, invece di considerare la parte ED di trave longitudinale come un solido incastrato alle sue due estremità, ammettono che sia un solido semplicemente appoggiato, e fanno così un'ipotesi che non può a meno di essere in favore della stabilità.

Per rapporto alle mensole, usano molti pratici assegnar loro una sezione retta non differente da quella delle travi longitudinali. Per riconoscere poi se questa sezione conduce alla necessaria stabilità, può valere il seguente procedimento: trovare la pressione verticale V, diretta dall'alto al basso, che ha luogo sull'estremo E della saetta s; scomporre questa pressione in due forze, una T diretta secondo l'asse della mensola M, e l'altra P secondo l'asse della saettas; osservare che la trave longitudinale e la mensola tendono ad inflettersi nel tratto AE sotto l'azione dei pesi su esse gravitanti; determinare la massima tensione Q, riferita all'unità di superficie, che, pel fatto della flessione, ha luogo nella mensola; aggiungere a questa tensione Q, il quoziente della forza T per la superficie Ω della sezione retta della mensola stessa, onde avere nella somma la massima tensione Q riferita all'unità di superficie, cui può trovarsi sottoposta; eguagliare questa massima tensione riferita all'unità di superficie al prodotto del coefficiente di rottura R' pel relativo coefficiente di stabilità n'; e dedurre dall'equazione risultante il valore di n', che, per la stabilità, deve risultare minore di 1/10. — Per maggior sicurezza, si può anche determinare la massima pressione Qa, riferita all'unità di superficie, che, pel fatto della flessione, si verifica nella mensola; togliere da questa pressione il quoziente di T per Ω; nel caso in cui la differenza risulti positiva, eguagliarla all'adatto coefficiente di rottura per pressione R" moltiplicato pel coefficiente di stabilità n", e finalmente ricavare dall'equazione, che così ottiensi, il coefficiente di stabilità n" il quale, affinchè la mensola sia stabile, deve risultare minore della frazione 1/10. Se la differenza $Q_2 - \frac{T}{\Omega}$ risulta negativa, è segno che non si verifica pressione nelle fibre della mensola, e si deve conchiudere che essa trovasi in buone condizioni di stabilità quando il valore di n', dedotto come sopra si è detto, venne trovato minore di 1/10.

Per la saetta s determinasi generalmente la superficie Ω' della sua sezione retta, dicendo che la somma delle due componenti, secondo EF, del peso proprio della saetta e della pressione verticale V, che ha luogo in E, deve eguagliare il prodotto del coefficiente di stabilità n'', per l'adatto coefficiente di rottura R'' e per la superficie Ω' . L'equazione, che così risulta, contiene solamente l'incognita Ω' , la quale assai facilmente può essere determinata. La componente del peso proprio della saetta, diretta normalmente al suo asse, tende a produrre una flessione, la quale può essere trascurata. La componente della pressione verticale, che ha luogo in E, non è altro che la forza già stata indicata colla lettera P.

Alle sottotravi generalmente si assegna la medesima sezione retta delle travi longitudinali che rinforzano, e, per verificare se trovansi in buone condizioni di stabilità, si può nella pratica adottare il seguente procedimento: trovare la pressione verticale V', diretta dall'alto al basso, che ha luogo sull'estremo D del saettone S; scomporre questa pressiune in due, una P' diretta secondo l'asse del saettone e l'altra P,' secondo l'asse della sottotrave; osservare che la trave longitudinale e la sotto-trave sono soggette ad inflettersi nel tratto DH sotto l'azione dei pesi ad esse insistenti; determinare la massima pressione Qo', riferita all'unità di superficie, che, pel fatto della flessione, ha luogo nella sottotrave; aggiungere a questa pressione Qo' il quoziente della forza P, per la superficie Ω' della sezione retta della sottotrave medesima, onde avere nella somma la massima pressione O', riferita all'unità di superficie, cui può trovarsi sottoposta; eguagliare questa massima pressione al prodotto del conveniente coefficiente di rottura R" pel relativo coefficiente di stabilità n"; e dedurre dalla risultante equazione di stabilità il valore di n", il quale, per la stabilità deve risultare minore della frazione 1/10. Trovandosi n' > 1/10 è necessario aumentare la sezione retta della sottotrave, ed assai facilmente si raggiunge lo scopo assumendo per incognita del problema una sola dimensione dell'indicata sezione retta, esprimendo e sostituendo in funzione di quest'incognita le quantità che da esse dipendono e che trovansi nella detta equazione di stabilità, e risolvendo l'equazione a cui si arriva.

Per i saettoni, come S, si ottiene generalmente la superficie Ω''' della loro sezione retta, ponendo che la somma delle due componenti, secondo D G, del peso di uno di essi e della pressione verticale V' che ha luogo in D, eguaglia il prodotto del coefficiente di stabilità n'' per l'adatto coefficiente di rottura R'' e per la superficie Ω''' . L'equazione risultante nou contiene altra incognita, fuorchè la Ω''' , la quale assai facilmente può essere determinata. La componente del peso proprio del saettone, diretta normalmente al suo asse, tende a produrre una piccola flessione, la quale può essere trascurata. La componente della pressione verticale, che ha luogo in D, è la forza già indicata colla lettera P'.

Le saette s ed i saettoni S sono nelle condizioni di solidi prismatici caricati di punta, e quindi, allorquando presentano una considerevole lunghezza, è della massima importanza, se pure vuolsi impedire che s'inflettano, di assicurarli mediante ritegni convenientemente distribuiti. Tali ritegni sono generalmente somministrati dalle staffe O ed o (fig. 236), ed è bene che queste siano talmente vicine da somministrare punti di ritegno distanti fra di loro non più di dieci volte quella dimensione della sezione retta della saetta e dei saettoni, la quale costituisce la loro grossezza (num. 22). - Le staffe si dispongono quasi sempre per coppie, ossia in modo che, essendovene una su una faccia d'un'incavallatura, siavi la sua compagna sulla faccia opposta; e si può generalmente ritenere che esse hanno dimensioni sufficienti all'ufficio che devono disimpegnare, allorquando la somma delle superficie delle sezioni rette di due staffe compagne, dove attraversano il saettone, è eguale ai 3/4 della superficie della sezione retta del saettone medesimo.

Resta ancora da vedersi come si possa determinare il diametro dei pali verticali o colonne componenti le palate, che si suppongono del tipo di quella rappresentata nella figura 229. Perciò, immaginando i due piani verticali passanti per gli assi di due luci successive e quindi i due piani verticali a questi perpendicolari e dividenti per metà gli intervalli esistenti fra due incavallature successive, si faccia il totale peso della parte di ponte compresa fra i definiti quattro piani verticali. Questo peso si compone di due distinte parti: una cognita, che corrisponde al sovraccarico, al materiale costituente il suolo stradale, alla coperta, alle travi trasver-

sali, alla trave longitudinale, alla mensola, alle saette, ai saettoni, alle staffe, alle travi orizzontali pel concatenamento delle incavallature, all'architrave, alle fasce che servono a consolidare le palate ed ai ferramenti per le unioni; l'altra incognita, che è l'espressione del peso del palo. La somma delle accennate due parti si eguaglia alla superficie della sezione retta del palo, moltiplicata per il prodotto n'' R'' del coefficiente di rottura per pressione R'' pel relativo coefficiente di stabilità n''; e l'equazione che risulta serve a dedurre la detta superficie, d'onde si ritrae il diametro, quando si può essa considerare siccome quella di un circolo.

Nella determinazione delle dimensioni delle spalle, conviene fare due ipotesi: che esse debbano sopportare le pressioni verticali e le spinte orizzontali loro trasmesse dalle incavallature; e che possano essere in istato di sopportare le spinte delle terre, cui devono dare appoggio, nel caso in cui, per qualche riparazione da apportarsi al ponte, debbano essere tolte le incavallature. Se le spalle sono di muratura, si procede con metodi analoghi a quelli che vennero indicati parlando delle grossezze delle spalle dei ponti di struttura murale, e delle grossezze dei muri di sostegno; se invece sono esse di legno, tanto nell'una quanto nell'altra delle accennate ipotesi, trattasi di calcolare le dimensioni di solidi sottoposti a pressione ed a flessione, e quindi il problema non può presentare alcuna difficoltà a coloro cui sono note le dottrine relative alla resistenza dei materiali nei casi più comuni e più semplici.

191. Ponti di legname a travate rettilinee. - I piedritti di questi ponti ben di frequente si costruiscono in muratura, e, quando sono di legname, sono quasi sempre palate a cavalletto (num. 187). Essi presentano una struttura assai semplice, giacchè essenzialmente consistono in due travi longitudinali composte, portanti un certo numero di travi trasversali equidistanti, sulle quali trovasi stabilita la coperta. Quando le travi trasversali si vogliono porre a distanza che si giudica un po' grande per rapporto alla spessezza delle tavole che si vogliono impiegare nella formazione della coperta, si collocano su quelle dei travicelli longitudinali, e la coperta si stabilisce su questi travicelli, disponendo le tavole perpendicolarmente od anche obliquamente alla loro lunghezza. Trattandosi di un ponte per via ferrata, il posamento delle rotaie si fa sopra longarine le quali sono direttamente sostenute dalle travi trasversali. La società delle ferrovie dell'Alta Italia fece costrurre alcuni importanti ponti provvisorii in legno a travate rettilinee, e, come veri modelli di tal genere di costruzioni, si possono citare: il ponte provvisorio sul Po presso Piacenza, stato tolto dopo la costruzione del ponte in ferro ora esistente per la ferrovia Milano-Piacenza; il ponte provvisorio sul Po presso Pontelagoscuro per la ferrovia Bologna-Padova; ed il ponte sul Ticino presso Sesto-Calende per la ferrovia Milano-Arona.

Le travi longitudinali dei ponti a travate rettilinee sono generalmente appoggiate a travi orizzontali A' (fig. 240), disposte perpendicolarmente alla direzione dell'asse del ponte ed almeno in numero di due per ogni piedritto. Queste travi longitudinali sono generalmente costituite da travi semplici di larice rosso, convenientemente collegate; ed ecco le disposizioni che presso a poco vennero adottate nel ponte sul Po in vicinanza della stazione di Pontelagoscuro, destinato al servizio di una via ferrata ad un sol binario, e dove le palate distano di metri 25,50 da asse ad asse. Due travi a ed a', la prima colla sezione retta di metri 0,24 per 0,34 e la seconda colla sezione retta di metri 0,20 per 0,34, sovrapposte in modo da essere orizzontale la dimensione comune di metri 0.54. e due altre travi b e b' aventi pure le or indicate dimensioni ed analogamente sovrapposte, costituiscono le due catene L ed L', le quali nel senso verticale distano di circa metri 5,56 da asse ad asse. Le travi a, a' e b, b' sono strette fra di loro mediante chiavarde e mediante fasciature di ferro; e ciascuna di esse è formata di travi unite di punta mediante tagli a zig-zag con biette di quercia. Le unioni appartenenti alla catena L non corrispondono a quelle della catena L', come pure le unioni dei pezzi a e b non sono in corrispondenza delle unioni analoghe per fermare i pezzi a' e b'. Le catene L ed L' sono mantenute all'indicata distanza di metri 5,56 dalle staffe verticali S e dalle travi inclinate I, I, I, I, I, ed I, costituenti una specie di traliccio. Le staffe sono alte metri 7,60; sono disposte per coppie in modo da abbracciare la grossezza delle travi L ed L'; le due poste in corrispondenza delle palate distano di metri 5 da asse ad asse, le altre distano da asse ad asse di metri 4,50; hanno sezione retta di metri 0,36 per 0,24 le due prime, e sezione retta di metri 0,30 per 0,22 le altre. Fra due palate successive, le staffe dividono la luce libera del ponte in cinque scompartimenti della lunghezza di metri 4,50, di maniera che la retta VV corrisponde all'asse di una luce. Le travi inclinate I degli scompartimenti che corrispondono alle palate ed al mezzo degli intervalli fra due palate successive, sono in numero di due, unite fra di loro a metà legno, coi loro estremi incastrati nelle travi L ed L', e la loro sezione retta è quadrata col lato di metri 0,30.

Negli altri scompartimenti, i pezzi inclinati, che, come I_2 ed I_4 , convergono in basso colle palate, sono incastrati ed inchiavardati alle loro estremità nelle catene L ed L'; presenta sezione retta di metri 0,50 per 0,26 il pezzo I_2 che si trova nello scompartimento che segue quello di mezzo, ed ha sezione retta maggiore, ossia di metri 0,56 per 0,50 il pezzo I_4 appartenente allo scompartimento che viene subito dopo quello delle palate. Gli altri pezzi, i quali, come I_4 ed I_3 , divergono in basso degli assi delle palate, sono disposti per coppie in modo da abbracciare le catene L ed L', non che i pezzi inclinati I_2 ed I_4 , e la sezione retta dei legnami squadrati costituenti i detti pezzi I_4 ed I_3 ha le dimensioni di metri 0,26 per 0,16. — In corrispondenza dei piedritti, le travi longitudinali sono collegate alle travi orizzontali A' mediante i pezzi inclinati i.

La distanza interna fra le due travi longitudinali è di metri 4,50, e risulta di metri 4,34 quella fra asse ed asse. Sulle catene inferiori L vi sono le travi trasversali t, disposte per coppie ed aventi la sezione di metri 0,32 per 0,36. Le due travi componenti una stessa coppia hanno differente lunghezza; una di esse, dovendo soltanto sopportare le longarine sottoposte alle rotaie, è lunga metri 5,80; l'altra, dovendo anche sostenere due marciapiedi laterali pel passaggio dei pedoni, ha la lunghezza di metri 9. Le diverse coppie di travi trasversali poi sono talmente collocate da risultare di metri 2,25 la distanza dei loro assi, e mediante chiavarde sono fissate alle catene inferiori L.

Le staffe verticali S oltrepassano mediamente di metri 0,70 la catena superiore L' e servono così a sopportare le armature del tetto. Ciascuna di queste armature consta essenzialmente di due puntoni P, i quali sono uniti a tenone e mortisa colle staffe S e che s'incastrano nell'ometto O posto in corrispodenza del mezzo del ponte. Il sistema è rinforzato da quattro saette S' fissate coi loro estremi inferiori nelle staffe S e superiormente trattenute, le due esteriori contro i puntoni e le due interne contro l'ometto. Finalmente le travi orizzontali C, ciascuna delle quali è costituita da due pezzi accoppiati a mo' di filagna e controfilagna, nel mentre servono a mantenere alla voluta distanza le travi longitudinali, si prestano anche al consolidamento delle diverse incavallature. La sezione trasversale di tutte le travi componenti le incavallature è di metri 0,20 per 0,24.

Le indicate armature non solo servono a sostenere la copertura destinata a difendere il ponte dalle intemperie, e ad assicurarne la durata, ma compiono un altro ufficio ben più importante, che è quello di impedire le oscillazioni delle travi longitudinali, collegando fra di loro le staffe S. Ad ottenere lo stesso risultato concorrono pure le travi trasversali, e per meglio raggiungere l'intento riescono vantaggiose apposite travi disposte diagonalmente al livello delle travi trasversali t ed al livello delle travi trasversali C. Per convenientemente serrare le travi longitudinali fra le staffe S, servono appositi cunei posti sotto la catena L e sopra la catena L'.

Le travi longitudinali dei ponti in legno a travate rettilinee, si costruiscono talvolta con traliccio fitto, e presentano quindi il sistema di struttura di cui si parlò nel numero 286 del volume sui lavori generali d'architettura civile, stradale ed idraulica. Per dare a queste travi la necessaria rigidità è necessario serrarle a determinate distanze fra staffe verticali; e, affinchè in un ponte di legno, la cui resistenza è affidata a due di tali travi, non possano manifestarsi troppo forti oscillazioni, importa di ben collegarle mediante travi trasversali e mediante travi fra queste diagonalmente collocate. Quando il suolo stradale è nelle regioni più basse delle travi longitudinali, gli indicati collegamenti si stabiliscono nel basso e nell'alto delle travi longitudinali stesse. Se però l'altezza di queste è tanto piccola, che il collegamento superiore sia per porre imbarazzo al passaggio dei veicoli, si fa il solo collegamento inferiore, procurando ogni mezzo per dare rigidità al sistema costituito dalle travi longitudinali, dalle travi trasversali e dai collegamenti inferiori. Se il suolo stradale trovasi a circa metà altezza ed anche verso l'alto delle travi longitudinali, il loro collegamento deve essere fatto nel basso, immediatamente sotto il suolo stradale ed anche in punti intermedii.

Dovendosi impiegare travi trasversali di lunghezza un po' grande e poste a tali distanze che risultino insufficienti le ordinarie travi di commercio, si può aver ricorso alle travi composte ed alle travi armate. Se poi avviene di dover costrurre un ponte molto largo, e se le distanze degli appoggi sono tali da condurre a travi longitudinali con dimensioni eccessive, invece di due sole travi longitudinali se ne possono disporre quattro, accoppiate due a due sulle fronti del ponte, od anche fare due ponti distinti, situati uno a fianco dell'altro. Quest'ultima disposizione può talvolta rinscire vantaggiosa nei ponti in legno a travate rettilinee, destinati al servizio di una via ferrata a due binarii.

Allorquando le travi longitudinali sono appoggiate su ciascun piedritto in più di due punti, conviene che tutti gli appoggi, salvo due simmetricamente posti rispetto alle metà di ogni piedritto, siano forniti di cunei da potersi convenientemente serrare sotto le travi longitudinali.

192. Come si considerano i sovraccarichi per rapporto alle travi longitudinali dei ponti a travate rettilinee. — Allorquando un ponte a travate rettilinee deve servire per una strada carreggiabile, il sovraccarico si ritiene siccome uniformemente distribuito sul suolo stradale, e, precisamente come già si disse pei ponti di struttura murale, in ragione di 600 chilogrammi per ogni metro quadrato. Segue da ciò che, per avere, in chilogrammi, il sovraccarico q corrispondente al metro di lunghezza di una trave longitudinale, si fa la totale superficie, in metri quadrati, di quella parte della strada che corrisponde alla trave longitudinale che si considera, questa superficie si moltiplica per 600 ed il prodotto si divide per la lunghezza della trave.

Se invece è questione di un ponte a travate rettilinee destinato al passaggio di una via ferrata, si osserva: che il massimo sovraccarico, il quale su esso può trovarsi, corrisponde al peso di uno o di due treni di locomotive, secondo che il ponte deve servire per via ferrata ad uno oppure a due binarii; che il detto peso non è uniformemente distribuito, ma sibbene la somma di tanti pesi parziali applicati nei punti di contatto delle ruote colle rotaie; che, variando le posizioni dei detti punti di contatto, variano pure le resistenze che trovansi provocate nelle diverse sezioni delle travi del ponte, e che importa assicurarsi della stabilità di queste travi col porle in tali condizioni da poter sopportare il massimo momento inflettente a cui possono esser sottoposte.

Ora, se sopra una trave longitudinale di lunghezza nota ed orizzontalmente collocata su due appoggi A e B (fig. 241), vengono a passare le ruote di un convoglio di locomotive, e se si conoscono le pressioni che queste locomotive producono sulle rotaie in corrispondenza dei punti di contatto c, c', c'', c''', c'''' c^{IV}, le distanze di questi punti ed il loro numero nell'intervallo \overline{AB} , adottando procedimenti analoghi a quelli che si seguirono nel numero 108 del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni, non è difficile trovare la posizione che deve avere il sistema dei pesi che possono operare sulla trave AB, affinchè in una sua sezione produca il momento inflettente di valore assoluto massimo, determinare questa sezione (che sarà la sezione pericolosa), e calcolare il valore assoluto μ_m del relativo momento inflettente.

Una volta ottenuto il valore di $\mu_{\rm m}$, si eguagli esso all'espressione del valore assoluto del massimo momento inflettente che sulla stessa trave AB si verificherebbe, quando per intiero venisse caricata d'un peso q per ogni unità di lunghezza ed uniformemente distribuito. L'e-

quazione risultante conterrà la sola incognita q, e quindi servirà alla sua determinazione. Il valore di q così ottenuto, producendo sulla trave lo stesso momento inflettente massimo, prodotto dalle pressioni esercitate dalle ruote del convoglio di locomotive sulla trave medesima, si ritiene dai pratici siccome producente un effetto identico a quello del convoglio di locomotive, i quali, nei calcoli da instituirsi pei ponti a travate rettilinee, invece di considerare i pesi parziali in corrispondenza dei punti di contatto delle ruote colle rotaie, considerano i pesi q uniformemente distribuiti, dedotti come si è indicato. Di questi pesi q, chiamati sovraccarichi uniformemente distribuiti equivalenti ad un treno di locomotive, vennero calcolate alcune tavole per le principali portate, coll'assumere il metro per unità di lunghezza ed il chilogramma per unità di peso.

Il signor ingegnere J. Foy, in un suo articolo che trovasi nel volume dell'anno 1865 del giornale del signor C. A. Oppermann (Nouvelles annales de la construction), considerando un treno di locomotive, e supponendo che ciascuna di esse abbia il peso di 36 tonnellate, tre assi distanti di metri 1,80 e quindi sei ruote producenti in corrispondenza di ciascun punto di contatto colle rotaie la pressione di 6000 chilogrammi, dà la seguente tavola:

DORTATA delle	SOVRACCARICHI q uniformemente distribuiti per ogni metro, equivalenti ad un treno di locomotive	PORTATA delle TRAVI	SOVRACCARICHI q uniformemente distribuiti per ogni metro, equivalenti ad un treno di locomotive
2 n	12000 ^C g	12m	4940 Cg
3	8000	13	4500
4	7800	14	4650
5	7490	15	4500
6	7200	16	4340
7	6760	17	4210
8	6300	18	4150
9	5870	19	4080
10	5480	20	4000
11	5120	21	5920

Per le travi sopportanti una via ferrata ad un solo binario ed

aventi lunghezza minore di 2 metri, si assume il sovraccarico di 12000 chilogrammi per ogni metro; e, per quelle aventi lunghezza maggiore di 20 metri, si ammette generalmente che il detto sovraccarico debba essere di 4000 chilogrammi.

Per una portata compresa fra due che trovansi nella tavola, usasi assumere il maggiore dei due sovraccarichi corrispondenti alle portate fra cui trovasi la portata data e generalmente il sovraccarico che corrisponde alla portata immediatamente inferiore. Così, per la portata di metri 45,60 si può assumere il sovraccarico di chilogrammi 4500, corrispondente alla portata di 45 metri. Alcuni deducono col metodo delle parti proporzionali il sovraccarico corrispondente ad una portata qualunque compresa fra due della tavola.

Nel caso in cui le travi debbano portare locomotive a cui corrispondono sovraccarichi q uniformemente distribuiti, maggiori di quelli riportati nella tabella, nelle pratiche applicazioni si può ricorrere ai dati che trovansi nel numero 209, dove trattasi dei sovraccarichi da supporsi uniformemente distribuiti sulle travi longitudinali dei ponti in ferro a travate rettilinee, quando debbano essi trovarsi nelle condizioni da poter stabilmente sopportare un convoglio di locomotive Engerth, aventi ciascuna il peso di 66 tonnellate e sei assi alle rispettive distanze di metri 1,50, 5, 1,30, 1,50 ed 1,30.

193. Come si considerano i sovraccarichi per rapporto alle travi trasversali dei ponti a travate rettilinee. — Se il ponte deve servire per via ordinaria, i sovraccarichi corrispondenti alle travi trasversali si considerano come uniformemente distribuiti in ragione di 600 chilogrammi per ogni metro quadrato di suolo stradale; per modo che, facendo, in metri quadrati, l'area del rettangolo avente per un lato la distanza fra gli appoggi delle travi trasversali e per altro lato la somma delle due distanze dell'asse della trave trasversale che si considera dagli assi degli intervalli esistenti fra essa e le due travi trasversali fra cui si trova, moltiplicando quest'area per 600 e dividendo il risultante prodotto per la lunghezza della trave, si ha nel quoziente q il peso del sovraccarico riferito all'unità di lunghezza.

Se poi è quistione di un ponte per via ferrata, il sovraccarico si risolve in pressioni verticali dirette dall'alto al basso, che hanno luogo sulle travi trasversali in corrispondenza degli incontri dei piani verticali passanti per gli assi delle rotaie coi piani verticali passanti per gli assi delle travi trasversali stesse. Queste pressioni, che le travi trasversali ricevono per l'intermedio delle longarine su cui

sono poste in opera le rotaie e talvolta per l'intermedio delle rotaie stesse, variano evidentemente col cangiare delle posizioni dei punti di contatto delle ruote, ed importa determinarne i valori massimi. Questa determinazione si può fare allorguando siano note le distanze orizzontali della trave trasversale che si considera dalle due travi trasversali fra cui si trova, le distanze dei punti di contatto delle ruote colle rotaie e le pressioni prodotte dalle locomotive sui detti punti di contatto. Se però una stessa longarina ha simultaneamente appoggio su più travi trasversali, il problema, che è solo determinato quando si tenga conto dell'elasticità, può condurre a calcoli lunghi e difficili, giacchè trattasi di trovare le pressioni che un solido, orizzontalmente collocato su più appoggi e caricato di pesi posti a distanze determinate, esercita sugli appoggi stessi, previa la determinazione della posizione dei detti pesi per cui le accennate pressioni risultano massime. I pratici, nell'intento di schivare ogni difficoltà, considerano la parte di longarina corrispondente a due travi trasversali successive siccome un solido collocato su due appoggi, e colle leggi della statica dei corpi rigidi determinano le massime pressioni che le travi trasversali ricevono dalle longarine stesse quando sulle sovrastanti rotaie ha luogo il passaggio di un treno di locomotive. Così, supponendo che siano A, B e C (fig. 242) gli appoggi somministrati da tre travi trasversali successive, che AB e BC rappresentino le due parti di longarina fra le tre indicate travi trasversali, e che sulla totale lunghezza AC possano stare cinque ruote, due su AB e tre su BC, se chiamansi

a' ed a" le distanze AB e BC.

b', b'', b''' e b^{ii} le distanze dei cinque punti di contatto delle ruote colle rotaie,

P, P', P", P"' e P'' le pressioni verticali, dirette dall'alto al basso, che le ruote producono nei punti di contatto individuati colle medesime lettere delle pressioni che ad essi si riferiscono,

x la distanza $\overline{BP''}$ che il punto di contatto della terza ruota deve avere dal mezzo dell'appoggio B, affinchè si verifichi su questo la massima delle infinite pressioni, le quali corrispondono alle infinite posizioni che può prendere il sistema sulla lunghezza \overline{AC} ,

si ha: che le due forze P e P' producono rispettivamente sull'appoggio B le pressioni

$$P = \frac{a' - b' - b'' + x}{a'},$$
 $P' = \frac{a' - b'' + x}{a'};$

che alle tre forze P", P" e P" corrispondono sullo stesso appoggio le pressioni

$$p''\frac{a''-x}{a''},$$
 $p'''\frac{a''-x-b'''}{a''},$
 $p_{iv}\frac{a''-x-b'''-b^{iv}}{a''};$

e che quindi la totale pressione R, esercitata sul detto appoggio dalle cinque forze P, P', P'', P''' e P^{tr} , viene data dalla somma delle cinque espressioni trovate, ossia, quando si raccolgano i termini moltiplicati per x, da

$$R = \begin{cases} P \frac{a' - b' - b''}{a'} + P' \frac{a' - b''}{a'} + P'' + P''' \frac{a'' - b'''}{a''} \\ + P^{rv} \frac{a'' - b''' - b^{rv}}{a''} + \left(\frac{P + P'}{a'} - \frac{P'' + P''' + P^{rv}}{a''}\right) x \end{cases}.$$

La somma dei termini indipendenti da x rappresenta la pressione che ha luogo sull'appoggio B quando il sistema dei pesi P, P', P'', P''' e P^{rr} occupa tale posizione da coincidere il punto P' col punto B, e questa somma, che si conserva sempre la stessa, qualunque sia il valore di x, è sicuramente positiva nei varii casi pratici, in cui, mentre i pesi P, P', P'', P''' e P^{rr} sono poco differenti fra di loro, la lunghezza b'+b'' è minore, eguale o non di molto superiore ad a'. Il termine contenente il fattore x può essere positivo o negativo. È positivo quando si ha

$$\frac{P+P'}{a'} > \frac{P''+P'''+P'''}{a''},$$

ed in questo caso il massimo valore di R ha luogo per il più gran valore che può prendere x, soddisfacendo ben inteso alla condizione di due punti di contatto su AB e di tre su BC, ossia per x = a'' - b''' - b'' quando a'' - b''' - b'' è minore di b'', per x = b'' quando a'' - b''' - b'' è eguale o maggiore di b''. L'indicato termine, contenente nell'espressione di R il fattore x, è negativo per

$$\frac{P+P'}{a'} < \frac{P''+P'''+P^{vv}}{a''},$$

ed in questo caso si verifica il massimo valore di R per il più piccolo valore che può prendere x, per x = 0, quando b' + b'' è minore od eguale ad a', e per x = b' + b'' - a' quando b' + b'' è maggiore di a'.

Nella tavola che segue si hanno le pressioni, o sovraccarichi P₄, da supporsi applicate alle travi trasversali in corrispondenza di ciascuna rotaia, nell'ipotesi che il massimo sovraccarico che può trovarsi sul ponte sia quello di un treno di locomotive, i cui punti di contatto delle ruote colle rotaie distano di metri 1,80, e sui quali si verificano le pressioni di 6000 chilogrammi:

DISTANZE delle TRAVI TRASVERSALI	SOVRAGCARICHI P ₁ da supporsi applicati alle trav trasversali in corrispondenza di ciascuna rotaia.	
1,80 ^m	6000 ^C g	
2,00	7200	
2,20	8182	
2,40	9000	
2,60	9692	
2,80	10286	
3,00	10800	

Per distanze, fra gli assi delle travi trasversali, minori di metri 1,80, si suppone il sovraccarico di 6000 chilogrammi, giacchè avviene sempre la circostanza in cui due ruote compagne della locomotiva sono sulla stessa trave trasversale. Segue da ciò, che non conviene porre le travi trasversali a distanze che siano di molto inferiori a metri 1,80 da asse ad asse, e che le sole circostanze dell'impiego di longarine deboli, e del posamento diretto delle rotaie sulle travi trasversali possono giustificare una distanza minore. Le distanze superiori a metri 2,20 non sono guari adottate nei ponti di legname, giacchè conducono a longarine ed a travi trasversali di dimensioni troppo grandi.

Per una distanza compresa fra due che trovansi nella tavola, si può prendere il sovraccarico che corrisponde alla distanza immediatamente superiore a quella data, se pure non si crede conveniente di dedurlo col metodo delle parti proporzionali. Se sul ponte devono passare locomotive, a cui corrispondono i sovraccarichi P₄ maggiori di quelli registrati nella tavola, nelle pratiche applicazioni si può far uso dei dati che trovansi nel numero 209, dove trattasi dei sovraccarichi da supporsi applicati in corrispondenza di ciascuna rotaia alle travi trasversali dei ponti in ferro a travate rettilinee, quando su questi debba trovarsi un sovraccarico di locomotive Engerth, di cui già si fece cenno nel precedente numero.

194. Determinazione della grossezza del tavolato, oppure della distanza alla quale si devono collocare le travi destinate a sopportarlo. — I tavolati dei ponti di legno non differiscono dai tavolati dei solai, e quindi si può calcolare la loro grossezza b, oppure la distanza a cui si devono porre le travi destinate a sopportarli, mediante la formola (2) del numero 66. L'unica avvertenza da aversi consiste nell'adottare quel sovraccarico che corrisponde alla natura speciale dell'opera.

Nei ponti per strade ordinarie il valore di p, riferito al metro quadrato, consta del peso dei materiali formanti il suolo stradale ed insistente all'indicata superficie aumentato di 600 chilogrammi; e nei ponti per strade ferrate consta pure del peso dei materiali che talvolta si pongono per coprire il tavolato; accresciuto del sovraccarico, il quale riducendosi soltanto a quello di qualche persona di sorveglianza o di alcuni operai addetti a riparazioni, tutto al più si può assumere di 150 a 200 chilogrammi per metro quadrato.

Nel determinare la grossezza dei tavolati, riesce facile tener conto del loro peso. Se però osservasi che la citata formola (2) del numero 66 è in favore della stabilità, in quanto non tiene conto della circostanza che le tavole del tavolato sono generalmente solidi collocati su più appoggi ed inchiodati alle sottostanti travi, per ragione di compenso, conviene trascurare il detto peso, il qual è sempre piccolo in confronto del valore di p determinato come sopra si è detto.

195. Determinazione di una dimensione della sezione retta delle longarine o della distanza alla quale si devono collocare le travi trasversali. — Le longarine, le quali talvolta si trovano tra il tavolato e le travi trasversali nei ponti in legno per vie carreggiabili, e che quasi sempre sono sotto le rotaie nei ponti in legno a travate rettilinee per vie ferrate, sono solidi prismatici orizzontalmente disposti, aventi sezioni rette simmetriche rispetto alle verticali passanti pei loro centri di superficie e caricati di pesi che si considerano siccome uniformemente distribuiti sulla loro

lunghezza. Segue da ciò che, per essere generalmente nei solidi prismatici di legno più facile la rottura per compressione, anzichè per estensione e per scorrimento trasversale, si ha l'equazione di stabilità

$$n''R'' = \frac{v'\mu_m}{\Gamma} \tag{1},$$

nella quale

 $\mu_{\rm m}$ rappresenta il valore assoluto del massimo momento inflettente che può verificarsi nella longarina, cui la detta equazione vuolsi applicare,

I' il momento d'inerzia della sua sezione retta, rispetto alla orizzontale passante pel centro di superficie della sezione stessa,

v' la distanza dell'indicata orizzontale dal punto del perimetro della sezione retta che maggiormente si scosta dall'orizzontale medesima,

n''R'' il prodotto del coefficiente di rottura per pressione R'' pel relativo coefficiente di stabilità n''.

Nell'applicare la stabilita equazione, conviene assumere il metro per unità di lunghezza, il metro quadrato per unità di superficie, ed il chilogramma per unità di peso; il valore del coefficiente di stabilità n" si può prendere eguale dalla frazione 4/10, ed il valore del coefficiente di rottura R", da riferirsi al metro quadrato, si può dedurre dalla tabella che venne data nel numero 22.

Nel caso di longarine sopportanti il tavolato di un ponte per strada carreggiabile, si considera un metro quadrato di suolo stradale; si fanno i pesi del tavolato e dei materiali formanti il suolo stradale per quanto insistono alla detta superficie; e a questi pesi si aggiunge quello del sovraccarico nella ragione di 600 chilogrammi per ogni metro quadrato, onde ottenere la loro somma s. Dopo di ciò osservasi che il peso p, riferito all'unità di lunghezza di longarina, insiste ad un rettangolo lungo 1 metro nel senso della longarina stessa e largo come la distanza d fra i due piani verticali passanti ad eguale distanza dalla longarina che si considera e dalle due che trovansi l'una a dritta e l'altra a sinistra di questa; di maniera che si ha

$$p = sd$$
.

Trovato il valore di p, se chiamansi

2a la distanza fra asse ed asse di due travi trasversali successive, b la dimensione verticale e c la dimensione orizzontale della sezione retta della longarina che si considera, risulta

$$v'=\frac{1}{2}b$$
,

$$1' = \frac{1}{12} c b^3,$$

e, quando la parte di longarina compresa fra due travi trasversali successive si consideri come semplicemente appoggiata,

$$\mu_{\rm m} = \frac{1}{2}pa^2 \tag{2}$$

cosicchè l'equazione (1) diventa

$$n''R'' = \frac{3pa^2}{cb^2}$$
 (3).

Quest'equazione serve a determinare una delle tre quantità a, b e c, quando si conoscono le altre due.

Se avviene che le longarine sieno ben inchiavardate sulle travi trasversali, si può considerare ciascuna delle loro parti compresa fra due travi trasversali successive siccome un solido prismatico orizzontalmente incastrato alle sue due estremità; il valore di $\mu_{\rm m}$ risulta allora

$$\mu_{\rm m} = \frac{1}{3} p a^2 \tag{4}$$

e si ha

$$n''R'' = \frac{2 p a^2}{c b^2} \tag{5}$$

per relativa equazione di stabilità.

Alcuni costruttori, osservando che l'equazione (3) è favorevole alla stabilità quando le longarine hanno tale lunghezza da trovare appoggio su più di due travi trasversali, e che l'equazione (5) è sfavorevole alla stabilità quando non ha luogo un vero incastramento fra quelle e queste, assumono per valore di μ_m la media aritmetica fra quelli dati dalle due formole (2) e (4), ossia

L'ARTE DI FABBRICARE.

$$\mu_{\rm m} = \frac{5}{12} p \, a^2;$$

suppongono così che si verifichi ciò che comunemente dicesi mezzo incastramento; e prendono

$$n''R'' = \frac{5pa^{\circ}}{2cb^{\circ}} \tag{6}$$

per equazione di stabilità atta a determinare una delle tre lunghezze a, b e c.

Se osservasi che è ben difficile realizzare un vero incastramento fra le longarine e le travi trasversali, e che gli appoggi somministrati da queste a quelle non sono immobili, riesce facile persuadersi come nella pratica non possa convenire l'equazione (5), la quale quasi sicuramente conduce a risultamenti in sfavore della stabilità.

Quando trattasi delle longarine, le quali, in un ponte a travate rettilinee per via ferrata, sono poste sotto le rotaie, per peso p riferito all'unità di lunghezza di ogni longarina, si assume la metà del sovraccarico, uniformemente distribuito per ogni metro ed equivalente ad un treno di locomotive (il qual sovraccarico assai facilmente si ottiene seguendo le norme che vennero indicate nel numero 192), aumentato del peso di un metro di rotaia. Così, nel caso in cui le travi trasversali distano da asse ad asse meno di 2 metri, il sovraccarico da supporsi uniformemente distribuito su ogni longarina si può supporre di 6000 chilogrammi per ogni metro della loro lunghezza. Trovato il peso p, si osserva qual è il sistema di unione delle longarine colle travi trasversali, e, a seconda di questo sistema, si impiega o la formola (3), o la formola (6), per dedurre una delle tre quantità a, b e c quando si conoscono le altre due. Generalmente le longarine sono inchiavardate sulle travi trasversali, e, se per questo motivo credesi di non adottare l'equazione (3), perchè troppo favorevole alla stabilità, si applica l'equazione (6).

Qualora, nel dedurre una delle tre dimensioni $a, b \in c$, si voglia tener conto anche del peso proprio della longarina, si può esso fissare per falsa posizione, o meglio, indicando con II il peso del metro cubo di legname costituente la longarina (il qual peso assai facilmente si deduce dalla tabella contenuta nel citato numero 22), si pone $p + \Pi b c$ in luogo di p in quella delle due equazioni (3) e (6) che si giudica con-

veniente di adottare. Osservando però che le travi trasversali presentano sempre alle longarine un appoggio piuttosto esteso e che per conseguenza la portata libera di queste ultime è notevolmente minore della distanza fra asse ed asse di quelle, senza tema d'inconveniente nella stabilità si può trascurare il peso proprio delle longarine nei ponti per vie carreggiabili, il peso proprio delle longarine e quelle delle rotaie nei ponti per vie ferrate.

Le dimensioni della sezione retta delle longarine, che devono sottostare alle rotaie nei ponti per vie ferrate, risultano piuttosto grandi quando si determinano colle norme precedentemente esposte. Così, assumendo n'' = 1/10, $R'' = 4500000^{c_5}$, $a = 2^m$, $c = 0^m$, 50 e $p=6000^{\text{cg}}$, la formola (6) conduce a trovare $b=0^{\text{m}},333$. Per diminuire queste grandi dimensioni, le quali sono per altro adottate in alcuni classici ponti, basta usare le precauzioni di far cadere gli estremi delle rotaie in corrispondenza delle travi trasversali e tener conto della resistenza alla flessione che le rotaie stesse possono presentare. Quando credasi di adottare questo procedimento, assumendo il metro per unità di lunghezza, nell'equazione (1) si pongano i valori di v' e di I' convenienti alla sezione retta delle rotaie che voglionsi porre in opera sul ponte, si assume 1/6 per valore di n", prendasi da 30000000 a 36000000 chilogrammi per valore di R", e si ricavi il valore particolare μ'm del massimo momento inflettente um al quale può essere sottoposta la rotaia. Togliendo dal massimo momento inflettente 1/2 p a2, che corrisponde ad un solido orizzontalmente collocato su due appoggi distanti 2a e caricato del peso p per ogni unità della sua lunghezza, il trovato valore di μ'_m , si ha quella parte di momento inflettente che deve sopportare la longarina, di maniera che l'equazione di stabilità ad essa conveniente è

$$n''R'' = \frac{3(p\,a^2 - 2\,\mu'_{\rm m})}{c\,b^2} \tag{7}$$

la quale immediatamente si deduce dalla formola (1) ponendo $\frac{1}{2}b$ in luogo di v', $\frac{1}{2}p$ $a^2 - \mu'_{\rm m}$ invece di $\mu_{\rm m}$ e $\frac{1}{12}cb^3$ al posto di I'. Qualora vogliasi ammettere l'incastramento od il mezzo incastramento della longarina, i momenti inflettenti da cui bisogna togliere il valore di $\mu'_{\rm m}$ sono rispettivamente $\frac{1}{3}p$ a^2 e $\frac{5}{12}p$ a^2 , e le equazioni di stabilità convenienti a queste ipotesi risultano:

per l'incastramento totale

$$n''R'' = \frac{2(p a^2 - 3 \mu'_m)}{cb^2}$$
 (8);

pel mezzo incastramento

$$n'' R'' = \frac{5 p a^2 - 12 \mu'_{m}}{2 c b^2}$$
 (9).

Nell'applicazione di una qualunque delle ultime tre formole, conviene che il valore di p sia la somma del sovraccarico, del peso della rotaia e del peso della longarina, riferiti alla lunghezza di un metro; e generalmente conviene nella pratica applicare l'equazione (7) invece delle equazioni (8) e (9), siccome quella che conduce a risultamenti che non possono mai essere in svantaggio della stabilità. La dimensione orizzontale della sezione retta delle longarine difficilmente è inferiore a metri 0,30 e la dimensione verticale non si assume mai inferiore a metri 0,40, quand'anche calcolandola si ottenga con risultamento minore.

Se, applicando una delle tre equazioni (7), (8) e (9) per dedurre b o c, si trova un valore immaginario pel primo, un valore negativo pel secondo, è segno che le sole rotaie collocate sulle travi trasversali sono sufficienti per portare il sovraccarico e che si potrebbe far senza le longarine.

196. Determinazione di una dimensione della sezione retta delle travi trasversali. — Nei ponti per strade ordinarie, le travi trasversali si mettono alla distanza di circa 1 metro da asse ad asse, quando su esse hanno direttamente appoggio i tavoloni costituenti la coperta; ad una distanza molto maggiore, e generalmente ad una distanza compresa fra metri 1,50 e metri 2,25, quando esistono le longarine fra le travi trasversali e la coperta. Nei ponti per strade ferrate conviene che la distanza fra asse ed asse di due travi trasversali successive sia compresa fra metri 1,50 e metri 2,25.

Nei ponti per strade ordinarie, le travi trasversali si considerano siccome solidi orizzontalmente collocati su due appoggi e caricati d'un peso p uniformemente distribuito sulla loro lunghezza. Immaginando i due piani verticali passanti ad eguali distanze fra la trave trasversale che si considera e le due fra cui essa cade, trovando i pesi delle longarine, del tavolato e del materiale costituente il suolo stradale fra questi piani, e dividendo la somma di questi tre pesi,

espressa in chilogrammi, per la distanza in metri fra mezzo e mezzo delle travi longitudinali che portano le travi trasversali, si ha nel quoziente q una parte del peso riferito all'unità di lunghezza della trave trasversale considerata. Aggiungendo a questo quoziente q il prodotto del sovraccarico, 600 chilogrammi, per la distanza d fra i definiti piani verticali, si ha nella somma il peso p' che si può supporre uniformemente distribuito su ogni metro di lunghezza di trave trasversale, astrazione fatta del proprio peso; e finalmente, ritenendo che Π , 2a, b e c rappresentino rispettivamente il peso del metro cubo di legname costituente la trave trasversale, la distanza fra mezzo e mezzo delle travi longitudinali portanti le travi trasversali, la dimensione verticale e la dimensione orizzontale delle loro sezioni rette, si ha

$$p = p' + \Pi b c$$
.

Trovato il valore di p, se esso si pone nell'equazione (3) del numero precedente, si ha l'equazione di stabilità conveniente al caso in cui le travi trasversali hanno solamente appoggio sulle travi longitudinali, che è appunto il solo che suolsi ammettere dai pratici, quantunque quelle siano generalmente inchiavardate a queste. Segue da ciò, che l'equazione di stabilità, determinatrice di una delle due dimensioni b e c della sezione retta delle travi trasversali, è

$$n'' R'' = \frac{3(p' + \Pi bc)a^2}{cb^2}$$
 (1).

La distanza 2 a fra i due appoggi di ogni trave trasversale dipende dalla larghezza libera del ponte, la quale, per il cambio delle vetture e coi marciapiedi pei pedoni, non deve essere inferiore a metri 5,50.

Nei ponti per vie ferrate con un solo binario, le travi trasversali sono solidi orizzontalmente disposti, caricati d'un peso p uniformemente distribuito sulla loro lunghezza, e di un peso P in corrispondenza di ciascuna rotaia. Il peso p si deduce come già si è detto parlando dei ponti per vie ordinarie, coll'unica avvertenza di trascurare il sovraccarico di 600 chilogrammi per ogni metro quadrato di pavimento del ponte, il qual sovraccarico non può esistere nel momento del passaggio di un convoglio. In quanto al valore di P, si deve esso dedurre colle norme che vennero date nel numero 193, e nelle ordinarie circostanze della pratica può il costruttore ser-

virsi dei valori di P_4 contenuti nella tabella che trovasi registrata nello stesso numero, aggiungendovi il peso di una longarina e di quanto questa permanentemente sopporta. L'equazione di stabilità da adottarsi è sempre la (1) del numero 195, e, attribuendo alle lettere Π , a, b, c e p' i significati che già loro vennero dati in questo stesso numero, sì ha

$$p = p' + \prod b c,$$

$$v' = \frac{1}{2} b,$$

$$\Gamma = \frac{1}{12} c b^3.$$

Considerando una trave trasversale siccome semplicemente appoggiata sulle travi longitudinali, il momento inflettente di maggior valore assoluto ha luogo per la sezione di mezzo, e essendo $2\,d$ la distanza fra asse ed asse delle rotaie (la qual distanza si può ritenere di metri 4,50), si ha

$$\mu_{\rm m} = \frac{1}{2} p a^2 + P(a-d)$$
 (2).

Ponendo nella citata equazione (1) del numero 195 i trovati valori di v', I', μ_m e p, risulta l'equazione

$$n'' R'' = \frac{3[(p' + \Pi b c) a^2 + 2P(a - d)]}{c b^2}$$
(3),

la quale con tutta facilità conduce alla determinazione di b o di c. La lunghezza 2a delle travi trasversali dipende dalla distanza delle travi longitudinali che le sopportano, la qual distanza deve essere tale che siavi sul ponte un passaggio libero compreso fra metri 4,30 e metri 5.

Se invece è quistione di un ponte per via ferrata a due binarii, i sovraccarichi P, da supporsi applicati alle travi trasversali in corrispondenza di ciascuna rotaia, invece di due, sono quattro; il momento inflettente di maggior valore assoluto si verifica ancora per la sezione di mezzo, e, essendo rispettivamente 2a, 2e e 2d la distanza delle travi longitudinali, la distanza fra le due rotaie vicine dei due

binarii, e la distanza fra le rotaie di uno stesso binario, vien esso dato dalla formola

$$\mu_{\rm m} = \frac{1}{2} p a^2 + 2 P (a - e - d).$$
 (4).

Ponendo ora questo valore di μ_m e quelli di p, di ν' e di I' nell'equazione (1) del numero 195, per equazione determinatrice di b o di c ottiensi

$$n'' R'' = \frac{3[(p' + \Pi b c) a^2 + 4P(a - e - d)]}{c b^2}$$
 (5).

La lunghezza 2 a delle travi trasversali dipende dalla distanza a cui sono poste le travi longitudinali, la qual distanza deve esser tale da lasciare sul ponte una larghezza libera, compresa fra metri 7,40 e metri 8; la lunghezza 2 e è quasi sempre compresa fra metri 4,80 e 2,40; e finalmente la lunghezza 2 d si può ritenere di metri 4,50.

Il prodotto $\Pi b c$, il quale trovasi nelle equazioni (1), (5) e (5) rappresenta il peso dell'unità di lunghezza di trave trasversale, e talvolta viene esso assunto per falsa posizione.

Avviene ben di frequente che, fissata la dimensione verticale b della sezione retta di una trave trasversale, in conformità dei legnami che si trovano in commercio, la dimensione orizzontale c riesce tanto grande da superare quella che corrisponde ai detti legnami. In questo caso ogni trave trasversale si fa con due pezzi posti l'uno a fianco dell'altro, e si segue così la disposizione rappresentata nella figura 240.

Le formole, che vennero date per dedurre una delle dimensioni della sezione retta delle travi trasversali, non convengono quando esse sono travi armate, ed in questo caso riesce facile procedere alla determinazione delle dimensioni delle diverse loro parti, ritenendole siccome caricate nel modo già indicato per dedurre le formole (1), (3) e (5) e facendo calcoli analoghi a quelli che vennero instituiti nel numero 208 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni.

197. Determinazione approssimativa del peso proprio di una trave longitudinale di legno a parete reticolata. — Conoscendosi la portata di una trave orizzontalmente collocata su due appoggi e l'altezza che ad essa vuolsi assegnare, riesce facile la determina-

zione approssimativa del peso della sua unità di lunghezza, prima di procedere al calcolo delle dimensioni da assegnarsi alle sue differenti parti.

Per fare questa determinazione, si assumano il metro per valutare le lunghezze, il chilogramma per stimare le forze. Si chiamino

2a la portata della trave, ossia la distanza fra i due appoggi su cui trovasi collocata,

b la sua altezza,

p il peso, per ogni metro corrente, che la trave deve sopportare, il qual peso si compone di tre parti, una p' corrispondente al peso proprio della trave, l'altra p'' rappresentante il peso di quanto permanentemente su essa deve gravitare, e la terza p''' il sovraccarico q cognito in seguito alla destinazione ed alla portata della trave; pel legname poi, di cui la trave è formata, si dicano

II il peso del metro cubo,

n"R" il prodotto del coefficiente di rottura per pressione e del relativo coefficiente di stabilità.

Il peso p' che vuolsi determinare deve comporsi di quattro distinte parti, le quali si riferiscono: alle due catene orizzontali; al traliccio; alle staffe ed ai pezzi di consolidamento; alle chiavarde ed alle fasciature di ferro.

L'equazione di stabilità conveniente alla sezione di mezzo della trave costituita dalle sole catene è

$$n''R'' = \frac{\frac{b}{2}\frac{1}{2}p\alpha^2}{\Gamma}$$
 (1),

e, siccome chiamando c e d le dimensioni orizzontale e verticale della sezione retta di ciascuna catena, atteso la picciolezza di queste dimensioni in confronto dell'altezza b, per approssimazione si può assumere

$$I' = \frac{1}{2} b^2 c d,$$

ossia ancora

$$I'=\frac{1}{\hbar}b^2\Omega$$
,

essendo Q il prodotto 2cd, esprimente la somma delle aree delle

sezioni rette delle due catene. L'ultimo valore di I' si ponga nella (1) e si ottiene un'equazione da cui si deduce

$$\Omega = \frac{p \, a^2}{b \, n'' \, R'''}.$$

Moltiplicando questo valore di Ω per la lunghezza 2a della trave, si ha che il volume V delle due catene viene dato da

$$V = \frac{2 p a^3}{b n'' R''} \tag{2}$$

L'equazione di stabilità, atta alla determinazione della sezione retta dei pezzi del traliccio in corrispondenza della sezione d'appoggio, è

$$n'' R'' m \omega' = \frac{pa}{\operatorname{sen} \alpha},$$

dove ω' , m ed α rappresentano rispettivamente la superficie della sezione retta di uno dei pezzi del traliccio, m il numero dei pezzi del traliccio che sono tagliati da una stessa sezione retta della trave, ed α l'angolo che questi stessi pezzi fanno coll'orizzonte. Ricavando dall'ultima equazione il valore di ω' , si ha

$$\omega' = \frac{p \, a}{m \, n'' \, R'' \, \text{sen } \alpha}.$$

Se ora, almeno approssimativamente, voglionsi regolare la superficie delle sezioni rette dei varii pezzi del traliccio a seconda degli sforzi che effettivamente sopportano, queste superficie devono andare diminuendo a misura che si riferiscono a pezzi avvicinantisi alla sezione di mezzo della trave, e supponendo che, pei pezzi tagliati dalla sezione di mezzo, le superficie ω'' delle loro sezioni rette debbano ancora essere la terza parte di ω' , si ha

$$\omega'' = \frac{p \, a}{3 \, m \, n'' \, R'' \, \text{sen } \alpha}.$$

La semisomma fra i due valori di ω' ed ω" si può assumere siccome

rappresentante quella superficie media ω della sezione retta di ciascuno dei pezzi del traliccio, che conviene adottare nel calcolo del volume del traliccio stesso, e quindi risulta

$$\omega = \frac{2pa}{3mn''R'' \operatorname{sen} \alpha}$$

Chiamando

b' l'altezza della parete reticolata ed

n il numero dei pezzi del traliccio i quali per un loro estremo sono attaccati alla catena inferiore,

si ha; che la lunghezza di uno degli accennati pezzi viene espressa da

$$\frac{b'}{\operatorname{sen}\alpha}$$
;

e che il volume V' dell'intiero traliccio viene dato da

$$V' = \frac{2panb'}{3mn''R'' \operatorname{sen}^2 \alpha}$$
 (3).

Quando l'angolo α è di 45°, e quando i pezzi del traliccio due a due s'incontrano in punti equidistanti delle catene (fig. 243), si ha

$$sen^2 \alpha = \frac{1}{2}, \qquad \frac{n}{2} \frac{2b'}{m} = 2a \qquad \text{d'onde } nb' = 2ma,$$

ed il valore di V' viene dato da

$$V' = \frac{8}{3} \frac{p \, a^2}{n'' R''} \tag{4}.$$

Per consolidare e per rendere sufficientemente rigido il traliccio, si usa porre le staffe verticali S (fig. 240 e 245). La superficie della sezione longitudinale, secondo un piano verticale perpendicolare all'asse della trave, difficilmente si assume inferiore a quella data dall'espressione

$$\frac{20 \, pa}{3 \, n'' \, \text{R''} \, \text{sen} \, 2 \, \alpha} \tag{5},$$

rappresentante cinque volte la sezione media prodotta nel traliccio da un piano pure verticale e perpendicolare alla lunghezza della trave; la lunghezza di queste staffe non è mai inferiore all'altezza b della trave; e la loro larghezza e sulla fronte della trave difficilmente è inferiore alla media larghezza dei pezzi del traliccio. Se adunque si chiama il numero delle staffe, le quali consolidano l'intiera trave, si ha che il loro volume V" viene dato da

$$V'' = \frac{20 \nu pae}{3n''R'' \operatorname{sen} 2\alpha} \tag{6}.$$

Facendo la somma dei secondi membri delle tre equazioni (2), (3) e (6) e moltiplicando questa somma per II, ottiensi il peso del legname costituente la trave nell'espressione

$$\frac{2p \prod a}{n'' R''} \left[\frac{a^2}{b} + \frac{1}{3} \left(\frac{nb'}{m \operatorname{sen}^2 \alpha} + \frac{10 \nu e}{\operatorname{sen} 2 \alpha} \right) \right].$$

In quanto al peso del ferro per chiavarde e per fasciature, si può ritenere che esso sia una determinata frazione K del peso del legname, di maniera che il peso totale della trave si può esprimere con

$$\frac{2p \prod a}{n'' R''} \left[\frac{a^2}{b} + \frac{1}{3} \left(\frac{nb'}{m \operatorname{sen}^2 \alpha} + \frac{10 \nu e}{\operatorname{sen} 2\alpha} \right) \right] (1 + K),$$

dove il valore di K si può assumere siccome variabile fra 0,02 e 0,05.

Osservando ora che l'ultima espressione rappresenta il peso 2p'a della trave e che

$$p = p' + p'' + q,$$

si ottiene l'equazione

$$p' = \frac{(p' + p'' + q) \Pi}{n'' R''} \left[\frac{a^2}{b} + \frac{1}{3} \left(\frac{n \, b'}{m \, \text{sen}^2 \, \alpha} + \frac{10 \, \nu e}{\text{sen} \, 2 \, \alpha} \right) \right] (1 + K),$$

la quale, ponendo

$$\frac{\Pi}{n''R''} \left[\frac{a^2}{b} + \frac{1}{3} \left(\frac{n b'}{m \operatorname{sen}^2 \alpha} + \frac{10 \nu e}{\operatorname{sen} 2 \alpha} \right) \right] (1 + K) = A \tag{7}$$

conduce a

$$p' = \frac{\Lambda}{1 - \Lambda} (p'' + q) \tag{8}.$$

L'equazione (7) serve per trovare il valore di A, e l'equazione (8) prestasi dopo alla deduzione del peso proprio p' di ogni metro corrente di trave. Il valore di n'' che entra nell'equazione (7) suolsi prender eguale ad 1/10, e quello di R'', da riferirsi al metro quadrato, si pnò dedurre dalla tabella del numero 22.

198. Determinazione di alcune principali dimensioni delle travi longitudinali dei ponti in legno a travate rettilinee. — Le travi longitudinali dei ponti in legno a travate rettilinee sono generalmente a parete reticolata, ed è possibile determinare col calcolo una delle dimensioni della sezione retta delle catene, non che le superficie delle sezioni rette dei diversi pezzi del traliccio. Pel caso delle travi longitudinali del ponte rappresentato nella figura 240, ecco con qual metodo si può procedere nell'indicata determinazione.

Supponendo che i piedritti del ponte si trovino a distanze eguali, si considera la parte di trave longitudinale BB₄ (fig 244), compresa fra le sezioni rette determinate dagli assi delle due travi d'appoggio A' ed A'₄ (poste l'una a dritta e l'altra a sinistra per rapporto al mezzo di due piedritti successivi), siccome un solido orizzontalmente collocato su due ritegni fissi e caricato d'un peso uniformemente distribuito sulla sua lunghezza. Così procedendo, si opera in favore della stabilità, e d'altronde si segue una misura prudenziale consigliata dai pratici a motivo dei difetti nascosti che si possono trovare nei legnami, delle imperfezioni nelle unioni e della facilità con cui questi materiali deperiscono.

Si trovi il peso in chilogrammi della mezza copertura del ponte per la lunghezza \overline{BB}_4 col tener conto del massimo carico di neve che su essa può verificarsi, della copertura propriamente detta e dei legnami necessarii a porla in opera, ed aggiungansi a questo peso quelli di una rotaia, di una longarina, delle mezze travi trasversali, del mezzo tavolato e dei legnami appartenenti ad un marciapiede, per l'indicata lunghezza \overline{BB}_4 , e dividasi il risultato che si ottiene per questa stessa lunghezza, espressa in metri. Il quoziente si aggiunga al peso p' determinato come si è detto nel precedente numero, e nella somma si ottiene il carico permanente riferito al metro di lunghezza di una trave longitudinale. Per quanto spetta al sovraccarico, si deve esso determinare in conformità di quanto si è detto

nel numero 192; cosicchè, nel caso di un ponte per via ferrata ad un solo binario e della distanza $\overline{A'A_4'}$ maggiore di 20 metri, si assumerà il sovraccarico di 2000 chilogrammi per ogni metro di lunghezza di una delle due travi longitudinali. A questo sovraccarico conviene ancora aggiungere quello che può trovarsi su un metro di lunghezza di marciapiede da assumersi in ragione di 300 o tutto al più di 400 chilogrammi per ogni metro quadrato di pavimento del marciapiede. Sommando il carico permanente ed il sovraccarico, ottenuti come si è detto, si ha il carico p di cui è gravata una trave longitudinale per ogni metro della sua lunghezza.

Il complesso delle due catene si considera siccome quella parte della trave longitudinale che deve resistere alla flessione, e quindi

l'equazione di stabilità

$$n''R'' = \frac{v'\mu_{\rm m}}{I'} \tag{1},$$

è quella da applicarsi per determinare una delle dimensioni della sezione retta dell'accennata parte. Essendo 2a la distanza $\overline{A'A_4'}$, il momento inflettente $\mu_{\rm m}$ viene dato da

$$\mu_{\mathrm{m}} = \frac{1}{2} p a^2.$$

Indicando poi, con

b la dimensione orizzontale $\overline{AB} = \overline{FD}$ (fig. 245) della sezione retta del solido costituito dal complesso delle due catene, con

c la dimensione verticale $\overline{BC} = \overline{DE}$ della sezione retta di ciascuna catena e con

d la distanza \overline{BD} fra le due facce rappresentate in AB ed FD, il momento d'inerzia I', rispetto all'asse orizzontale XX' passante pel centro di superficie G, della sezione retta data dai due rettangoli eguali ABCH ed FDEI, vale

$$\frac{1}{12}b\left[(d+2c)^{5}-d^{5}\right];$$

cosicchè, per essere

$$v' = \frac{1}{2}(d+2c),$$

l'equazione (1) diventa

$$n'' R'' = \frac{3(d+2c) p a^2}{b [(d+2c)^3 - d^3]}$$
 (2).

Il valore di n" da porsi in questa formola non deve essere maggiore della frazione 1/10, ed il valore del coefficiente di rottura R" si deve assumere in conformità dei dati contenuti nella tabella del numero 22.

Le lunghezze 2a e d sono generalmente due elementi dati, la prima, rappresentante la portata libera delle travi longitudinali del ponte, difficilmente è maggiore di 30 metri; la seconda, subordinata alla destinazione del ponte quando le travi longitudinali sono superiormente rilegate, deve esser tale da permettere il libero passaggio dei più alti veicoli che sul ponte devono transitare. Nei ponti per strade ferrate, la distanza d deve essere tale che, fra il livello dei regoli ed il livello delle facce più basse dei pezzi i quali superiormente collegano le travi longitudinali, siavi un'altezza libera non inferiore a metri 5 od almeno a metri 4,75. L'incognita del problema è generalmente una delle due dimensioni b e c. Quando l'incognita è b, l'equazione (2) risulta del primo grado ed è di assai facile risoluzione; ma, quando l'incognita è c, la detta equazione riesce del terzo grado. In quest'ultimo caso, se credesi di apportare qualche compenso all'eccesso di stabilità che la trave deve presentare, col supporre soltanto appoggiata la parte BB, (fig. 244), si può semplificare la formola (3), supponendo che i diversi elementi delle aree rettangolari ABCH ed FDEI (fig. 245) distino dall'asse XX' della quantità $\overline{KC} = \frac{1}{9} (d + 2c)$, ed assumendo per valore di l'

il prodotto $\frac{1}{2}bc(d+2c)^2$. L'equazione (1) diventa allora

$$n''R'' = \frac{p a^2}{2 b c (d+2c)},$$

che è del primo grado in b e del secondo grado in c.

Per determinare le superficie delle sezioni rette dei diversi pezzi componenti il traliccio, si osserva che le due catene bastano da sole per resistere agli sforzi di trazione e di pressione provenienti dalla flessione provocata nella trave longitudinale, e che sicuramente si avrà la necessaria stabilità nell'intiero sistema, quando il traliccio presenti tali dimensioni da poter stabilmente sopportare gli sforzi

di taglio. Ora, lo sforzo di taglio per una sezione qualunque della trave posta a distanza z dalla sezione corrispondente all'appoggio A' (fig. 244), viene dato dall'espressione

$$p(a-z),$$

e l'equazione atta alla determinazione della superficie ω da assegnarsi alle sezioni rette dei diversi pezzi del traliccio è (Resistenza dei materiali e stabilità delle costruzioni, num. 200)

$$\omega = \frac{p(a-z)}{m \, n \, \text{R sen } \alpha} \tag{3}.$$

In quest'equazione, m è il numero dei pezzi del traliccio che sono tagliati da una stessa sezione retta della trave longitudinale e quindi nel caso particolare m=2. In quando ai valori di n e di R si possono essi assumere eguali ai coefficienti numerici n'' ed R'', ossia non maggiore di 1/10 il primo, ed in conformità dei dati contenuti nella tabella del numero 22, ma riferito al metro quadrato, il secondo. L'angolo α è quello che misura l'inclinazione dei pezzi del traliccio all'orizzonte.

Facendo successivamente nell'ultima equazione $z=0, z=\overline{A'C}$ e $z=\overline{A'D}$, si ottengono i tre valori ω_4 , ω_2 ed ω_3 delle superficie delle sezioni rette da assegnarsi ai pezzi A'F e CE, CG e DF, DH ed LG. In quanto agli altri pezzi del traliccio, si devono essi riprodurre con simmetria rispetto al mezzo della trave. I pezzi EC ed FD, ed in generale tutti quelli che hanno il loro estremo inferiore più vicino alla sezione di mezzo della trave del loro estremo superiore, sopportano tensione; trovansi invece sottoposti a pressione quelli, come A'F e CG, il cui estremo superiore è più vicino alla sezione di mezzo della trave dell'estremo inferiore. Quest'avvertenza è necessaria per convenientemente unire i pezzi del traliccio alle catene e per ottenere che queste non si separino da quelli nel deformarsi sotto le azioni dei carichi transitanti sul ponte.

Per rapporto alle staffe, si possono praticamente determinare la superficie Ω delle loro sezioni longitudinali, secondo piani perpendicolari all'asse della trave, mediante la formola

$$\Omega = \frac{10 \, p \, (a - z)}{n \, \text{R} \, \text{sen} \, 2 \, \alpha} \tag{4},$$

la quale esprime che le definite superficie Ω devono eguagliare cinque volte le superficie

$$\frac{p(a-z)}{n \operatorname{R} \operatorname{sen} \alpha \cos \alpha} = \frac{2 p(a-z)}{n \operatorname{R} \operatorname{sen} 2 \alpha}$$

delle sezioni prodotte nei pezzi del traliccio da piani perpendicolari all'asse della trave nei siti in cui le staffe vogliono essere collocate. Segue da ciò, che i valori di Ω per le staffe A'E, CF e DG si determineranno facendo successivamente z=0, $z=\overline{A'C}$ e $z=\overline{A'D}$ nell'equazione (4). I valori di n e di R, come già si è detto doversi fare per l'applicazione dell'equazione (5), si assumeranno rispettivamente eguali ai valori di n'' ed R''. — Le larghezze delle staffe sulla fronte della trave a cui appartengono, si possono assumere eguali a quelle dei pezzi del traliccio che partono dai loro estremi inferiori. Così, conviene assumere le larghezze delle staffe A'E, CF e DG eguali a quelle dei pezzi A'F, CG e DH del traliccio.

Per determinare la superficie ω' della sezione retta di ciascuna delle due travi inclinate A'L e KE, si può praticamente procedere come segue: considerare come parte libera della trave, supposta staccata dalle parti adiacenti, la MNPO di lunghezza $\overline{\text{MO}}$ eguale alla distanza 2A esistente fra mezzo e mezzo di due piedritti successivi; immaginare che gli appoggi siano in M ed O; fare lo sforzo di taglio pA corrispondente alla sezione MN; e finalmente dedurre il valore di ω' dalla formola

$$\omega' = \frac{pA}{m \, n \, R \, \mathrm{sen} \, \beta},$$

nella quale β rappresenta l'inclinazione delle travi A'L e KE all'orizzonte, mentre m, n ed R hanno i valori che già venuero indicati in questo numero.

Il metodo, che venne tenuto per la deduzione delle dimensioni dei diversi pezzi componenti la trave longitudinale del tipo di quella rappresentata nella figura 240, si deve ritenere come solamente approssimato, sia perchè le travi longitudinali non sono formate da parti indipendenti le une dalle altre lunghe come le distanze fra gli assi dei piedritti, sia perchè la maniera di dedurre le dimensioni dei pezzi del traliccio, conveniente pei tralicci fitti, non è quella che meglio si adatta al calcolo delle dimensioni dei tralicci a grandi scompartimenti ed a croci semplici con staffe di rinforzo. Nella

pratica però l'indicato metodo non è da ripudiarsi a motivo della semplicità che presenta, e tutto al più si può tener conto della continuità delle travi longitudinali, procedendo con metodi analoghi a quelli che verranno indicati parlando dei ponti di ferro a travate rettilinee.

Resta ancora da dirsi qualche cosa sulla determinazione delle dimensioni dei principali pezzi componenti le palate a cavalletto sopportanti il poute, le quali palate, per fissare le idee, si suppongono del tipo di quella rappresentata nella figura 234. Sia AB (fig. 246) una delle mensole che nelle figure 234 e 240 vennero indicate colla lettera M; AC, AD, BF e BE siano i quattro saettoni stati indicati colla lettera s nella prima delle citate figure, i quali sostengono la detta mensola alle sue estremità; e finalmente GH, GI, GK e GL rappresentino quattro di quelle travi, cui nella figura 254 è apposta la lettera T, le due prime appartenenti ad una faccia e le altre due all'altra faccia laterale della palata. Immaginando condotti i due piani verticali, uno passante per l'asse della mensola AB e l'altro perpendicolare a questo stesso asse nel punto G, si ha: che questi piani s'intersecano secondo la verticale GO, asse della piramide, a base rettangolare, GHIKL; che le due facce piane HGL ed IGK, determinate dagli assi dei puntoni, fanno lo stesso angolo col primo dei definiti piani verticali; e che le due facce HGI e KGL sono pure egualmente inclinate per rapporto al secondo. Premesso questo, si chiamino

C ciascuno dei due angoli eguali MGO ed NGO, misuranti le inclinazioni delle facce piane HGL ed IGK col piano verticale determinato dalle due rette AB e GO;

z ciascuno dei quattro angoli eguali IGA, KGB, HGA ed LGB,

β ciascuno dei quattro angoli eguali CAG, DAG, FBG e EBG,

27 ciascuno dei due angoli eguali CAD ed FBE,

de ciascuno dei due angoli che la mensola AB fa coi piani CAD ed FBE, determinati dai saettoni AC ed AD, BF e BE,

l la lunghezza GA=GB, espressa in metri.

Dal triangolo AGR, il quale risulta prolungando la AD fino ad incontrare in R la retta GN e che è rettangolo in G, si ha

$$\overline{GR} = l \tan \beta$$
,

$$\overline{AR} = \frac{l}{\cos \beta};$$

dal triangolo GQR, il quale si ha col prolungare la AC fino ad incontrare la GM in S e col tirare la retta SR intersecante la GO in Q, si deduce

$$\overline{QR} = l \tan \beta \operatorname{sen} C$$
,

$$\overline{QG} = l \tan \beta \cos C;$$

dal triangolo A QR, rettangolo in Q e metà del triangolo isoscele S A R, si ricava

$$\operatorname{sen} \gamma = \operatorname{sen} \beta \operatorname{sen} C$$
 (5);

e finalmente dal triangolo AGQ, rettangolo in G, si ottiene

$$tang \delta = tang \beta \cos C$$
 (6).

Se ora chiamasi P la pressione che ha luogo in A, la quale, nel caso particolare di travi longitudinali collocate sui piedritti come risulta dalla figura 240 e nell'ipotesi dell'indipendenza delle loro parti comprese fra due appoggi successivi, si può considerare siccome equivalente al già indicato prodotto p A, si ha: che la detta pressione P ammette due componenti, una T_4 , diretta secondo AB, data da

$$T_{i} = P \cot \delta$$
,

e l'altra T, diretta secondo A Q, il cui valore è

$$T = \frac{P}{\operatorname{sen} \vartheta};$$

che mediante l'equazione di stabilità

$$n'R'\Omega_4 = P \cot \delta$$
 (7)

si può determinare la superficie Ω_4 della sezione retta della mensola AB sottoposta a trazione.

La forza T si risolve in due componenti eguali, dirette secondo A C ed A D. Essendo T₂ una di queste componenti, si ha l'equazione

$$T_2 = \frac{T}{2\cos\gamma}$$

la quale, per il trovato valore di T, diventa

$$T_2 = \frac{P}{2 \sin \vartheta \cos \gamma}$$
.

Ciascuno dei saettoni A C ed A D è compresso, secondo il suo asse, dalla forza premente T_2 e quindi l'equazione di stabilità, determinatrice della superficie Ω_2 della sua sezione retta, risulta

$$n'' R'' \Omega_2 = \frac{P}{2 \sin \delta \cos \gamma}$$
 (8).

Considerando uno qualunque dei saettoni, per esempio il saettone AD, esso preme in D la trave inclinata GI contro la quale ha appoggio; questa pressione ha luogo nel piano I G K, è diretta secondo il prolungamento di AD dall'alto al basso, e vale To. Unendo il punto D col punto E, ottiensi la retta DE orizzontale e quindi parallela alla AB; scomponendo la forza To in due To e T', la prima diretta secondo l'asse della trave inclinata GI e l'altra secondo la orizzontale DE, si può ritenere che quella produca pressione sull'indicata trave e che questa tenda ad infletterla nel piano IGK. Gli effetti della T' si possono trascurare, perchè contribuiscono a diminuirli le filagne F' (fig 234), siccome inchiodate per un estremo al retro-puntone P", e le staffe S; e perchè si possono annullare mediante ritegni orizzontali, disposti secondo le rette DE e CF (fig. 246) fra le travi inclinate GI e GK, GH e GL. In quanto alla pressione T3, riesce facilissimo calcolarla, osservando che gli angoli DT, T, e DT, T, sono rispettivamente α e β; cosicchè, avuto riguardo al trovato valore di To, si ottiene

$$T_3 = \frac{P \sin \beta}{2 \sin \alpha \sin \beta \cos \gamma}.$$

Le travi inclinate GI, GK, GH e GL hanno sovente una lunghezza piuttosto grande, e quindi non è permesso trascurare il loro peso, come si è fatto per la mensola e pei saettoni. Per tenerne conto, si dicano

h l'altezza GO della pila al di sopra del piano orizzontale contenente le basi delle dette travi inclinate,

Il il peso del metro cubo di legname costituente le stesse travi; si esprima in metri la prima delle indicate quantità, ed in chilogrammi la seconda. Dal triangolo GON, rettangolo in O, si ha

$$\overline{GN} = \frac{h}{\cos C}$$

dal triangolo GNI, rettangolo in N ed in cui l'angolo GIK vale α , avuto riguardo al trovato valore di GN, si deduce

$$\overline{GI} = \frac{h}{\operatorname{sen} \alpha \cos C};$$

e finalmente il peso della trave GI, la cui sezione retta si può indicare con Ω_3 , viene dato dall'espressione

$$\frac{\Pi h \Omega_3}{\sin \alpha \cos C} \tag{9}.$$

Dal triangolo GOI, rettangolo in O, riesce facile dedurre il coseno dell'angolo IGO, il cui valore viene dato da

cosicchè la componente del trovato peso secondo l'asse della trave GI viene data da

$$\Pi h \Omega_3$$
.

Sommando ora il valore di T₃ con quest'ultima espressione, si può ritenere che la forza premente la trave GI, nel senso del suo asse, sia

$$\frac{P \sin \beta}{2 \sin \alpha \sin \delta \cos \gamma} + \Pi h \Omega_3;$$

e che abbiasi

$$n''R''\Omega_3 = \frac{P \sin \beta}{2 \sin \alpha \sec \beta \cos \gamma} + \Pi h \Omega_3$$
 (10)

per equazione di stabilità determinatrice della superficie Ω₃.

La componente del peso proprio della trave GI, diretta normalmente al suo asse, tende a produrre una flessione nel piano OGI. La detta componente però è piccola, ed è assolutamente trascurabile la flessione che essa può produrre.

I puntoni P''' (fig. 234) ed il capello C hanno sezione retta più che sufficiente, quando loro si assegni quella somministrata dalla formola (10) per le travi inclinate T; e, per quanto spetta alle filagne F' ed alle saette S, si può ritenere che ad esse convengano sezioni rette i cui lati variino fra i 3/4 ed i 4/7 di quelli delle dette travi T.

La superficie Ω_4 di ciascuno dei pali P, i quali sono in numero di sei nella pila rappresentata nella figura 254, si ottiene aggiungendo al peso 4p A, rappresentante la pressione che il ponte esercita su essa, nell'ipotesi delle travate indipendenti l'una dall'altra, la somma Σ dei pesi delle due travi d'appoggio A' (fig. 240), delle due mensole M, degli otto saettoni s (fig. 234), delle otto travi T, delle quattro filagne F', delle travi orizzontali F disposte in senso longitudinale, trasversale e diagonale per le parti sopportate dai pali P; e ponendo l'equazione di stabilità

$$6n''R''\Omega_4 = 4pA + \Sigma$$

nella quale, trattandosi di opere per fondazioni, conviene assumere il coefficiente di stabilità n'' variabile fra 1/20 ed 1/25.

Ai pali P' e P", che servono di fondazione ai rostri della pila, suolsi assegnare la stessa sezione retta dei pali P; giacchè, se una tale sezione retta è eccessiva quando si ha solo riguardo al peso che quelli sopportano, è però necessaria per rendere stabili le pile sotto le violenti azioni che in esse vengono provocate nelle massime piene. Che anzi, essendo le pile continuamente soggette all'impeto delle acque ed alle alternative di secco e di umido, assai dannose ai legnami, è prudente eccedere nelle dimensioni dei legnami, invece di stare nei limiti somministrati dal calcolo.

Per la determinazione delle dimensioni delle spalle conviene fare due ipotesi, la prima che debbano sopportare le pressioni loro trasmesse dalle travate, la seconda che, anche nel caso in cui non esistano le travate, siano capaci di resistere alla spinta delle terre che devono sostenere.

199. Ponti con archi di legname. - Nella figura 247 si ha una parte dell'elevazione ed una parte della sezione orizzontale al livello XY di un'arcata di questi ponti. Essa consta essenzialmente di più arconi A, sostenuti dai piedritti e formati di travi o di tavoloni, artificialmente incurvati e riuniti a diversi ordini, l'uno sull'altro, per mezzo di chiavarde, di fasciature, o contemporaneamente di chiavarde e di fasciature di ferro. Questi arconi, mediante i doppi ritti verticali r, sostengono le travi longitudinali L, sulle quali trovano appoggio le travi trasversali destinate a sopportare l'impalcatura del ponte. I ritti, fermati ai diversi arconi, costituiscono, nel senso dell'asse dell'arcata, tante file quanti sono i ritti portati da un solo arcone, e ciascuna di queste file è collegata da fasce orizzontali e, le quali servono a dare un robusto concatenamento degli arconi ed a renderne invariabile la posizione. Le fasce orizzontali sono unite, da una fila all'altra, per mezzo di tiranti obliqui o, i quali s'intersecano due a due, trovandosi quasi sulla superficie cilindrica in cui sono le superficie d'estrados dei diversi arconi. Oltre i pezzi di concatenamento o, ne esistono altri c disposti a croce fra le file dei ritti aventi i loro estremi superiori sotto le travi longitudinali L, i loro estremi inferiori sugli arconi A, appoggiati ai ritti e capaci di mantenerli saldi nella loro posizione verticale per frenare quei movimenti ondulatorii che potrebbero manifestarsi nel ponte pel passaggio dei veicoli o pel gagliardo impulso del vento. I ritti r posti sugli arconi delle fronti sono prolungati superiormente alle travi longitudinali L per fermarvi le traverse orizzontali dei parapetti. Gli estremi degli arconi sono alle loro imposte fermati nella muratura; è bene che un robusto cuscinetto di pietra da taglio riceva questi estremi; ed è eminentemente commendevole la pratica di serrare le dette estremità entro robuste scatole di ghisa. le quali saldamente si fermano nella muratura.

Quantunque siansi costrutti dei ponti con archi di legname aventi aperture molto grandi, giacchè nel ponte di Bamberga sul fiume Regnitz venne superata la straordinaria portata di metri 71,80, pure l'esperienza ha dimostrato non convenire l'impiego di corde maggiori di 40 metri. Per quanto spetta alla monta, è bene che essa non sia al di sotto di 1/12 della corda. La distanza a cui ordinariamente si pongono gli arconi, da mezzo a mezzo, varia da metri 1,50 a metri 2,50; ed i ritti verticali si pongono generalmente a distanze eguali comprese fra 4 e 5 metri. Sul finire dello scorso e

sul principio del corrente secolo, vennero costrutti parecchi di questi ponti per vie ordinarie; ma finora hanno essi ricevuto ben poche applicazioni lungo le vie ferrate. In quest'ultimo caso, invece di porre gli arconi a distanze eguali, se ne può collocare uno sotto ciascuna rotaia ed uno in corrispondenza di ciascuna fronte del ponte.

Il suolo stradale si stabilisce sui ponti con archi di legname, colle stesse norme che vennero date nel numero 189, parlando dei

ponti con incavallature rette.

I ponti con archi di legname vennero accolti con gran favore sul principio della loro invenzione, e molti ne vennero costrutti in Europa, segnatamente nella Francia, nella Germania e nella Svizzera. La loro durata però fu assai breve, per cui tosto scemò di molto quel credito al quale da prima era salito questo genere di costruzioni. Alcuni costruttori hanno manifestato l'opinione che il rapido decadimento dei primitivi ponti con archi di legname fosse derivato dalla poca monta che ordinariamente assegnavasi ai loro arconi; ma molti altri ponti dello stesso genere, che in seguito vennero costrutti in Francia con aperture non maggiori di 20 a 25 metri e con monte non maggiori di 1/12 delle relative aperture, hanno messo in evidenza un vizio essenziale, per cui il sistema non è da riputarsi dei più vantaggiosi. Si è costantemente osservato che gli arconi a poco a poco si restringono, e che la contrazione dei medesimi, producendo un corrispondente abbassamento nel mezzo del ponte, giunge al punto di porre in compromesso la sua sicurezza, e di renderlo inservibile, assai prima di quell'epoca in cui sarebbe d'uopo di ripristinare l'edifizio, in vista del naturale deterioramento del legname di cui è formato.

200. Norme per la determinazione di alcune principali dimensioni dei ponti con archi di legname. — La grossezza del tavolato componente la coperta ed una delle due dimensioni della sezione retta delle travi trasversali, sono i primi elementi da determinarsi, e per questa determinazione si procede come già venne indicato nel numero 190, parlando delle dimensioni dei diversi pezzi dei ponti con incavallature rette.

Per la determinazione della sezione retta delle travi longitudinali L, si suppone che ciascuna di esse sia tagliata in corrispondenza dei ritti r (fig. 247), ed una delle parti comprese fra due ritti successivi considerasi siccome un solido prismatico orizzontalmente collocato su due appoggi e caricato d'un peso uniformemente distribuito sulla sua lunghezza. Questo peso poi consta di due parti,

del peso p' proveniente da quanto la trave longitudinale è destinata a sopportare, e del peso q' derivante dal peso proprio della trave stessa.

Nel caso di un ponte per strada carreggiabile, si ottiene come segue il peso p' portato dall'unità di lunghezza di trave longitudinale: si considera un rettangolo lungo come la distanza fra mezzo e mezzo di due ritti successivi e largo come la distanza esistente fra i piani verticali determinati dagli assi di due archi successivi; tenendo conto del sovraccarico, del materiale costituente il suolo stradale, della coperta, delle travi trasversali e dei ferramenti necessari a porre in opera quanto trovasi sulle travi longitudinali, si fa il totale peso sopportato dalla parte di trave longitudinale compresa fra i detti due ritti e si divide questo peso per la lunghezza dell'ora definita parte di trave longitudinale, onde avere nel quoziente il valore di p'.

Nel caso di un ponte per via ferrata, si considerano le parti di travi longitudinali fra i ritti, siccome solidi prismatici posti nelle stesse condizioni delle longarine dei ponti a travate rettilinee (num. 195) per vie ferrate.

Ciascuno dei ritti si può considerare sicccome un corpo prismatico sottoposto a pressione. Essendo d la distanza fra asse ed asse di due ritti successivi, il prodotto (p'+q')d rappresenta la pressione che ha luogo su ciascun di essi, e quindi riesce facile determinare la superficie della loro sezione retta.

I pezzi di concatenamento e, o e c, destinati a conservare la verticalità degli archi e dei ritti e ad impedire quei dannosi movimenti ondulatori che potrebbero manifestarsi nel ponte pel passaggio dei veicoli e per l'impulso del vento, difficilmente hanno sezioni rette con dimensioni minori di quelle delle travi componenti i ritti r.

Venendo agli archi, suolsi considerare ciascuno di essi siccome una centina simmetrica rispetto al suo mezzo cogli estremi fissi, e caricata d'un peso uniformemente distribuito sulla sua corda. Per ottenere questo peso si può procedere come segue: si calcola il peso U' di tutto ciò che la metà di un arco permanentemente deve sopportare, come pezzi di concatenamento, ritti, trave longitudinale, travi trasversali, impalcatura, materiali costituenti il suolo stradale; si fa il massimo sovraccarico U", pure per un mezzo arco; si somma U' con U", per avere il peso U. Attribuendo alle lettere n", R", II, Φ, c, m ed S i significati che loro vennero dati nel numero 58, colla formola (6) di questo stesso numero, si può provvisoriamente determinare la superficie Ω della sezione retta della centina, onde

porla nell'equazione (4), e trovare così approssimativamente il totale peso V sopportato dalla metà di un arco. Dividendo questo peso per c, ossia per la semicorda di un arco, si ha il peso uniformemente distribuito su ogni unità di lunghezza della sua corda. — Il sovraccarico si assume: di 600 chilogrammi per ogni metro quadrato di pavimento di ponte per via carreggiabile; e di 4000 a 5000 chilogrammi per ogni metro corrente di via ferrata ad un solo binario. Il sovraccarico di 4000 chilogrammi conviene per le strade ferrate di pianura, su cui ha solamente luogo il transito delle ordinarie locomotive; ed il sovraccarico di 5000 chilogrammi si adotta per le strade ferrate di montagna, il cui esercizio richiede l'uso di locomotive molto pesanti.

Supponendo ora che l'asse di ciascun arco del ponte debba essere circolare, ecco quali sono le formole da applicarsi per convenientemente regolarne la sezione retta. Se chiamansi

r il raggio dell'asse dell'arco,

Φ l'arco di raggio eguale all'unità chiudente l'angolo che corrisponde alla metà dello stesso asse,

p il peso uniformemente distribuito su ogni unità di lungezza della proiezione orizzontale dell'asse medesimo,

Q la reazione orizzontale dell'appoggio contro la sezione d'imposta, la quale reazione è eguale e contraria alla spinta che l'arco esercita su ciascuno dei due appoggi,

per quanto si è detto nel numero 171 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, si ha che il valore di Q viene dato da

$$Q = \frac{pr}{2} \frac{3\Phi\cos\Phi - 6\Phi\sin^2\Phi\cos\Phi - 3\sin\Phi + 7\sin^3\Phi}{3\Phi + 6\Phi\cos^2\Phi - 9\sin\Phi\cos\Phi}$$
 (1).

Ottenuto il valore di Q, se diconsi

 ϕ l'arco di raggio eguale all'unità chiudente l'angolo che il piano di una sezione qualunque fa col piano della sezione corrispondente alla chiave,

μ il momento inflettente per la detta sezione qualunque, si ha

$$\mu = \frac{p r^2}{2} (\operatorname{sen}^2 \varphi - \operatorname{sen}^2 \Phi) + Q r (\cos \varphi - \cos \Phi)$$
 (2).

Questo valore di μ per la chiave dell'arco, ossia per $\phi=0$, prende il valore particolare μ_{\circ} dato da

$$\mu_{o} = -\frac{pr^{2}}{2} \operatorname{sen}^{2} \Phi + Q r (1 - \cos \Phi),$$

diventa zero per quelle sezioni cui corrispondono gli angoli ϕ dati dall'equazione

$$\frac{p r^{9}}{2} (\operatorname{sen}^{9} \varphi - \operatorname{sen}^{9} \Phi) + Q r (\cos \varphi - \cos \Phi) = 0,$$

e quindi per le due sezioni corrispondenti ai punti per cui gli angoli φ prendono rispettivamente i valori particolari φ_4 e φ_2 dati da

$$\cos \varphi_1 = \cos \Phi,$$
 $\cos \varphi_2 = \frac{2Q}{pr} - \cos \Phi.$

Conviene però osservare che la seconda soluzione non determina sezione alcuna del solido, se non quando l'angolo φ_2 è reale e più piccolo di Φ .

La tensione T, la quale si verifica in una sezione retta qualunque dell'arco, viene data dalla formola

$$\mathbf{T} = -(pr \operatorname{sen}^2 \varphi + Q \cos \varphi) \tag{3}.$$

Questo valore di T, per qualsiasi valore di φ corrispondente ad un'ampiezza compresa fra 0° e 90°, si conserva sempre negativo, e quindi in tutte le sezioni della centina le forze tangenziali producono una tensione negativa, ossia una pressione. Per la chiave, ossia per $\varphi = 0$, il valore di T ha il valore particolare T_o dato da

$$T_o = -Q$$
;

e per l'imposta, ossia per $\varphi = \Phi$, si ottiene il valore particolare T_i di T dato da

$$T_i = -(pr sen^2 \Phi + Q cos \Phi).$$

Lo sforzo di taglio N, per una sezione retta qualunque dell'arco, viene dato da

$$N = (p r \cos \varphi - Q) \sin \varphi \tag{4}.$$

Per φ=0, ossia per la chiave, questo sforzo di taglio è nullo, e

per l'imposta, ossia per $\phi = \Phi$, acquista il valore particolare N_i dato da

$$N_i = (pr\cos\Phi - Q) \sin\Phi$$
.

In quanto alle equazioni di stabilità, da applicarsi per convenientemente determinare la sezione retta dell'arco, esse sono le due relative alla pressione ed allo scorrimento trasversale. La prima, per essere una quantità essenzialmente positiva il prodotto n' R' del coefficiente di rottura R' pel relativo coefficiente di stabilità n', e per essere sempre negativo il valore di T, è

$$n''R'' = \pm \left(\frac{v'\mu}{\Gamma} \mp \frac{T}{\Omega}\right)$$
 (5),

dove si devono prendere i segni superiori per quelle sezioni, a cui corrispondono valori positivi del momento inflettente μ ed i segni inferiori per quelle altre per cui i valori del detto momento inflettente risultano negativi. La seconda equazione di stabilità, ossia quella relativa allo scorrimento trasversale, è

$$n^{\text{rv}} \mathbf{R}^{\text{rv}} = \pm \frac{\mathbf{N}}{\Omega}$$
 (6),

nella quale, per essere essenzialmente positivo il prodotto del coefficiente di rottura per scorrimento trasversale R' pel relativo coefficiente di stabilità n', si deve prendere il segno + per quelle sezioni cui corrispondono valori positivi di N, ed il segno - per quelle altre cui corrispondono valori negativi di N.

Pare confermato dall'esperienza che per un arco di legname con sezione retta rettangolare, determinata in modo da soddisfare all'equazione di stabilità (5), non siavi più pericolo di rottura per scorrimento trasversale, e che quindi riesca inutile l'applicazione dell'equazione (6), la quale d'altronde difficilmente potrebbe condurre a plausibili risultati, a motivo dell'incertezza dei valori del coefficiente di rottura R^w.

Se gli archi di un ponte in legname fossero a parete reticolata, si applicherebbe l'equazione (5) al complesso di quelle parti dell'arco che sono riunite dal traliccio, e, per la determinazione della superficie della sezione retta dei pezzi di quest'ultimo, con sufficiente approssimazione per la pratica, si può applicare l'equazione

$$nR = \pm \frac{N}{m \omega \operatorname{sen} \alpha}$$
 (6^{bis}),

analoga a quella che impiegasi per le travi rettilinee (Resistenza dei materiali e stabilità delle costruzioni, num. 200). Nell'ultima equazione R rappresenta il più piccolo dei due coefficienti di rottura per tensione e per pressione del legname di cui è formato il traliccio, ed n il relativo coefficiente di stabilità; m è il numero dei pezzi del traliccio tagliati da una sezione retta qualunque della centina, ω la superficie della sezione retta di un pezzo del traliccio, ed α l'angolo acuto misurante l'inclinazione dei diversi pezzi del traliccio coll'asse della centina. Per il doppio segno che trovasi nell'equazione (6^{bis}), vale quanto si è detto parlando del doppio segno da cui è preceduto il secondo membro dell'equazione (6^{bis}).

Le formole (4), (2), (3), (4) e (5) sono quelle che servono a convenientemente regolare le sezioni rette degli archi, allorquando essi devono avere sezione rettangolare, come quelli del ponte rappresentato nella figura 247. Quando questi archi devono essere a parete reticolata, oltre le dette equazioni, si applicherà anche la (6^{bis}). In quanto poi al metodo d'instituire i calcoli, di registrare i risultati e di servirsi di questi risultati onde porre gli archi in tali condizioni da essere quasi solidi di egual resistenza, vale quanto si è detto nel numero 59, parlando delle dimensioni delle centine per tettoie con asse circolare.

201. Tavola numerica per la determinazione della spinta orizzontale di un arco con asse circolare e caricato d'un peso uniformemente distribuito sulla sua corda. — Se si indica colla lettera V il peso sopportato da mezzo arco e se alle lettere p, r, Φ e Q si conservano i significati che loro vennero dati nel precedente numero, si ha

$$V = pr \operatorname{sen} \Phi$$
 (1):

e, ponendo

$$\frac{1}{2} \frac{3\Phi \cot \Phi - 6\Phi \sec \Phi \cos \Phi - 3 + 7\sec^2 \Phi}{3\Phi + 6\Phi \cos^2 \Phi - 9\sec \Phi \cos \Phi} = K \qquad (2),$$

risulta

$$Q = VK$$
 (3).

Se ora all'angolo Φ si danno diversi valori corrispondenti ad ampiezze comprese fra 0° e 90° , se trovansi i valori corrispondenti

di K mediante la formola (2), e se in una tavola si marcano le ampiezze considerate, le lunghezze delle semi-corde degli archi di raggio eguale all'unità, i quali ad esse ampiezze si riferiscono, ed i trovati valori di K, si ha in questa tavola un mezzo facile per il calcolo della spinta Q coll'applicazione delle semplicissime formole (1) e (5).

Una tavola affatto analoga alla già data nel numero 60, e tratta pure dal già citato lavoro dell' ingegnere E. Mathieu, è quella che immediatamente si riporta calcolata per ampiezze variabili da 5° in 5° da 10° fino a 90°.

AMPIEZZA dell'arco p corrispondente alla metà dell'asse della centina	LUNGHEZZA sen ф della semi-corda dell'arco di raggio eguale all'unità chiudente l'angolo che corrisponde all'asse della centina	VALORE del coefficiente K
10°	0,1736	5,691
15	0,2588	3,788
20	0,3420	2,822
25	0,4226	2,238
50	0,5000	1,844
35	0,5736	1,562
40	0,6428	1,347
45	0,7071	1,180
50	0,7660	1,037
55	0,8192	0,940
60	0,8660	0,823
65	0,9063	0,738
70	0,9397	0,662
75	0,9659	0,593
80	0,9848	0,533
. 85	0,9962	0,477
90	1,0000	0,430

Questa tavola si adopera per la deduzione della spinta orizzontale Q mediante le semplicissime formole (1) e (5), operando precisamente come si è detto nel citato numero 60 per l'uso della tavola analoga che in esso si trova.

202. Impiego degli archi equilibrati nella costruzione dei ponti con archi di legname. — Fissata la corda e la monta dell'asse di un arco per ponte in legno, invece di stabilire che questo asse debba essere circolare, si può il medesimo determinare colla condizione che l'arco risulti equilibrato sotto l'azione di un peso uniformemente distribuito sulla proiezione orizzontale del suo asse (Resistenza dei materiali e stabilità delle costruzioni, Capitolo X, num. 175).

Per la deduzione del peso p, riferito all'unità di lunghezza di proiezione orizzontale dell'asse dell'arco, si può seguire il seguente procedimento d'approssimazione. Si calcola il peso che nel precedente numero venne indicato con U; si suppone che l'asse dell'arco debba essere circolare; e, conoscendosi la corda 2c e la monta m dell'indicato asse, si deduce lo sviluppo S della sua metà. Fatto questo, si osserva che, per quanto venne trovato nel citato numero 175 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, le pressioni T_e e T_i, le quali si verificano rispettivamente alla chiave ed all'imposta dell'arco, sono date da

$$T_c = \frac{p c^2}{2m}$$

$$T_i = \frac{p c^2}{2m} \sqrt{1 + \frac{4m^2}{c^2}};$$

cosicchè ponendo

$$\sqrt{1 + \frac{4m^2}{c^2}} = A \tag{1}$$

risulta che la pressione media T_m, la quale si verifica in una sezione fra la chiave e l'imposta, viene data da

$$T_m = \frac{p c^2}{4m} (1 + A),$$

dove p è il peso corrispondente all'unità di lunghezza di proiezione

orizzontale dell'asse dell'arco. Ponendo che la pressione media deve essere eguale alla pressione $n''R''\Omega$ che si può far sopportare al materiale costituente l'arco nella sezione di superficie Ω in cui si verifica la detta pressione, si ottiene l'equazione

$$n''R''\Omega = \frac{pc^2}{4m}(1+A)$$
 (2).

Se ora osservasi che pc rappresenta il totale peso sopportato dal mezzo arco, compreso anche il peso proprio, e che dicendo II il peso dell'unità di volume del legname costituente l'arco, si ha

$$pc = \Pi S\Omega + U$$
 (3);

ponendo questo valore di pc nell'ultima equazione, risulta

$$n''R''\Omega = \frac{(\Pi S\Omega + U)c}{4m}(1 + A),$$

dalla quale si ricava

$$\Omega = \frac{\operatorname{U} c (1 + A)}{4 m n'' R'' - \Pi \operatorname{S} c (1 + A)}$$
 (4),

Trovato il valore di Ω con quest'equazione, si sostituisce nell'equazione (5), e si deduce da questa il valore di p.

Determinato il valore di p, mediante la formola

$$Q = \frac{p c^2}{2m} \tag{5}$$

si calcola la spinta orizzontale dell'arco. Coll'equazione

$$u = \frac{m}{c^2} z^2$$

si può costrurre la curva parabolica, secondo cui deve essere foggiato l'asse dell'arco, quando si diano a z diversi valori compresi fra 0 e c, e quando si assumano l'origine delle coordinate alla sommità della monta, l'asse delle assisse z orizzontale e l'asse delle ordinate u verticale e volto dall'alto al basso. Colla formola

$$T = p \sqrt{\frac{c^4}{4m^2} + z^2}$$
 (6),

attribuendo a z varii valori compresi fra 0 e c, si possono calcolare le pressioni che si verificano in diverse sezioni dell'arco; e, mediante l'equazione di stabilità

$$T = n'' R'' \omega \tag{7}$$

riesce agevole determinare le superficie o delle sezioni rette per le quali vennero calcolate le pressioni T.

Allorquando l'asse degli archi di un ponte deve essere circolare, ma di monta molto depressa e minore di 1/10 della corda, invece di regolare le loro sezioni rette colle norme che vennero date nel numero 200, si possono applicare le formole assai più semplici riportate in questo numero; e questo modo di procedere viene giustificato da quanto si è detto nel numero 176 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni.

203. Piedritti dei ponti con archi di legname. — Le spalle di questi ponti sono quasi sempre di struttura murale, ed i piedritti intermedii, che talvolta sono di legname, ben di frequente si fanno di muratura.

Per uno stesso ponte a più arcate, le corde non variano generalmente da un'arcata all'altra, di maniera che le pile sono soltanto sottoposte ad una pressione verticale, che per ciascuna di esse è rappresentata dal total peso che, nelle condizioni del massimo sovraccarico, trovasi fra i due piani verticali passanti per le chiavi delle due arcate impostate sul piedritto che si considera. Se le pile sono di struttura murale, si calcola la loro grossezza con un procedimento analogo a quello che venne indicato nel numero 156; e, se invece sono esse palate di legname, conviene attenersi a processi analoghi a quelli che vennero indicati nei numeri 190 e 198 parlando delle dimensioni delle palate dei ponti con incavallature rette e dei ponti a travate rettilinee.

La determinazione della grossezza di una spalla, allorquando deve essere di muratura, si fa con un metodo in tutto analogo a quello che venne dato nel numero 154 (dove si parla della grossezza delle spalle di ponti di struttura murale), previa la determinazione della spinta orizzontale \mathbf{Q}_4 e della pressione verticale \mathbf{V}_4 riferite all'unità

di lunghezza di spalla. Per ottenere queste forze Q_4 e V_4 s'incomincia dal trovare la spinta orizzontale Q e la pressione verticale V, prodotte dagli archi di un'arcata intiera sulla spalla che le dà appoggio, e si dividono per la lunghezza d della spalla stessa, cosicche risulta

$$Q_i = \frac{Q}{d} \qquad \qquad V_i = \frac{V}{d}.$$

Quando una spalla deve essere costrutta con legname, riesce possibile determinare le dimensioni dei suoi pezzi principali, osservando che essa trovasi sotto le azioni del proprio peso, delle spinte orizzontali e delle pressioni verticali, che da ciascuno degli archi vengonle trasmesse in dati punti, i quali si assumono generalmente nei centri di superficie delle sezioni d'imposta. Se la spalla deve essere costituita da ritti verticali fortemente infissi nel terreno, si troveranno questi sotto le azioni di forze orizzontali e verticali contenute nei piani degli assi degli archi, verranno cimentate le resistenze alla pressione ed alla flessione, e non vi sarà difficoltà nello stabilimento delle opportune equazioni di stabilità.

Essendo le spalle accompagnate da muri di risvolto o da muri d'ala, si procede come venne indicato nel numero 155 onde assegnare dimensioni convenienti a quelli o a questi. — Se invece dei muri di risvolto o dei muri d'ala, si vogliono fare robuste steccate, costituite da tavoloni appoggiati a forti ritti, conviene regolare le dimensioni da assegnarsi ai tavoloni ed ai ritti in correlazione alle spinte che dovranno sopportare da parte delle terre cui serviranno di sostegno.

ARTICOLO IV.

Ponti metallici.

204. Principali sistemi di ponti metallici. — I ponti a travate rettilinee, i ponti ad archi, i Bow-Strings, i ponti sospesi ed i ponti rigidi con archi rovesci, costituiscono i sistemi generali, a cui si possono ridurre i diversi ponti metallici.

I ponti a travate rettilinee sono quelli la cui parte resistente è costituita da due o più travi longitudinali di ferro, collocate su un certo numero di piedritti. Queste travi esercitano azioni quasi perfettamente verticali sulle spalle e sulle pile, e, trattandosi di solidi retti-

linei orizzontalmente o quasi orizzontalmente collocati su due o più appoggi e caricati di pesi, trovasi in esse provocata la resistenza alla flessione, e quindi ciascuna delle loro sezioni rette si scompone in due parti, in una delle quali trovasi cimentata la resistenza alla tensione, mentre nell'altra trovasi provocata la resistenza alla pressione.

I ponti ad archi hanno la loro parte resistente costituita da archi di ferro o di ghisa, i quali, come gli archi di muratura e gli archi di legno, esercitano su ciascun appoggio una spinta orizzontale ed una pressione verticale. In questi archi trovasi generalmente provocata la resistenza alla pressione, ed è sicuro che questa circostanza si verifica allorquando si determinano i loro assi coll'applicazione della teoria degli archi equilibrati.

I ponti, detti Bow-Strings, di cui ebbe la prima idea l'ingegnere Brunel, essenzialmente constano di due archi di ferro o di ghisa, ciascuno dei quali ha le sue estremità riunite da un tirante, o corda, che può essere rettilineo, poligonale od anche curvilineo. In questi ponti ciascun tirante è destinato ad eliminare la spinta orizzontale dell'arco contro i piedritti, i quali non sopportano che pressioni verticali, e contemporaneamente serve di sostegno ai varii pezzi destinati a sopportare l'impalcatura.

I ponti sospesi sono quelli in cui l'impalcatura è portata da un certo numero di tiranti verticali, appesi a gomene passanti su alti ritti, le quali, piegando in basso, vanno ad attaccarsi a robusti ritegni, esercitando così delle forti trazioni su punti fissi esteriori alla costruzione.

I ponti rigidi con archi rovesci constano di due o più archi di ferro colla concavità in alto, posti al di sopra dell'impalcatura, precisamente come lo sono le gomene dei ponti sospesi, e coi pezzi costituenti l'impalcatura sostenuti da tante travi longitudinali quanti sono i detti archi, unite a questi, non mediante aste verticali, ma mediante un traliccio formato con ferri piatti, con ferri d'angolo, con ferri a T o con ferri ad U. Le estremità dei detti archi devono passare su ritti analoghi a quelli necessarii pei ponti sospesi, e piegare quindi in basso per fermarsi a robusti ritegni esteriori alla costruzione, sui quali esercitano potenti sforzi di trazione.

I ponti a travate rettilinee ed i ponti con archi sono i soli che hanno ricevuto e che tuttora ricevono numerose ed importanti applicazioni. — I ponti, detti Bow-Strings, di cui si hanno luminosi esempli in Inghilterra nei ponti di Windsor, di Chepstow e di Saltash, aventi rispettivamente portate di metri 57,25, di metri 93 e di metri 139,

vennero costrutti in numero assai limitato; e la necessità di porre l'impalcatura all'altezza obbligata dei tiranti, la facilità delle vibrazioni cui va soggetto l'intero sistema, la difficoltà di ottenere che il metallo lavori nelle migliori condizioni possibili, sembrano essere le cause che impedirono il propagarsi della loro applicazione. — I ponti sospesi, i quali già ricevettero numerose applicazioni e che indubitatamente si prestano per superare grandi portate col minor impiego possibile di metallo, sono al giorno d'oggi quasi totalmente in disuso. La posizione obbligata dell'impalcatura ad un livello inferiore ai punti più bassi delle gomene, le necessità della costruzione di alti ritti per farvi passare sopra le gomene e di robusti ritegni ner fermarvi le estremità inferiori delle gomene stesse, e le difficoltà per assicurare le dette estremità agli indicati ritti, sono circostanze che possono influire sull'opportunità e sulla convenienza dei ponti sospesi. Se poi si osserva, che la facilità con cui può ossidarsi il metallo nei siti umidi, nei quali devono trovarsi gli ormeggi, che le oscillazioni e le deformazioni prodotte dal passaggio di nomini, di animali e di veicoli, e che le deformazioni provenienti dalle variazioni di temperatura, sono altrettante cause le quali già produssero la rovina di parecchi ponti sospesi, si deve conchiudere che la loro applicazione non può generalmente presentare dei grandi vantaggi, e che il loro uso assolutamente deve essere proscritto nelle costruzioni per vie ferrate. — Per quanto spetta ai ponti rigidi con archi rovesci, si hanno solamente proposte di parecchi ingegneri, le quali non furono finora confermate dall'esperienza.

I ponti a travate rettilinee ed i ponti con archi sono adunque i soli che meritano un dettagliato studio, per cui nel presente capitolo si parlerà solamente di questi due sistemi.

205. Considerazioni generali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata — I ponti di ferro costituiti da travi rettilinee, continue da una spalla all'altra, formanti solidi sostenuti da appoggi fissi solamente nei loro estremi od anche nei loro estremi ed in punti intermedii, presentano in alcune circostanze tali e tanti vantaggi, da non farsi luogo a meraviglia che il loro impiego siasi così rapidamente esteso, malgrado l'aspetto poco elegante ed i timori che si possono avere sulla loro durata. Le grandi travate metalliche costituiscono generalmente il mezzo più facile e più economico per risolvere il problema della traversata di una bassura e di un corso d'acqua, quando la costruzione di numerose pile risulta opera eccessivamente costosa; in

quei luoghi in cui incontrasi un fondo presentante eccezionali difficoltà di fondazione; in quelle circostanze nelle quali è piccola l'altezza del suolo stradale sul livello delle acque massime; ed in tutti quei casi in cui è imperiosa necessità di non restringere eccessivamente la luce libera di un fiume o torrente con un numero troppo grande di pile. Di più, i ponti a travate rettilinee si costruiscono quasi con egual facilità, sia quando sono retti, come quando sono obliqui, e presentano il notevole vantaggio di non esercitare sui piedritti che pressioni quasi perfettamente verticali, il qual fatto permette di notevolmente ridurre l'importanza delle spalle.

Per facilitare lo studio dei ponti in ferro a travate rettilinee, conviene distinguerli: in ponti di piccola portata, che sono quelli i cui piedritti non sono altro che due spalle poste a distanza minore di 10 metri; ed in ponti di grande portata, che sono quelli i cui piedritti constano solo di due spalle poste a distanza maggiore di 10 metri, e quegli altri le cui travi longitudinali sono portate da più di due piedritti, e che per conseguenza presentano spalle e pile. Nei ponti a travate rettilinee, portati da più di due piedritti, le larghezze delle luci libere non sono mai inferiori a 10 metri, che anzi, ben difficilmente sono esse al di sotto di 30 metri.

206. Principali tipi di ponti a travate rettilinee di piccola portata. — Questi ponti si possono costruire per strade ordinarie, per vie ferrate ad uno, per vie ferrate a due ed anche per tronchi di vie ferrate con più di due binarii. S'incomincierà a parlare di quelli per vie ferrate a due binarii, ed in seguito risulterà facile dedurre le modificazioni da apportarsi onde renderli adatti alle vie ferrate ad un binario, ai tronchi di vie ferrate con più di due binarii, ed il tipo che maggiormente conviene per le strade ordinarie.

Nei ponti per vie ferrate a due binarii si possono adottare svariate posizioni delle travi longitudinali per rapporto alle rotaie, e quelle maggiormente usate si riducono:

1° All'impalcatura sopportata da sei travi longitudinali, quattro delle quali sono poste direttamente sotto le rotaie (fig. 248);

2° All'impalcatura sopportata da sei travi, quattro delle quali sono travi gemelle per ricevere le longarine portanti le rotaie (fig. 249);

3° All'impalcatura sopportata da sei travi, quattro delle quali sono esteriori ai due binarii (fig. 250);

4° All'impalcatura sostenuta da tre travi longitudinali (fig. 251);

5° All'impalcatura sopportata da due travi longitudinali. Sono adunque cinque i principali tipi di ponti in ferro a travate rettilinee di piccola portata; ed ecco un breve cenno di ciascuno di essi, coll'indicazione dei loro vantaggi e dei loro inconvenienti

rispettivi.

I punti del primo tipo, di cui mediante una porzione di sezione trasversale e una porzione di sezione longitudinale, secondo il piano determinato dalla retta XY, si ha la rappresentazione nella figura 248, constano essenzialmente di quattro travi longitudinali L, poste direttamente sotto le rotaie, e di due travi longitudinali l, situate alle fronti. Le dette travi longitudinali trovansi rilegate dalle travi trasversali t: le rotaie sono poste in opera su longarine; un tavolato, costituito da tavoloni portati dalle travi trasversali, copre l'intiera parte metallica del ponte: ed uno strato di ballast difende il tavolato dal pericolo d'incendio al passaggio delle locomotive. -Questo tipo di ponte conviene per portate non eccedenti gli 8 metri, e presenta una disposizione piuttosto buona, allorquando non è limitata l'altezza delle travi longitudinali. Le quattro travi L, direttamente collocate sotto le rotaie, portano, non solo tutto il sovraccarico, ma anche il peso proprio del ponte. Per quanto spetta alle due travi di fronte l ed alle travi trasversali t, esse devono soltanto sopportare le parti di peso del ponte loro corrispondenti, ossia un peso minimo, e quindi non esigono che dimensioni assai piccole. I ponti colle travi longitudinali sotto le rotaie non possono evidentemente realizzare la condizione della minima altezza, ma bensi quella della massima economia di metallo. - Le travi longitudinali L ed l generalmente presentano sezione a doppio T simmetrico: l'altezza delle prime varia fra metri 0,30 e metri 0,90, e la larghezza delle loro tavole non è inferiore a metri 0,30. La distanza fra mezzo e mezzo delle travi trasversali varia ordinariamente fra metri 1 e metri 1,50.

I ponti del secondo tipo, di cui nella figura 249 si ha la rappresentazione mediante una porzione di sezione trasversale ed una porzione di sezione longitudinale secondo il piano determinato dalla retta XY, constano di quattro travi principali doppie, ciascuna delle quali è formata da due travi gemelle L, mantenute assieme da corte travi di collegamento c, sulle quali hanno appoggio le longarine portanti le rotaie; di due travi longitudinali l situate sulle fronti del ponte; e di travi trasversali t. Su queste ultime travi trasversali è stabilito il tavolato, il quale trovasi ancora coperto da uno strato di ballast.

— Questa disposizione ben di frequente venne usata per portate comprese fra 2 e 10 metri, e, permettendo di realizzare la condizione della minima altezza, con molto favore venne accolta nella

pratica, quantunque presenti due notevoli inconvenienti, i quali sono in opposizione all'impiego della minor quantità di metallo e della minor mano d'opera. Il primo di tali inconvenienti consiste nel numero troppo grande di travi e quindi di pareti verticali, che esigono l'impiego della lamiera nelle condizioni meno favorevoli alla resistenza; ed il secondo risiede nella necessità di un numero troppo grande di unioni pel collegamento delle travi trasversali alle travi longitudinali. - Le travi longitudinali L ed l hanno generalmente sezione a doppio T simmetrico, quantunque non di rado si riscontri anche la sezione ad U, o per meglio dire la metà di quella di un doppio T simmetrico; e l'altezza delle stesse travi è generalmente compresa fra metri 0.25 e metri 0 60. La distanza fra mezzo e mezzo delle due travi gemelle, componenti una delle travi longitudinali insistenti alle rotaie, è di circa metri 0.45: la distanza fra mezzo e mezzo delle travi trasversali può variare fra metri 1 e metri 1.15.

Nei ponti del terzo tipo, di cui nella figura 250 si ha la rappresentazione mediante una porzione di sezione trasversale e mediante una porzione di sezione longitudinale secondo il piano determinato dalla retta XY, ciascun binario è portato da travi trasversali t (fig. 250); e le travi longitudinali L sono esteriori ai binarii, ma il più presso possibile alle rotaie, affinchè il sovraccarico operi sulle travi trasversali in punti assai vicini alle loro unioni colle travi longitudinali. Oltre le quattro travi longitudinali secondarie, due a due comprendenti un binario, vi sono le travi longitudinali l, situate alle fronti del ponte. In corrispondenza delle travi trasversali t vi sono le altre t', le quali ultime, dovendo sopportare soltanto il tavolato del ponte ed il sovrastante ballast, presentano sempre dimensioni assai minori delle prime. - I ponti di piccola portata, del tipo di cui si ragiona, sono assai impiegati, e convengono per aperture comprese fra 4 e 10 metri. Essi si prestano per i casi in cui sono necessarie altezze piccole delle travi longitudinali; permettono di fare economia di metallo a motivo del numero non troppo grande di travi e di unioni; e quindi presentano i vantaggi dei ponti del secondo tipo, senza avere i loro difetti. - Le travi longitudinali dei ponti di piccola portata, del terzo tipo, hanno generalmente sezione a doppio T simmetrico, e la loro altezza può essere contenuta fra i limiti di 0,30 e 0,60. La distanza fra le travi trasversali è generalmente compresa fra metri 1 e metri 1,15.

I ponti di piccola portata del quarto tipo, di cui nella figura 251 si ha una porzione di sezione trasversale ed una porzione di sezione longitudinale secondo il piano determinato dalla retta XY, composti di tre travi longitudinali L, poste una nel mezzo e due alle fronti, e portanti le travi trasversali t, sulle quali sono stabilite le rotaie non che il tavolato col sovrastante strato di ballast, sono i meno usati. Confrontati coi ponti dei tre primi tipi, esigono maggiore robustezza nelle travi trasversali, a motivo delle maggiori portate di queste e del modo con cui su esse agiscono i sovraccarichi, e quindi si rende pure necessaria una maggiore robustezza nelle travi longitudinali. In conclusione, se nei tre tipi precedenti ed in questo quarto si realizza un sistema egualmente solido nelle unioni ed in tutto il suo complesso, si consuma per quest'ultimo maggior quantità di ferro di quella richiesta per ciascuno degli altri tre. -Le travi longitudinali hanno quasi sempre sezione a doppio T simmetrico, e la loro altezza, per ponti di portata compresa fra 5 e 10 metri, varia generalmente fra metri 0,60 e metri 1,20. In quanto all'altezza delle travi trasversali, le quali quasi sempre hanno pure sezione a doppio T simmetrico, varia fra metri 0,30 e metri 0,40, e la loro distanza fra mezzo e mezzo difficilmente supera metri 1,15.

I ponti del quinto tipo, i quali diversificano da quelli del quarto per non esservi la trave longitudinale di mezzo, presentano gli stessi inconvenienti di questi ultimi, che anzi tali inconvenienti sono ancora accresciuti per la maggiore lunghezza che bisogna dare alle travi trasversali.

Le travi in ferro, che s'impiegano nella composizione dei ponti a travate rettilinee di piccola portata, possono essere a parete verticale continua, oppure a parete verticale reticolata o traforata. Sovente poi, nei ponti del primo, del secondo e del terzo tipo, si sopprimono le due travi longitudinali situate sulle fronti, e si sostiene il marciapiede mediante mensole M, inchiodate alle travi longitudinali principali L e disposte in corrispondenza delle travi trasversali t nel modo indicato dalla figura 252.

Il limite superiore di metri 1,15 da assegnarsi alla distanza fra le travi trasversali, che può sembrare troppo piccolo, viene giustificato da due ragioni: dall'essere queste travi il solo mezzo che generalmente impiegasi per ben concatenare le travi longitudinali principali e per impedire che le pareti di queste vengano a deviare dalla posizione verticale; dal porsi generalmente in opera le rotaie su longarine deboli, della cui resistenza non si può guari far calcolo, a motivo della facilità con cui il legname deteriora. Volendosi porre le travi trasversali a distanza maggiore di metri 1,15, conviene, pei quattro ultimi tipi di ponti di piccola portata, collegare le travi

trasversali mediante piccole travi longitudinali secondarie, direttamente poste sotto le longarine delle rotaie.

I ponti per via ferrata a due binarii devono presentare tali principali dimensioni da essere: di metri 7,40 ad 8 la loro larghezza libera, ossia la distanza fra le superficie interne dei due parapetti; di metri 1,80 a 2,10 la distanza fra gli assi delle rotaie vicine dei due differenti binarii, ossia l'entrovia; di metri 1,30 ad 1,45 la larghezza di ciascun marciapiede, ossia la distanza della superficie interna di un parapetto del ponte dall'asse della rotaia vicina; di metri 1,50 la distanza fra gli assi delle due rotaie di uno stesso binario; di metri 0,06 a metri 0,08 la spessezza dei tavoloni costituenti la coperta; di metri 0,04 la spessezza di un tavolato che talvolta esiste sulla coperta dei tavoloni; di metri 0,50 la larghezza delle longarine, di metri 0,11 a 0,26 la loro grossezza; e finalmente di metri 0,10 a 0,15 la spessezza del ballast posto sul tavolato.

I diversi tipi di ponti a travate rettilinee di piccola portata, i quali possono convenire nelle vie ferrate ad un solo binario, assai facilmente si deducono dai tipi già indicati per le vie ferrate a due binarii, sopprimendo un binario e l'entrovia. Si avranno così: i ponti del primo tipo aventi quattro travi longitudinali, con due di esse direttamente situate sotto le rotaie; i ponti del secondo tipo con quattro travi longitudinali, due delle quali gemelle per ricevere le longarine portanti le rotaie; i ponti del terzo tipo con quattro travi longitudinali, due delle quali poste immediatamente a fianco delle rotaie; ed i ponti del quarto tipo coll'intiera impalcatura sostenuta soltanto da due travi longitudinali. Anche nei ponti per vie ferrate ad un solo binario, si possono sopprimere le travi longitudinali delle fronti e impiegare mensole per il sostegno dei marciapiedi.

— Le principali dimensioni da adottarsi per questi ponti sono quelle stesse già state indicate pei ponti di vie ferrate a due binarii.

Dovendosi costrurre un ponte, sul quale è necessario stabilire più di due binarii, si adotteranno le stesse disposizioni che già vennero indicate pei ponti a due binarii, e che in modo sufficientemente chiaro sono rappresentate nelle figure 248, 249, 250 e 251. Fra un binario e l'altro si lascierà l'entrovia della larghezza compresa fra metri 1,80 e 2,10; ed esternamente alla striscia occupata dai due binarii si stabiliranno i marciapiedi con larghezza non minore di metri 1,30.

I ponti di piccola portata, convenienti per strade ordinarie, si riducono a due tipi: a quello in cui sonvi soltanto due travi longitudinali principali, poste verso le fronti e portanti un sistema di travi trasversali, ed a quelli in cui si adotta la stessa struttura dei solai, col porre diverse travi longitudinali equidistanti, e col rilegarle mediante travi trasversali. Nell'uno e nell'altro tipo, si mette in opera una coperta di tavoloni sulle travi trasversali, e su questa coperta si stabilisce il suolo stradale nei modi indicati al numero 189, dove si parla dei ponti di legname con incavallature rette per vie carreggiabili. - La larghezza libera di un ponte per strada carreggiabile non deve essere inferiore a metri 5,50; la distanza fra le travi longitudinali, quando adottasi la struttura che caratterizza il secondo degli or indicati tipi, non deve essere minore di metri 4,50; la distanza fra le travi trasversali può variare da metri 1 a metri 1,50, allorquando su esse si stabilisce una coperta di tavoloni; l'altezza delle travi longitudinali è generalmente compresa fra metri 0,50 e metri 1,10, quando esse sono solamente due alle fronti; e la medesima altezza può variare fra metri 0,25 e metri 0,60, quando le dette travi sono in numero maggiore di due, situate sotto il tavolato a distanze eguali come le travi dei solai.

Talvolta la coperta dei ponti a travate rettilinee di piccola portata, per via ferrata, non è di tavoloni, ma sibbene di piastre di ghisa, oppure di lamiera di ferro, disposte in modo da presentare superiormente una superficie a schiena, e convenientemente inchiavardate od inchiodate sulle sole travi trasversali od anche sulle travi trasversali e su ferri longitudinali a queste uniti. Per uso delle coperte dei ponti metallici si fabbricano anche lamiere speciali quadrate e rettangolari, presentanti superiormente la forma della superficie d'estrados di una vôlta a padiglione di piccola monta, e munite tutto all'ingiro di un bordo, mercè cui le dette lamiere possono essere inchiodate od inchiavardate alle travature di ferro. Le coperte metalliche si possono coprire con un sottile strato di ballast. Questo ricoprimento è indispensabile allorquando la loro superficie superiore presenta una notevole curvatura, e, per lo scolo delle acque che si portano su questa superficie, si lasciano appositi fori nei siti in cui trovansi i suoi punti di minima altezza.

Il collocamento delle travi longitudinali sui piedritti si fa: o posandole semplicemente sopra lastroni di pietra; o ponendole sopra scorritoi di ghisa. È bene che liberamente possano farsi le dilatazioni ed i restringimenti derivanti dalle variazioni di temperatura, e basta osservare le sezioni longitudinali rappresentate nelle figure 248, 249, 250 e 251, per vedere quali sono le disposizioni da prendersi sulle spalle per sostenere il materiale minuto compo-

nente il ballast, senza porre impedimento ai piccoli allungamenti ed ai piccoli accorciamenti cui vanno soggette le travi longitudinali.

207. Ponti a travate rettilinee di piccola portata con coperta pesante. - I ponti a travate rettilinee di piccola portata, che vennero descritti nel precedente numero, avendo la loro coperta costituita da un semplice tavolato con sopra un sottile strato di ballast, si chiamano ponti con coperta leggiera. Parecchi ingegneri hanno manifestato l'idea che la troppa leggierezza della coperta dei ponti di piccola portata relativamente al sovraccarico che su questi deve passare, possa essere nociva alla stabilità, ed hanno proposto di accrescere il peso permanente dei ponti, adottando, per quanto concerne le disposizioni delle travi longitudinali e delle travi trasversali, il quarto od il quinto tipo, costruendo fra una trave trasversale e l'altra una vôlta a botte, di spessezza uniforme, eguale alla dimensione media o meglio alla dimensione massima del mattone, con riempimento di calcestruzzo magro nei timpani, e coprendo il tutto con una cappa impermeabile e quindi con uno strato di ballast dell'altezza di metri 0,50 a metri 0,60.

Quest'ultima struttura conduce ai ponti con coperta pesante, di uno dei quali si ha la sezione trasversale ed una porzione di sezione longitudiuale nella figura 253. La distanza fra le travi trasversali si può assumere variabile fra metri 1 e metri 1,40; la monta dei vôlti suol essere da 1/8 ed 1/10 della loro corda, l'altezza delle travi trasversali non è minore dell'accennata monta, accresciuta dalla spessezza dei vôlti; e finalmente l'altezza delle travi longitudinali non si prende minore della somma della saetta dei vôlti, della grossezza di questi alla chiave e dell'altezza del ballast.

Gli ingegneri non sono ancora bene d'accordo sulla convenienza relativa dei due sistemi di ponti con coperta leggiera e con coperta pesante, e questa diversità d'opinioni proviene da ciò: che soltanto da poco tempo si costruiscono i ponti metallici a travate rettilinee; che per conseguenza non si hanno ancora risultati sperimentali sufficienti per una conclusione definitiva.

I ponti con coperta leggiera indubitatamente permettono di soddisfare alla condizione della massima economia immediata di metallo; ma per contro presentano i seguenti inconvenienti: quando trattasi di un ponte per via ferrata, l'armamento della via sul ponte richiede disposizioni affatto speciali; il tavolato si altera con molta rapidità sotto l'influenza delle alternative di secchezza e di umidità; e finalmente le notevoli variazioni di resistenza e di saetta, provocate nelle travi quando sul ponte viene a passare il sovraccarico, di troppo devono affaticare le unioni e produrre la rottura delle chiodature.

I ponti con coperta pesante presentano tale struttura, che si può su essi stabilire una via ferrata senza l'impiego di disposizioni speciali, e di più le variazioni di resistenza e di saetta, provocate nelle travi al passaggio di sovraccarichi, non risultano tanto grandi, di maniera che le unioni sono incontestabilmente più durature di quelle dei ponti con coperta leggiera. A fronte di questi vantaggi dei ponti con coperta pesante su quelli con coperta leggiera, stanno due inconvenienti che si riassumono nelle disgiunzioni che possono provare i materiali componenti i vôlti al passaggio dei sovraccarichi, e nell'impiego di maggior metallo richiesto dal peso eccessivo della coperta.

Segue da ciò, che si potrà conoscere se sono più convenienti i ponti con coperta leggiera oppure quelli con coperta pesante, quando abbiansi dati sufficienti sulla durata degli uni e degli altri, non che sul loro costo di costruzione, e che, degli accennati due sistemi, si dovrà preferire quello cui corrisponde la minor spesa annua di riparazione e di perpetuità. Finora l'esperienza non ha potuto somministrare gli elementi necessarii alla valutazione della durata di questi ponti, e solo si può dire che quelli con coperta leggiera sono più frequenti di quelli con coperta pesante.

208. Principali tipi di ponti a travate rettilinee di grande portata. - Roberto Stephenson fu il primo a porre in evidenza il partito che si può ritrarre dai ferri laminati nella costruzione dei grandi ponti, e questo fece nel 1847 costruendo in Inghilterra il ponte Britannia, con due travate della portata di 140 metri caduna e con due altre della portata di 70 metri. La parte metallica di questa meravigliosa e gigantesca costruzione consta di due travi tubulari e cellulari, ossia di due travi cellulari, ciascuna delle quali ha due pareti verticali piene. Tali travi sono affatto indipendenti, ed in ognuna di esse trovasi stabilito un binario di via ferrata, L'ardito costruttore del ponte Britannia ripetè le disposizioni, adottate in questo, nella costruzione del ponte di Conway, per una travata della lunghezza di metri 121,84; nel ponte di Brotherton, per una travata di metri 68,60, soppresse le celle delle pareti orizzontali, che la minor portata rendeva inutili, e conservò le pareti verticali piene. La soluzione del problema di superare grandi portate mediante travi, ebbe adunque luogo nell'Inghilterra; e questa risoluzione venne data da Roberto Stephenson mediante l'impiego di travi tubulari con pareti verticali piene.

Per un ponte di via ferrata a due binarii, coll'indicato sistema

delle travi tubulari si ottengono due tubi totalmento separati, e quindi due ponti indipendenti; sovente vi è spreco di materia nelle quattro pareti verticali piene, per la necessità di dover ad esse assegnare una spessezza non inferiore ad un certo limite e maggiore di quella corrispondente allo sforzo di taglio provocato in ciascuna sezione trasversale; e di più, essendo indispensabile assegnare una certa distanza fra le pareti verticali vicine dei due tubi, bisogna accrescere la lunghezza delle pile e delle spalle. Se ai citati inconvenienti si aggiungono quelli derivanti dalla mancanza di luce nell'interno dei lunghi ponti tubulari a pareti verticali piene, e dal carattere eccessivamente grave con cui questi ponti si presentano allo sguardo dell'osservatore, si comprende: come sia poco probabile che il sistema dei ponti tubulari a pareti piene possa ancora essere applicato per superare grandi portate; come la trave con sezione a doppio T possa essere preferita alla trave cellulare; e come le travi tubulari con pareti verticali ed orizzontali piene siano da posporsi alle travi tubulari con pareti verticali a traliccio, convenientemente rilegate ed energicamente consolidate in alto ed in basso da travi trasversali e da appositi sistemi di ferri in croce.

Roberto Stephenson, creando i ponti metallici di grande portata per vie ferrate a due binarii, senza esitazione adottò due tubi affatto indipendenti, in ciascuno dei quali era stabilito un binario, e così mostrò di volersi strettamente attenere al principio dell'indipendenza delle due vie sul ponte. Questo principio senza contestazione venne accettato dagli ingegneri del continente, e ne fanno testimonianza il ponte sulla Saon a Lione, il ponte di Moissac, il ponte d'Aiguillon, ed alcuni altri stati costrutti in Francia. L'amministrazione delle strade ferrate dell'Hannover si pronunciò in favore dell'indipendenza delle due vie, la quale ha per sè l'opinione di molti valenti ingegneri, sia pel modo simmetrico con cui vengono sviluppate le resistenze delle travi longitudinali, sia per l'eguaglianza di saette che esse prendono, sia ancora perchè le connessioni delle travi trasversali e dei pezzi di concatenamento alle travi longitudinali, non vengono sforzate dall'ineguaglianza nelle saette di queste. D'altra parte però il principio dell'indipendenza non realizza la minima larghezza di ponte e la minima lunghezza di spalle e di pile, e le due travi vicine separate, a motivo della molteplicità delle unioni, pesano incontestabilmente più di una sola trave della medesima resistenza e della medesima altezza. Questi due inconvenienti assieme uniti rendono considerevolmente elevato il costo dei ponti a travate rettilinee con vie indipendenti, e spiegano perchè

i moderni costruttori hanno quasi totalmente abbandonato questo sistema, per appigliarsi a quello della solidarietà delle vie.

Gli ingegneri favorevoli al principio della solidarietà delle vie sono molti, e, trattandosi di un ponte per via ferrata a due binarii, alcuni vorrebbero l'impiego di tre ed altri l'impiego di due travi longitudinali.

L'opinione dei fautori di tre travi longitudinali si fonda sulle seguenti considerazioni: che la solidarietà di due vie dà al ponte una larghezza doppia, e quindi una massa doppia, la quale con molta efficacia si oppone al piegamento laterale; che le scosse e le vibrazioni, prodotte dal passaggio di un convoglio, non possono produrre dannosi effetti, perchè disseminate in una gran massa; che un ponte con tre travi longitudinali richiede minor metallo di un ponte con quattro travi longitudinali, giacchè la trave unica che sostituisce le due intermedie, a motivo delle minori unioni, pesa sempre meno di queste; che la lunghezza delle spalle e delle pile resta ridotta dell'intervallo che, nel caso di un ponte con quattro travi longitudinali, conviene lasciare fra le due travi intermedie. I ponti per via ferrata a due binarii con tre travi longitudinali sono in numero assai limitato, e meritano di essere menzionati : il ponte di Kehl sul Reno ed il ponte di Offenburg sul Kinzig. La causa principale del poco successo dei ponti con tre travi longitudinali sta in ciò che, una volta accettato il principio della solidarietà delle vie, non si può ammettere un sistema che contemporaneamente partecipa dei ponti a quattro e dei ponti a due travi longitudinali. Infatti, la trave di mezzo dei ponti con tre travi longitudinali non è altro che la riunione in una sola delle due travi intermediarie dei ponti a quattro travi. Sotto questo punto di vista, essa assicura, egli è vero, la solidarietà delle due vie, ma partecipa in parte a tutti gli inconvenienti dei ponti con quattro travi longitudinali, ossia richiede numerose unioni, larghezza di ponte e lunghezza di spalle e di pile, maggiori di quelle strettamente necessarie ad una via ferrata con due binari.

In questi ultimi tempi, quasi tutti gli ingegneri sonosi pronunciati in favore del principio della solidarietà delle vie, costruendo i ponti di grande portata per via ferrata a due binarii con due sole travi longitudinali principali; e pare che questo ultimo sistema sia stato adottato in maniera quasi definitiva. Sotto il punto di vista dell'economia, esso è indubitatamente più vantaggioso dei sistemi precedenti, tutte le volte che è possibile dare alle travi longitudinali tutta l'altezza teoricamente necessaria, giacchè in ciascuna trave lon-

gitudinale la più gran parte del ferro trovasi impiegata in tavole orizzontali, poste a grande distanza dagli assi neutri delle diverse sezioni rette della trave stessa, il quale impiego si sa essere il più conveniente alla resistenza ed all'economia. Non sussiste poi l'obbiezione stata sollevata da alcuni, che cioè l'economia, la quale si ottiene nelle travi longitudinali, è più che distrutta dalla maggiore sezione che bisogna dare alle travi trasversali per la considerevole loro lunghezza, la quale lunghezza nei ponti per via ferrata a due binarii con due travi longitudinali si approssima al doppio di quella che si verifica negli stessi ponti con tre travi longitudinali; giacchè, se da un canto le travi trasversali devono ricevere una maggiore lunghezza, dall'altro non presentano che due unioni, invece di quattro, colle travi longitudinali. I pesi dei pezzi necessarii per operare in modo solido queste unioni sono infatti assai considerevoli; ed egli è certo che, per ciascuna delle travi trasversali, riducendosi a metà il numero delle unioni, la diminuzione di peso che ne risulta presso a poco compensa l'eccedenza di peso per la maggiore loro sezione, di maniera che i ponti di grande portata, per via ferrata a due binarii con due travi longitudinali, si presentano col quasi totale vantaggio risultante dall'economia che si può fare sulle or indicate travi. Aggiungasi ancora che questo sistema esige una larghezza di ponte minore di quella richiesta dagli altri, e per conseguenza spalle e pile meno lunghe.

Una grave obbiezione, che venne sollevata contro il sistema dei ponti di grande portata con due binarii e solamente con due travi longitudinali principali, è quella riferentesi all'ineguaglianza di flessione delle indicate travi al passaggio di un convoglio. Osservasi innnanzi tutto che questo inconveniente esiste anche nei ponti con tre travi longitudinali; esso è inerente al sistema che realizza la solidarietà delle due vie; ed il solo modo di evitarlo è quello di adottare il principio dell'indipendenza delle vie. D'altra parte poi, la citata ineguaglianza di flessione, che in definitiva è ben poca cosa, non preoccupa molto gli ingegneri che in questi ultimi anni ebbero a costrurre ponti di ferro, giacchè quasi esclusivamente hanno adottato il principio della solidarietà delle vie.

Visto qual è il tipo di ponti a travate rettilinee di grande portata, che meglio conviene per rapporto al numero delle travi longitudinali, viene la quistione di decidere in quale località deve essere stabilito il suolo stradale. Questa quistione è della massima importanza; ma senz'altro si può dire che la migliore posizione del suolo stradale è quella che permette di stabilire il migliore collegamento

di tutte le travi del ponte e principalmente delle travi longitudinali principali. In alcuni casi i profili delle strade, e principalmente quelli delle strade ferrate, non permettono di scegliere questa posizione; quando importa attenersi ad una piccola altezza fra le tavole inferiori delle travi longitudinali ed il livello del suolo stradale, è imperiosa necessità porre le travi trasversali alle parti inferiori delle travi longitudinali; e quando, trattandosi di un ponte per via ferrata a due binarii, l'altezza di quelle si reputa troppo piccola in confronto della distanza che vi dovrebbe essere fra due sole travi longitudinali, si presenta come indispensabile l'impiego di tre travi longitudinali. Quando però non si è obbligati da forza maggiore, conviene determinare il livello del suolo stradale, sotto il punto di vista del buon collegamento di tutte le travi del ponte, e questo si può ottenere stabiliendo il suolo stradale alla parte superiore, a circa metà altezza ed alla parte inferiore delle travi longitudinali.

La prima disposizione, ossia quella in cui il suolo stradale trovasi nella parte superiore delle travi longitudinali, conviene quando è grande l'altezza del suolo stradale per rapporto al livello delle acque massime, e quando le travate del ponte hanno una portata mediocre, la quale permette di dare alle travi longitudinali un'altezza non tanto grande e non superiore a metri 4,25. Questa disposizione venne adottata in Francia per la costruzione di parecchi ponti, fra i quali il ponte d'Asnières ed il ponte sulla Saon a Lione. La stessa disposizione venne seguita in Italia per alcuni ponti fatti costrurre dalla Società delle ferrovie meridionali sul torrente Cervaro per la linea Bovino-Ariano, e per un ponte sul torrente Miscano per la ferrovia Ariano-Benevento. Ponendo il suolo stradale e quindi la corrispondente impalcatura nella parte superiore delle travi longitudinali, come risulta dalla figura 254, la quale, in elevazione ed in sezione trasversale, dà un'idea di tale disposizione per il caso di una via ferrata con un solo binario, si può collocare il parapetto presso l'estremità esteriore delle tavole delle travi longitudinali stesse, utilizzare così tutta la larghezza di queste tavole per i marciapiedi, ridurre per conseguenza la distanza delle travi longitudinali, e, a vantaggio dell'economia, diminuire la lunghezza delle travi trasversali, non che la lunghezza e l'altezza delle spalle e delle pile. - Nei ponti per vie ferrate ad un solo binario, in cui l'altezza delle travi longitudinali non è maggiore di 3 metri, si possono direttamente stabilire le travi longitudinali sotto le rotaie, operare un robusto concatenamento per tutta la loro altezza, e porre esternamente apposite mensole pel sostegno dei marciapiedi. Così

facendo, la lunghezza delle travi trasversali risulta la minima possibile, e si può realizzare la massima economia di metallo e la minima lunghezza dei piedritti. Questa ultima maniera di disporre le travi longitudinali è quella stessa che si adotta pei ponti di piccola portata del primo tipo, e sembra che, impiegando quattro travi longitudinali, possa anche essere applicata ai ponti per via ferrata a due binarii.

La seconda disposizione, ossia quella in cui il suolo stradale trovasi a circa metà altezza delle travi longitudinali, può ancora convenire allorquando le dette travi, avendo un'altezza mediocre, non hanno bisogno di un doppio concatenamento in alto ed in basso. Ponendo il suolo stradale nel modo ora indicato, si può fare un solo concatenamento al di sotto, il quale, assieme ad alcune nervature verticali, basta per rendere sufficientemente rigide le travi longitudinali. Alcuni ponti in Francia, fra i quali il ponte di Langon sulla Garonne, parecchi ponti di mediocre portata nell'Hannover, fra i quali il ponte di Sarstedt sull'Inn, e due ponti sul torrente Miscano per la ferrovia Ariano-Benevento in Italia, realizzano l'indicata disposizione. Così facendo, è necessario assegnare alle travi longitudinali la distanza che loro conviene pel collocamento fra esse di una o di due vie ferrate coi corrispondenti marciapiedi; l'indicata distanza risulta maggiore di quella richiesta dalla prima disposizione; e quindi non è possibile ottenere alcuna economia nelle travi trasversali, nelle spalle e nelle pile. Nella figura 255, in elevazione ed in sezione trasversale, si ha un'idea della disposizione di cui si sta ragionando, la quale, quantunque realizzi qualche economia nei pezzi di concatenamento, pure, tutto valutato, riesce generalmente la meno vantaggiosa.

La terza disposizione, ossia quella in cui il suolo stradale trovasi nella parte inferiore delle travi longitudinali, conviene principalmente per le grandi aperture, e quando si può dare alle travi longitudinali una tale altezza da esservi almeno un'altezza libera di metri 4,50 fra il livello delle rotaie e le tavole superiori delle travi longitudinali; giacchè riesce allora possibile di ben concatenare queste ultime alla loro sommità. Si deve ancora osservare, che questa posizione del suolo stradale è la più razionale, giacchè quanto più si innalzano le travi trasversali, tanto più si accresce la distanza verticale fra il carico in movimento ed il piano di posa delle travi longitudinali sui loro appoggi, con accrescimento d'intensità nelle oscillazioni del ponte al passaggio di carichi su esso transitanti. Un'altra ragione assai importante, che milita in favore di questo

sistema, quando alle travi longitudinali si può dare tale altezza da stabilire un solido collegamento alla loro sommità, consiste in ciò che l'indicata posizione del suolo stradale esige nelle travi trasversali e nei piedritti lunghezza minore di quella necessaria nel caso in cui il suolo stradale si pone a circa metà altezza delle travi longitudinali: imperocchè la larghezza libera del nonte, fra le ultime indicate travi, non si dovrà contare fra i bordi interni delle tavole superiori delle travi longitudinali, ma sibbene fra le superficie interne delle pareti verticali di queste stesse travi. Al ponte di Langon, in cui le travi longitudinali hanno l'altezza di metri 5,50, era possibile lo stabilimento del suolo stradale in basso, e sotto questo rapporto i costruttori di questo ponte avranno probabilmente ben pochi imitatori. Nella maggior parte dei ponti in ferro a travate rettilinee, stati costrutti in Francia in questi ultimi anni, quali sono il ponte d'Argenteuil, il ponte d'Orival, il ponte sulla Garonne a Bordeaux e molti altri, il suolo stradale trovasi nella parte inferiore delle travi longitudinali; e la stessa disposizione si vede adottata nella maggior parte dei ponti di grande portata stati costrutti per le ferrovie italiane, fra i quali meritano speciale menzione il ponte sul Po presso Piacenza per la ferrovia Milano-Piacenza, il ponte sul Po presso Mezzana-Corti per la ferrovia Voghera-Brescia, ed il ponte sul Po a Pontelagoscuro, ora in costruzione, per la ferrovia Bologna-Padova. La figura 256, in elevazione ed in sezione trasversale, dà un'idea della terza disposizione, che è quella maggiormente usata nella costruzione dei ponti di grande portata.

Per quanto spetta alle principali dimensioni orizzontali che devono presentare i ponti in ferro a travate rettilinee di grande portata per via ferrata, ossia per la larghezza dei binarii, dei marciapiedi e dell'entrovia, vale quanto si è detto nel numero 206. La distanza delle travi trasversali è generalmente compresa fra metri 2 e metri 3,50; ed essendo questa distanza troppo forte, affinchè le rotaie stabilite su longarine possano superarla, è indispensabile l'impiego di travi longitudinali secondarie, poste fra una trave trasversale e l'altra e direttamente sopportanti le longarine. L'altezza delle travi trasversali da stabilirsi nella parte bassa delle travi longitudinali varia generalmente da metri 0,50 a metri 1,25 nei ponti per via ferrata a due binarii; fra metri 0,50 e metri 0,75 nei ponti per via ferrata ad un binario. L'altezza delle travi longitudinali secondarie è generalmente compresa fra metri 0,30 e metri 0,60. — Per rapporto all'altezza delle travi longitudinali

principali, è difficile somministrare indicazioni certe. Essa varia col numero delle travi longitudinali, col carico che devono sopportare e colle portate che devono superare, e si può ritenere che pei ponti con due sole travi longitudinali, questa altezza suol essere fra 1/10 ed 1/14 della maggiore distanza fra le superficie vicine di due piedritti successivi. Trattandosi però di ponti col suolo stradale nella parte bassa delle travi longitudinali, è indispensabile che l'altezza libera fra il livello delle rotaie e le superficie inferiori dei pezzi di collegamento sia almeno di metri 4,50 od anche di metri 5. - La larghezza delle tavole orizzontali delle travi longitudinali è una quota variabile. Conviene però avvertire, che bisogna evitare le tavole troppo larghe, onde ridurre di quanto è possibile la lunghezza dei piedritti, e diminuire la sporgenza delle tavole per rapporto ai ferri d'angolo che le uniscono alle pareti verticali; giacchè se questa sporgenza diventa troppo grande, le tavole sono soggette a piegarsi. In generale l'indicata larghezza non deve essere maggiore di metri 0,80, e, volendola aumentare, è necessario riunire la tavola superiore all'inferiore mediante due o più pareti verticali. Al ponte sulla Garonne a Bordeaux, al ponte d'Argenteuil, al ponte d'Orival, ed ai ponti sul Po a Mezzana-Corti, a Piacenza ed a Pontelagoscuro, si ebbe ricorso all'impiego della doppia parete verticale per riunire le tavole, superiore ed inferiore, delle travi longitudinali; ed al ponte di Blackfriards sul Tamigi a Londra dove le tavole di ciascuna trave longitudinale hanno la larghezza di metri 1,60, si adoperarono tre pareti verticali distanti di metri 0,65 da asse ad asse. - Per rapporto alla tavola superiore delle travi longitudinali secondarie, conviene osservare che essa deve ricevere le longarine, che per conseguenza deve avere larghezza sufficiente a questo scopo e compresa fra metri 0,20 e metri 0,30. Alcune volte queste travi longitudinali secondarie sono formate di due travi gemelle, che comprendono le longarine nel modo espresso dalla figura 254.

Sovente ai ponti di grande portata per strade ferrate si annettono due marciapiedi laterali pei pedoni, sostenuti da mensole attaccate alle travi longitudinali, od anche da mensole che non sono altro che i prolungamenti delle travi trasversali. Qualche volta poi uno stesso ponte serve per due usi, per via ferrata e per via ordinaria. Nel ponte sull'Aar a Berna trovasi una via ferrata a due binarii nella parte superiore ed un via carreggiabile al di sotto, di maniera che questo ponte è del sistema di quelli in cui il suolo stradale è nella parte superiore delle travi longitudinali per rapporto alla via ferrata, nella parte inferiore delle stesse travi per

rapporto alla via carreggiabile. Viceversa, nel ponte sul Po presso Mezzana-Corti, in modo analogo a quanto appare dalla figura 256, la via ferrata a due binarii è situata nella parte inferiore delle travi longitudinali e la via carreggiabile nella parte superiore.

Per costrurre un ponte a travate rettilinee di grande portata per strada carreggiabile, si può adottare una qualunque delle tre disposizioni che vennero indicate pei ponti di via ferrata. Conviene però osservare che, volendosi stabilire sulle travi trasversali i tavoloni costituenti la coperta del ponte, è necessario porre le indicate travi a distanze non maggiori di metri 1,50; e, qualora credasi di adottare un sistema di travi longitudinali secondarie, spaziate da mezzo e mezzo non più di 1,50, su queste si può mettere in opera la coperta di tavoloni disposti trasversalmente al ponte, e mettere le travi trasversali a distanza assai maggiore ed anche di metri 3,50.

La coperta dei ponti di grande portata per vie ferrate sovente è costituita di tavoloni con sopra uno strato di ballast, precisamente come già si disse nel numero 206, parlando dei ponti di piccola portata. Qualche volta si pongono i tavoloni, soltanto pei marciapiedi; e la coperta della parte di mezzo è formata di piastre di ghisa o di lamiera di ferro. Vi sono anche esempli in cui l'intiera coperta è di lastre metalliche, ed altri in cui è essa formata con quei ferri ad U, detti ferri Zorès, posti l'uno presso l'altro su travi longitudinali secondarie, onde ottenere un'impalcatura capace di sopportare le pressioni prodotte dalle ruote delle locomotive in caso di sviamento.

Il collocamento delle travi longitudinali sui piedritti si fa generalmente mediante rulli. Su ciascun piedritto e per ogni trave longitudinale, si pone una piastra di ghisa in modo che ad esso si trovi saldamente fermata; su questa piastra si posa un carretto di rulli dello stesso diametro, i quali, mediante due guide, sono mantenuti ad una piccolissima distanza costante; e su questi rulli si colloca una seconda piastra di ghisa. La seconda piastra deve trovarsi talmente collegata alla trave longitunale, che questa non possa scorrere, nè dilatarsi orizzontalmente, senza che quella orizzontalmente si sposti di eguale quantità. Per raggiungere lo scopo, si inchiavarda la seconda piastra alla trave longitudinale, oppure si fa in modo che questa presenti uno o più risalti sulla faccia inferiore, i quali si fanno entrare in corrispondenti incavature praticate nella faccia superiore della piastra. - Pei ponti le cui travate hanno portate molto grandi, la piastra superiore ai rulli è generalmente costituita di due parti orizzontalmente sovrapposte; una appoggia di etta-

mente sui rulli, l'altra è fermata alle travi longitudinali; fra queste due parti ed in apposite incavature, che si addentrano nell'una e nell'altra, si pongono parecchi cunei, e servono essi ad ottenere l'appoggio delle travi longitudinali sui rulli, quando quest'appoggio non abbia luogo. — Il diametro dei rulli varia generalmente da metri 0,12 a 0,15; la grossezza della piastra inferiore, suol essere da metri 0,08 a 0,10; e la grossezza della piastra superiore, e di ciascuna delle due parti della piastra superiore, quando trovasi essa divisa in due parti, suole pure variare fra metri 0,08 e metri 0,10; e la distanza fra le generatrici vicine delle superficie convesse di due rulli successivi difficilmente è maggiore di metri 0,03.

Da poco tempo si costruiscono rulli, riuniti in un carretto con quattro guide. Le superficie superiori ed inferiori di questi rulli sono porzioni di superficie cilindriche circolari dello stesso diametro. Questo diametro è eguale all'altezza dei rulli e varia da metri 0,30 a 0,50. Le due guide, poste su una stessa fronte del carretto, sono egualmente distanti dal piano orizzontale determinato dagli assi dei cilindri, cui appartengono le superficie superiori ed inferiori dei rulli. La distanza fra mezzo e mezzo di due rulli successivi varia da metri 0,2 a 0,3. Nella figura 257 trovasi rappresentata la proiezione orizzontale e la fronte di questo nuovo sistema di rulli.

Nei ponti a travate rettilinee di grande portata, le travi longitudinali vengono generalmente fissate su un piedritto, mentre in corrispondenza di tutti gli altri trovansi poste sopra rulli. Questa disposizione dà fermezza a queste travi sui loro appoggi, e contemporaneamente permette le variazioni di lunghezza causate dai cangiamenti di temperatura. Nei ponti ad una sola travata, le travi longitudinali si fissano su una spalla e si collocano su rulli in corrispondenza dell'altra; nei ponti a più travate, per non portare tutti gli effetti delle dilatazioni e degli accorciamenti in un solo estremo, usasi generalmente fissare le travi longitudinali su una delle pile intermedie, e posarle sopra rulli in corrispondenza di tutti gli altri piedritti.

Conviene avvertire: che, nei ponti in ferro molto lunghi, gli allungamenti e gli accorciamenti causati dalle variazioni di temperatura si fanno sentire sulle rotaie; che è necessario, dove si manifesta il complesso di questi effetti, far uso di apposito cuscinetto atto ad impedire lo sviamento dei vagoni, anche nel caso in cui il binario resti interrotto per l'intervallo corrispondente al massimo accorciamento.

209. Paragone fra le travi a traliccio e le travi a parete verticale piena. — Le travi con parete verticale a traliccio, quasi proscritte nell'Inghilterra e nell'Hannover, come ben inferiori alle travi con parete verticale piena, sono al contrario, già da lungo tempo, in gran favore nella Prussia, nel ducato di Baden, nel Wurtemberg, e si può dire che, in questi ultimi anni, le prime sono quasi le sole adottate nella Francia, nell'Italia, nella Spagna, e nel resto del continente. Che anzi, nella stessa Inghilterra, dove gli ingegneri per lungo tempo si sono astenuti dall'adottare le pareti a traliccio, ultimamente si costruirono alcuni ponti con travi a parete reticolata.

Considerando superficialmente le travi a traliccio, si è indotti a credere che, a parità di portata e di carichi, debbano esse condurre ad una riduzione di peso. Vi ha infatti vantaggio nell'allontanare, in una trave, dallo strato delle fibre invariabili le fibre resistenti che la compongono, ed a concentrarle in due parti, l'una dall'altra separate e poste alla maggior distanza possibile: questa è la considerazione che ha potuto condurre a rendere vuote le travi in vicinanza dello strato delle fibre invariabili, ed a trasformare la parete piena in un traliccio. Questo ragionamento trovasi smentito e dall'esperienza e della teoria. L'esperienza dimostra infatti che le travi a traliccio costituiscono un sistema piuttosto pesante, e che le economie di metallo, che si vogliono fare, sono sempre, al di là di un certo limite, pregiudizievoli alla durata dell'opera. La teoria poi mette in evidenza qual è lo scopo della parete verticale, sia essa piena o reticolata, nella composizione delle travi metalliche. Questa parete verticale è l'organo mediante il quale si effettua la trasmissione delle tensioni e delle pressioni dall'una all'altra delle tavole orizzontali, ed essa ha bisogno di presentare resistenza sufficiente al disimpegno di quest'importante ufficio.

Si sa che lo sforzo di taglio N, in una sezione qualunque di una trave orizzontalmente collocata su due o più appoggi, definita questa sezione coll'ascissa o distanza z, dal mezzo dell'appoggio di sinistra più vicino, è la derivata, coi segni cangiati e per rapporto a z, del momento inflettente μ per la sezione corrispondente alla stessa ascissa (Resistenza dei materiali e stabilità delle costruzioni, num. 147). In una trave con parete verticale a traliccio, lo sforzo N si esercita obliquamente su m pezzi, ai quali si può far sopportare una pressione od una tensione nR per ogni unità di superficie della loro sezione retta; il minimo della sezione retta di uno di questi pezzi è dunque (Resistenza dei materiali e stabilità delle costruzioni, num. 200) dato dall'espressione

$$\frac{N}{m \, n \, \text{R sen } \alpha}$$

dove z è l'angolo acuto che l'asse di ciascun pezzo del traliccio fa coll'orizzonte; e quindi il volume del traliccio, per una lunghezza infinitesima dz di trave, viene dato da

$$\frac{N}{m \, n \, R \, \text{sen} \, \alpha} \times \frac{dz}{\cos \alpha} \times m = \frac{2 \, \text{N} \, dz}{n \, R \, \text{sen} \, 2 \, \alpha},$$

espressione la quale, nel caso del traliccio più economico, ossia per $\alpha = 45^{\circ}$, si riduce a

$$\frac{2Ndz}{nR} \tag{1}$$

In una trave con parete verticale piena, ed in tutto il resto delle stesse dimensioni e posta nelle identiche condizioni della trave a traliccio, lo sforzo di taglio N è equilibrato dalla resistenza allo scorrimento trasversale, ossia dalla resistenza al taglio che la parete piena è capace di opporre. Segue da ciò che, essendo n' R' la resistenza allo scorrimento trasversale che si può far sopportare alla parete verticale per ogni unità di superficie della sua sezione retta, il minimo di questa sezione è dato dal quoziente

-amount of indicate particles and the
$$\frac{N}{n^{is}\,R^{is}}$$
 , which is a manifest shall some

e che il volume del metallo, da impiegarsi in parete verticale piena per una lunghezza infinitesima dz di trave longitudinale, risulta

$$\frac{Ndz}{n^{\text{rv}}R^{\text{rv}}} \tag{2}.$$

Ora, siccome si può assumere n'' R'' = n R, giacchè i pratici prendono generalmente 5 chilogrammi per millimetro quadrato, tanto per le tensioni quanto per le pressioni nel traliccio, e giacchè questo limite si può anche adottare per la resistenza pratica del ferro allo sforzo di taglio, le espressioni (1) e (2) portano a conchiudere che il volume della parete verticale a traliccio è doppio di quello della parete verticale piena.

In pratica, il risultato del paragone fra una trave con parete verticale piena ed una trave con parete verticale a traliccio, è qualche volta ben differente. Può infatti avvenire, che il calcolo assegni alla parete piena di una trave una spessezza tanto piccola, che essa risulti inammissibile nella costruzione, giacchè non si può, per esempio, porre meno di una lamiera nella formazione di questa parete. La trave con parete verticale piena presenta allora un eccesso di resistenza allo sforzo di taglio, e può darsi, che risulti meno economica di una trave con parete verticale a traliccio, il quale, concentrando la materia in un piccolo numero di pezzi, la pone in migliori condizioni di resistenza. In questo caso il traliccio può condurre ad un'economia nel peso del metallo, ma in tutte le altre circostanze riesce sempre più pesante della parete piena. -Aggiungasi ancora che il traliccio esige maggiore quantità di ferro a motivo della discontinuità dei punti d'attacco. Ciascun pezzo deve essere inchiodato separatamente alle tavole, e ciascuna delle connessioni deve trovarsi in istato di resistere individualmente a qualsiasi azione che dovrà sopportare. La continuità della parete piena permette una chiodatura continua alle tavole e stabilisce fra le diverse parti della trave una solidarietà vantaggiosa alla resistenza dell'intero sistema. Nelle travi con parete verticale a traliccio, per l'inchiodatura dei diversi pezzi di questo sono necessarii grandi fogli di lamiera, o ferri d'angolo di dimensioni eccezionali; e questo porta un aumento di peso e di spesa.

Malgrado la dimostrata inferiorità economica delle travi con parete verticale a traliccio, pure il loro impiego è quasi divenuto generale, e pare che gli ingegneri non siano disposti di rinunciare a questo sistema di costruzioni delle travi pei ponti metallici. per attenersi esclusivamente alle travi con pareti verticali piene. L'aspetto elegante e leggiero, e la minore superficie che il traliccio presenta alla violenza dei venti, costituiscono i principali vantaggi che esso ha sulla parete piena. Quest'ultima si presenta assai male allo sguardo dell'osservatore, si mostra con un carattere eccessivamente pesante e spiacevole, e presenta molta superficie alla violenza dei venti. In generale nei ponti a travate rettilinee di grande portata e nella composizione delle travi longitudinali, conviene rinunciare alla parete piena, la quale ha il solo merito del buon mercato, per attenersi alla parete a traliccio; e tutto al più può quella venire applicata nella composizione delle travi trasversali e delle travi longitudinali secondarie.

Il più semplice di tutti i tralicci è quello costituito da triangoli

isosceli od equilateri, e dopo vengono quelli che risultano da pezzi due a due intersecantisi a metà altezza delle travi, cosicchè ha luogo un solo incrociamento per ogni pezzo. Pei ponti di grandi portate, questi tralicci semplici difficilmente si possono adottare, perchè i loro pezzi esigono dimensioni troppo forti; e così è quasi sempre una necessità d'impiegare i tralicci con più punti d'incrociamento. Vi sono ingegneri che pongono i pezzi dei tralicci a tale distanza da risultare i pieni sensibilmente eguali ai vuoti; altri che li pongono a distanza di circa 1 metro: ed altri che li pongono a distanze ancora maggiori. I tralicci fitti hanno il vantaggio di porre le travi, nelle quali si trovano, in condizioni poco differenti da quelle che si verificano nelle travi con parete verticale piena; e sembra questa la ragione per cui vengono essi adottati da molti ingegneri. È però necessario di non accrescere eccessivamente il numero dei pezzi del traliccio, giacchè, oltre l'inconveniente della moltiplicità delle unioni nei punti d'intersezione, si verrebbe al punto di dover dare ai detti pezzi una spessezza troppo piccola; si otterrebbero travi, le quali male resisterebbero alle azioni di forze perpendicolari ai piani verticali passanti pei loro assi, e quindi soggette a deviare dalla posizione verticale.

210. Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee. — Il peso totale, che può trovarsi su un ponte di ferro, consta di due parti ben distinte: del carico permanente o peso proprio del ponte; del carico accidentale o sovraccarico.

Il carico permanente comprende il peso del ferro, del legname del ballast, in una parola, di tutte le parti costituenti la parte metallica e l'intiera coperta del ponte. Gli elementi necessarii alla determinazione di tutto o di una parte di questo carico si hanno nei numeri 7, 20, 22, 23, 24 e 150. — Il carico accidentale, o sovraccarico, deve essere valutato in diverso modo, secondo che trattasi di un ponte per strada ordinaria o di un ponte per strada ferrata; ed in quest'ultimo caso conviene ancora distinguere, se vuolsi esso valutare in relazione alla resistenza che devono presentare le travi longitudinali, oppure in relazione alla resistenza che devono presentare le travi trasversali.

Nel caso di un ponte per strada ordinaria, il sovraccarico si assumerà come venne indicato nel numero 192, ossia in ragione di 600 chilogrammi per ogni metro quadrato di suolo stradale.

In un ponte di strada ferrata e per rapporto alle travi longitudinali, il sovraccarico per ogni binario si determinerà come venne detto parlando dei ponti di legno a travate rettilinee, e generalmente si potrà esso assumere quale risulta dalla tabella contenuta nel numero 192.

Se però sul ponte deve aver luogo il passaggio di locomotive molto pesanti, a cui corrispondono sovraccarichi q, uniformemente distribuiti, maggiori di quelli che trovansi nella citata tabella del numero 192, converrà ricorrere a quella che segue, stata calcolata dal signor ingegnere Alfredo Cottrau, nell'ipotesi che le travi longitudinali debbano essere capaci di stabilmente sopportare un convoglio di locomotive Engerth, aventi ciascuna il peso di 66 tonnellate e sei assi alle rispettive distanze di metri 1,50, 3, 1,30, 1,30 ed 1,30.

PORTATE delle TRAVI	SOVRACCARICHI q uniformemente distribuiti per ogni metro, equivalenti ad un treno di locomotive	PORTATE delle TRAVI	SOVRACCARICHI q uniformemente distribuit per ogni metro, equivalent ad un treno di locomotive
2,00	11000cs	5,75	8579cs
2,20	10000	6,00	8482
2,40	9725	6,50	8236
2,50	9637	7,00	8010
2,75	9326	7,50	7760
3,00	9555	8,00	7444
3,25	9477	8,50	7246
3,50	9518	9,00	7079
3,75	9392	9,50	6962
4,00	. 9350	-10,00	6832
4,25	9355	10,50	6697
4,50	9029	11,00	6555
4,75	9078	12,00	6647
5,00	8745	13,00	6264
5,25	8717	15,00	6143
5,50	8659	20,00	6240

Per travi longitudinali aventi lunghezza minore od eguale a 2 metri, conviene assumere il sovraccarico di 12000 chilogrammi per ogni metro corrente di via ferrata ad un solo binario; e per quelle la cui portata eccede 20 metri, il citato signor ingegnere Cottrau propone i dati contenuti in quest'altra tavola:

PORTATA delle TRAVI	SOVRACCARICHI q uniformemente distribuiti per ogni metro
da 20 a 25 metri	da 5000 a 4800 chilogrammi
25 30	4800 4400
30 35	4400 4200
35 40	4200 4000
40 60	4000 3600

Nella pratica difficilmente si assume un sovraccarico minore di 4000 chilogrammi per ogni metro corrente di via ferrata ad un solo binario, cosicchè l'ultimo indicato numero si può ritenere siccome il limite inferiore dei sovraccarichi da adottarsi per le travi longitudinali dei ponti in ferro a travate rettilinee. Questo limite si applica alle portate di 20 metri e maggiori di 20 metri nei ponti per strade ferrate di pianura, ed alle portate di 40 metri e maggiori di 40 metri nei ponti per strade ferrate di montagna.

Per rapporto alle travi trasversali dei ponti per vie ferrate, quando queste travi portano le rotaie, si devono dedurre le pressioni o sovraccarichi P₄, da supporsi ad esse applicate in corrispondenza di ciascuna rotaia, come venne detto parlando dei sovraccarichi operanti sulle travi trasversali dei ponti di legno a travate rettilinee. Si può poi ritenere che pei ponti di strade ferrate in pianura, convengano i dati contenuti nella tabella del numero 493.

Quando trattasi di ponti per strade ferrate di montagna, sui quali devono passare locomotive a cui corrispondono sovraccarichi P_4 maggiori di quelli che trovansi nella tabella del citato numero 193, si può far uso, nelle pratiche applicazioni, dei dati che trovansi nella tavola che segue, stata proposta dal citato signor ingegnere Cottrau nell'ipotesi di un sovraccarico di locomotive Engerth, di cui già si fece cenno in questo numero.

DISTANZE delle TRAVI TRASVERSALI	SOVRACCARICHI P ₁ da supporsi applicati alle travi trasversali in corrispondenza di ciascuna rotaia.
2,00	9350°s
2,20	10000
2,40	10541
2,60	11000
2,80	11785
3,00 man	12466
3,20	15062
3,40	13588
3,50	13832

Potendo avvenire il caso di travi trasversali collocate a distanze minori di 2 metri, si può ritenere: che per distanze minori di metri 1,50 è prudente adottare un sovraccarico P₄ di 6000 chilogrammi; che per distanze di metri 1,40, di metri 1,60 e di metri 1,80 convengano rispettivamente i sovraccarichi P₄ di 6286 chilogrammi, di 7562 chilogrammi e di 8555 chilogrammi.

241. Determinazione di alcune principali dimensioni delle travi longitudinali secondarie. — Le travi longitudinali secondarie, che si collocano direttamente sotto le longarine di legno le quali portano le rotaie, hanno per ufficio di mantenere ben collegate fra di loro le travi trasversali e principalmente di sostenere le dette longarine e rotaie negli intervalli esistenti fra le travi trasversali stesse.

Le travi longitudinali secondarie sono generalmente inchiodate alle travi trasversali, e, secondochè il sistema di unione è meno o più perfetto, si usa di considerarle come solidi orizzontalmente collocati o come solidi orizzontalmente semi-incastrati su due appoggi. Tanto nell'uno poi, quanto nell'altro caso, si considerano come caricati d'un peso uniformemente distribuito sulla loro lunghezza.

Assumendo il metro per unità di lunghezza, il chilogramma per

unità di forza e riferendo al metro quadrato il valore del coefficiente di rottura, si chiamino

2a la distanza fra asse ed asse delle due travi trasversali successive, a cui trovasi unita la trave longitudinale secondaria che si considera,

 $\mu_{\rm m}$ il valore assoluto del massimo momento inflettente, che può verificarsi nella stessa trave longitudinale secondaria,

I' il momento d'inerzia della sua sezione retta rispetto alla orizzontale passante pel centro di superficie della sezione stessa,

v' la distanza dell'indicata orizzontale dal punto del perimetro della sezione retta che maggiormente si scosta dall'orizzontale medesima,

nR il prodotto del coefficiente di rottura longitudinale del ferro pel relativo coefficiente di stabilità.

L'equazione di stabilità, atta a determinare una delle dimensioni della sezione retta delle travi trasversali, è (Resistenza dei materiali e stabilità delle costruzioni, num. 106 e 109)

$$nR = \frac{v' \mu_{\rm m}}{I'} \tag{1},$$

nella quale il valore del coefficiente di stabilità n suolsi generalmente assumere eguale ad 1/6, mentre il valore di R suolsi prendere in ragione di 30 chilogrammi per millimetro quadrato. Nell'applicare poi la riportata equazione di stabilità, operasi generalmente in favore della stabilità, trascurando le pareti verticali delle travi longitudinali secondarie e tenendo solamente conto: delle tavole orizzontali e dei ferri d'angolo, quando trattasi di travi con pareti verticali piene; delle tavole orizzontali, dei ferri d'angolo e delle lamiere verticali per attaccarvi i ferri del traliccio, quando è quistione di travi con parete verticale reticolata.

Indicando ora colla lettera p il peso distribuito sull'unità di lunghezza di trave longitudinale, il qual peso consta di quanto la trave longitudinale secondaria permanentemente deve sopportare e del sovraccarico (il qual ultimo si desume da quanto venne detto nel precedente numero, parlando dei sovraccarichi gravitanti sulle travi longitudinali dei ponti in ferro a travate rettilinee), si ha: pel caso del semplice appoggio

$$\mu_{\rm m} = \frac{1}{2} p a^2;$$

pel caso del mezzo incastramento (num. 195)

$$\mu_{\rm m} = \frac{5}{12} p a^2;$$

e quindi, per determinare una dimensione della sezione retta delle tavole orizzontali di una trave longitudinale secondaria, si adotterà, o l'equazione

$$nR = \frac{v'p\,a^2}{2\,1'} \tag{2},$$

oppure l'altra

$$nR = \frac{5v'pa^2}{12\Gamma} \tag{3}.$$

Nella pratica converrà applicare l'equazione (2) o l'equazione (5) a seconda del modo più o meno accurato con cui le travi longitudinali secondarie sono unite alle travi trasversali.

Il valore di p, che trovasi nelle equazioni (2) e (3), dovrebbe anche contenere il peso proprio della trave, peso che generalmente si suole trascurare, perchè assai piccolo in confronto del sovraccarico, e del quale si può tener conto, o col metodo di falsa posizione, oppure introducendo in una delle dette equazioni il peso di un metro corrente di trave espresso in funzione della dimensione che vuolsi determinare.

L'equazione di stabilità, relativa allo sforzo di taglio, è quella che generalmente suolsi adottare nel determinare una dimensione della sezione retta delle pareti verticali delle travi longitudinali secondarie. Nel caso di una parete continua, se ritiensi il chilogramma per rappresentare l'unità di forza, se adottasi il metro quadrato per unità di superficie, se a questo si riferisce il valore del coefficiente di rottura e se chiamansi

N_m il massimo sforzo di taglio che può aver luogo nella trave longitudinale secondaria che si considera,

 Ω la superficie della sezione retta della parete verticale di questa trave, ed

n'' R'' il prodotto del coefficiente di rottura trasversale del ferro pel relativo coefficiente di stabilità (Resistenza dei materiali e stabilità delle costruzioni, num. 106 e 109),

si ha

$$n^{\text{tv}} R^{\text{rv}} = \frac{N_{\text{m}}}{\Omega}$$
 (4),

dove il valore del coefficiente di stabilità n' suolsi generalmente assumere eguale ad 1/6, mentre il valore di R' suolsi prendere in ragione di 24 a 29 chilogrammi per millimetro quadrato. Parecchi costruttori di ponti metallici non ammettono diversità fra i valori di R' e di R, ed usano assumere sì l'uno che l'altro di 30 chilogrammi per ogni millimetro quadrato.

Il massimo sforzo di taglioN m ha luogo nella sezione d'appoggio, e, per poco che si rifletta su ciò che rappresentano i pesi q e P₄, i quali trovansi riportati nelle tabelle dei numeri 192, 193 e 210, agevolmente si comprende come il valore di N_m debba essere eguale alla metà di P₄, ossia alla metà del sovraccarico da supporsi applicato alle travi trasversali in corrispondenza di ciascuna rotaia, aumentata della metà del carico che la trave longitudinale secondaria considerata permanentemente deve sopportare nell'intervallo compreso fra le due travi trasversali successive che la sopportano. Se adunque si indica colla lettera p' il peso permanente riferito all'unità di lunghezza di trave longitudinale secondaria, si ha

$$N_{m} = \frac{1}{2} P_{i} + a p' \tag{5};$$

e quindi l'equazione (4), determinatrice della superficie Ω della sezione retta della parete verticale piena, risulta

$$n^{\text{rv}} R^{\text{rv}} = \frac{P_4 + 2 a p'}{2 \Omega} \tag{6}.$$

Trovato il valore di Ω , conoscendosi già l'altezza della parete verticale, che si assume come un dato del problema o si determina con una delle due equazioni (2) e (5), immediatamente si deduce la spessezza da assegnarsi alla parete stessa.

Il valore di p', il quale trovasi nell'equazione (6), dovrebbe anche contenere il peso proprio della trave. Di questo peso, che generalmente si trascura, giacchè è molto piccolo in confronto dei sovraccarichi, si può tener conto operando per falsa posizione, od anche

introducendo nell'equazione (6) il peso di un metro corrente di trave, espresso in funzione di Ω .

Se poi la trave longitudinale secondaria, di cui voglionsi determinare le dimensioni, è con parete verticale a traliccio, ciò che ben difficilmente avviene nella pratica, dicendo

α l'angolo acuto misurante l'inclinazione degli assi dei diversi pezzi componenti il traliccio coll'orizzonte,

m il numero dei pezzi del traliccio tagliati da una sezione retta qualunque della trave,

ω la superficie della sezione retta di un pezzo del traliccio, ed nR il prodotto del coefficiente di rottura longitudinale del ferro costituente i pezzi del traliccio

si ha (Resistenza dei materiali e stabilità delle costruzioni, num. 200)

$$nR = \frac{N_m}{m \omega \operatorname{sen} \alpha},$$

dove per valore di N_m si deve assumere quello stesso dato dall'equazione (5), cosicchè l'equazione determinatrice di ω risulta

$$n = \frac{P_{\bullet} + 2 a p'}{2 m \omega \sin \alpha}.$$

In quanto al valore di n, si assume generalmente eguale ad $\frac{1}{6}$ ed il valore di R quasi sempre si prende in ragione di 30 chilogrammi per ogni millimetro quadrato. Prendendo il chilogramma per unità di forza e riferendo il prodotto nR al metro quadrato, il valore di ω si ottiene pure in metri quadrati.

Se invece di un ponte per via ferrata, trattasi di un ponte per strada ordinaria, coll'impalcatura sostenuta da travi longitudinali secondarie, pel calcolo delle dimensioni di queste si procede precisamente colle stesse norme che vennero date pel caso delle travi longitudinali secondarie dei ponti per strade ferrate, coll'avvertenza d'introdurre i carichi permanenti ed i sovraccarichi convenienti al caso di ponti per vie ordinarie.

212. Determinazione di alcune principali dimensioni delle travi trasversali. — Le travi trasversali sono ordinariamente collegate alle travi longitudinali con tutta la cura possibile; ma, per l'importanza che le dette travi trasversali hanno sulla resistenza dell'impalcatura dei ponti, i pratici usano generalmente operare in

favore della stabilità considerandole siccome solidi rettilinei orizzontalmente collocati su due appoggi. Per rapporto poi ai carichi operanti su queste travi, si ammette che esse siano caricate d'un peso P in corrispondenza di ciascuna rotaia e di un peso uniformemente distribuito in ragione di p chilogrammi per ogni metro della loro lunghezza. Il peso P si deduce da quanto venne detto nel precedente numero, parlando del sovraccarico P₄ da supporsi applicato alle travi trasversali in corrispondenza di ciascuna rotaia, coll'aggiungere a questo sovraccarico il peso di una trave longitudinale secondaria e di quanto questa permanentemente sopporta. Il peso p deriva dal carico uniformemente e permanentemente distribuito sulla trave trasversale.

Attribuendo a μ_m , I', v' ed nR i significati che loro vennero dati nel precedente numero, e chiamando

2a la lunghezza delle travi trasversali,

2b la larghezza dell'entrovia, ossia la distanza fra due rotaie vicine di due differenti binarii, e

2d la distanza fra asse ed asse delle due rotaie di uno stesso binario,

l'equazione di stabilità atta alla determinazione di una dimensione della sezione retta delle tavole orizzontali è

$$n = \frac{v' \mu_{\rm m}}{V}$$

Il valore di μ_m viene dato: da

$$\mu_{\mathbf{m}} = \frac{1}{2} p a^{2} + P(a - d)$$

nel caso di un ponte per via ferrata ad un solo binario; e da

$$\mu_{\text{m}} = \frac{1}{2} p a^2 + 2 P (a - b - d)$$

nel caso di un ponte per via ferrata a due binarii. L'equazione di stabilità conveniente al primo caso è

$$nR = \frac{v'[p\,a^2 + 2\,P\,(a-d)]}{2\,I'} \tag{1},$$

mentre quella conveniente al secondo risulta

$$nR = \frac{v'[p\,a^2 + 4P(a - b - d)]}{2I'} \tag{1}^{bis}.$$

Nell'applicare le equazioni (1) ed (1)^{bis}, per dedurre una dimensione della sezione retta delle travi trasversali, operasi generalmente in favore della stabilità, trascurando le pareti verticali e tenendo solamente conto: delle tavole orizzontali e dei ferri d'angolo, quando trattasi di travi con pareti verticali piene; delle tavole orizzontali, dei ferri d'angolo e delle lamiere verticali per attaccarvi i pezzi del traliccio, quando è quistione di travi con parete verticale reticolata.

Quando trattasi di travi trasversali con parete verticale piena, attribuendo ad N_m , ad $n^m R^m$ e ad Ω i significati che loro vennero dati nel precedente numero, l'equazione di stabilità da applicarsi per la determinazione di una dimensione di questa parete è

$$n^{\text{r}} R^{\text{r}} = \frac{N_{\text{m}}}{\Omega}$$
.

Il valore di N_m, che in essa si deve porre, è:

$$N_m = P + ap$$

per il caso di un ponte per via ferrata ad un binario;

$$N_m = 2P + ap$$

per il caso di un ponte per via ferrata a due binarii; e quindi l'equazione determinatrice della superficie Ω della sezione retta della parete verticale risulta

$$n^{\text{tv}} R^{\text{tv}} = \frac{P + ap}{\Omega} \tag{2}$$

nel primo caso, ed

$$N^{iv}R^{iv} = \frac{2P + ap}{\Omega}$$
 (2)^{bis}

nel secondo caso.

Se invece è quistione di travi trasversali aventi parete verticale

a traliccio, attribuendo ad m, α, ω ed nR i significati che loro vennero dati nel precedente numero, la determinazione della superficie ω della sezione retta dei pezzi che le compongono può essere fatta coll'applicazione della formola

$$n = \frac{1}{m \omega \operatorname{sen} \alpha},$$

cosicchè risulta: pel caso d'un ponte per via ferrata ad un solo binario

$$n = \frac{P + a p}{m \omega \operatorname{sen} \alpha}$$
 (3);

e pel caso di un ponte per via ferrata a due binarii

$$nR = \frac{2P + ap}{m \omega \operatorname{sen} \alpha}$$
 (3) bis.

I valori dei coefficienti di stabilità n, n, n, n, n ed n, sono quelli stessi che vennero indicati nel precedente numero, e nel valore di n suolsi anche comprendere il peso proprio della trave trasversale che si considera, il qual peso viene generalmente assunto per falsa posizione.

Per le travi trasversali dei ponti di piccola portata (num. 206) del 1° e del 2° tipo e per le travi trasversali dei ponti del 3° tipo, poste sotto i marciapiedi, servono le formole (1), (2) e (3), facendo in esse P = 0.

Trattandosi, non di un ponte per via ferrata, ma sibbene di un ponte per strada ordinaria, convengono le formole (1), (2) e (5), coll'avvertenza di considerare il solo sovraccarico uniformemente distribuito in ragione di p chilogrammi per ogni metro di lunghezza di trave trasversale e di trascurare il peso P. In quanto al valore di p, si deve poi assumere in modo da tener conto dei carichi permanenti e dei massimi carichi accidentali che si possono trovare su un ponte per via ordinaria.

243. Determinazione approssimativa del peso proprio di una trave longitudinale principale. — Per fare questa determinazione, si assumano il metro per unità di lunghezza, il metro quadrato per unità di superficie, il metro cubo per unità di volume, il chilogramma per unità di forza, e si chiamino:

2a la portata della trave, ossia la distanza orizzontale fra i due appoggi su cui trovasi collocata;

b la sua altezza;

p il peso che deve trovarsi su ogni metro corrente di trave, il qual peso consta di tre distinte parti, una

p' corrispondente al peso proprio della trave, l'altra

 $p^{\prime\prime}$ riferentesi al peso delle travi trasversali, delle travi longitudinali secondarie, dei pezzi di concatenamento, dell'impalcatura e di quant'altro permanentemente su essa deve gravitare, e la terza

q rappresentante il sovraccarico cognito in seguito alla destina-

zione della trave;

II il peso del metro cubo di ferro;

nR il prodotto del coefficiente di rottura longitudinale del ferro pel relativo coefficiente di stabilità;

n"R" il prodotto analogo relativo allo scorrimento trasversale.

Il peso p', che vuolsi trovare, consta di quattro distinte parti: del peso delle tavole orizzontali, compreso quello dei ferri d'angolo e delle lamiere verticali per attaccarvi i pezzi del traliccio, se trattasi di una trave a parete reticolata; del peso della parete verticale; del peso delle parti corrispondenti agli appoggi; e finalmente dei pesi dei chiodi, dei coprigiunti, delle nervature e delle lastre d'unione.

L'equazione di stabilità conveniente alla sezione di mezzo della trave, supposta orizzontalmente collocata su due soli appoggi, è

$$nR = \frac{\frac{b}{2}\frac{1}{2}p a^2}{1'}$$
 (1).

Indicando con Ω la superficie della sezione retta della trave, supposta solamente formata dalle tavole orizzontali e dai ferri per unire queste alla parete verticale, e chiamando b_4 la lunghezza, sempre un po' minore di b, rappresentante la distanza dei centri di superficie delle due aree $\frac{4}{2}$ Ω , poste una sopra e l'altra sotto l'asse neutro della sezione retta della trave, atteso la picciolezza delle due aree $\frac{1}{2}$ Ω e della grande distanza dei loro centri di superficie dell'indicato asse neutro, con approssimazione sufficiente in questa particolare quistione, si può assumere

$$1'=\frac{1}{4}b_4^{2}\Omega.$$

Questo valore di I' si ponga nell'equazione (1), e quindi deducasi il valore di Ω , che viene dato da

$$\Omega = \frac{p a^2 b}{b a^2 n R}.$$

Ma questa superficie Ω è quella che conviene alla sezione di mezzo della trave longitudinale; adottandola in tutte le altre sezioni, si avrebbe eccesso di stabilità; e, come ammette il signor ingegnere Edoardo Collignon nel suo corso di meccanica applicata alle costruzioni, si può ritenere che la trave debba avere una sezione media $\Omega_{\rm m}$ che sia i $\frac{3}{4}$ di Ω . La superficie della sezione media delle tavole, applicabile a tutta la lunghezza della trave, viene allora data dalla formola

$$\Omega_{\rm m} = \frac{3 p a^2 b}{4 b_4^2 n \, \mathrm{R}}.$$

Moltiplicando questo valore di Ω_m per la lunghezza 2a della trave, si ha che il volume V delle due tavole viene dato da

$$V = \frac{3p a^3 b}{2b_4^2 n R} \tag{2}.$$

Supponendo che la trave debba avere parete verticale a traliccio, l'equazione di stabilità, la quale serve a determinare la superficie ω' della sezione retta dei pezzi del traliccio in corrispondenza delle sezioni d'appoggio, è

$$nR = \frac{pa}{m\omega' \operatorname{sen} \alpha}$$

dove m ed α rappresentano rispettivamente il numero dei pezzi del traliccio, i quali sono tagliati da una stessa sezione retta della trave, ed α l'angolo che questi stessi pezzi fanno coll'orizzonte. Ricavando dall'ultima equazione il valore di ω' , si ottiene

$$\omega' = \frac{pa}{m n \operatorname{R} \operatorname{sen} \alpha}.$$

Se ora, almeno per approssimazione, si vogliono regolare le aree delle sezioni rette dei varii pezzi del traliccio a norma degli sforzi che effettivamente sopportano, queste aree devono decrescere a misura che si riferiscono a pezzi avvicinantisi alla sezione di mezzo della trave, e, ammettendo col citato ingegnere Collignon, che i pezzi tagliati dalla sezione di mezzo della trave debbano ancora presentare un'area ω'' che sia la quarta parte di ω' , si ha

$$\omega'' = \frac{p a}{4 m n \operatorname{R} \operatorname{sen} \alpha}.$$

La semi-somma fra i due valori di ω' e di ω'' si può assumere siccome rappresentante quella superficie media ω della sezione retta dei pezzi del traliccio, che conviene adottare nel calcolo del volume dei pezzi del traliccio stesso, e quindi risulta

$$\omega = \frac{5 pa}{8 mn R sen \alpha}$$
.

Se ora si chiamano

b' l'altezza della parete reticolata e

ν il numero dei pezzi del traliccio che per un loro estremo sono attaccati alla tavola inferiore

si ha: che la lunghezza di uno di questi pezzi viene espressa da

$$\frac{b'}{\operatorname{sen}\alpha}$$
;

e che il volume V' dell'intiero traliccio vieno dato da

$$V' = \frac{5 p a \nu b'}{8 m n R \operatorname{sen}^2 \alpha}$$
 (3).

Quando l'angolo α è di 45°, la qual cosa ben di frequente avviene nella pratica, si ha che sulla lunghezza b' della tavola inferiore trovansi ad essa attaccati m pezzi del traliccio. Segue da ciò che, a motivo della legge di proporzionalità, si deve avere

$$\frac{\nu}{m} = \frac{2a}{b'}$$

d'onde

$$vb'=2am$$

e, siccome

$$\frac{1}{\sin^2 \alpha} = \frac{1}{2}, \quad \sin^2 \alpha = \frac{1}{2}, \quad \sin^2 \alpha$$

la formola (3) si riduce a

$$V' = \frac{5 p a^2}{2 n R}.$$

In corrispondenza di ciascun appoggio, è necessario che la superficie Ω'' , della sezione orizontale fatta nella trave, soddisfi all'equazione di stabilità

$$nR\Omega''=pa$$
,

dalla quale ricavasi

$$\Omega'' = \frac{p a}{n R}$$
.

Siccome poi non si va lungi dal vero ammettendo che questa superficie si impieghi per l'altezza b' della parete reticolata, pei due appoggi si ha il volume V'' dato da

$$V'' = \frac{2 p a b'}{n B} \tag{4}.$$

Effettuando la somma dei secondi membri delle equazioni (2), (3) e (4), e moltiplicando questa somma per II, si ha il peso dell'intiera trave longitudinale con parete verticale, non compreso quello che corrisponde alle capocchie dei chiodi, ed ai coprigiunti, alle nervature ed alle piastre d'unione, e quindi il detto peso risulta dall'espressione

$$\frac{p \, \Pi \, a}{n \, R} \left(\frac{3 \, a^2 \, b}{2 \, b_4^2} + \frac{5 \, \nu \, b'}{8 \, m \, \mathrm{sen}^2 \, a} + 2 \, b' \right) \tag{5}.$$

In quanto al peso proveniente da chiodature, da coprigiunti e da lastre d'unione, si può ammettere che esso sia una data frazione K del peso rappresentato dall'espressione (5), di maniera che il peso della trave si può esprimere con

$$\frac{p \prod a}{n \operatorname{R}} \left(\frac{3a^2b}{2b_1^2} + \frac{5 \sqrt{b'}}{8 m \operatorname{sen}^2 \alpha} + 2b' \right) (1 + \operatorname{K}),$$

dove il valore di K si può assumere siccome variabile fra 0.3 e 0.4. Osservando ora che l'ultima espressione rappresenta il peso proprio 2p'a della trave e che

$$p=p'+p''+q$$
,

si ottiene l'equazione

$$p' = \frac{(p' + p'' + q) \Pi}{2nR} \left(\frac{3a^2b}{2b_1^2} + \frac{5\nu b'}{8m \operatorname{sen}^2 \alpha} + 2b' \right) (1 + K),$$

la quale, ponendo

$$\frac{\Pi}{2nR} \left(\frac{3a^2b}{2b_1^2} + \frac{5vb'}{8m \sec^2 \alpha} + 2b' \right) (1+K) = A \tag{6},$$

conduce a

$$p' = \frac{A}{1 - A}(p'' + q) \tag{7}.$$

L'equazione (6) serve alla determinazione di A, e l'equazione (7) prestasi alla deduzione di p'. Il valore di n suolsi assumere eguale alla frazione 1/6, ed il valore di R si prende quasi sempre in ragione di 50 chilogrammi per millimetro quadrato. Nelle applicazioni pratiche, trattandosi solamente di una determinazione approssimata del valore di p', si possono assumere b_4 e b' eguali a b.

Nel caso di una trave con parete verticale piena, con sufficiente approssimazione per la pratica si può ottenere il valore di A, cangiando il termine $\frac{5 \vee b'}{8m \, \mathrm{sen}^2 \, \alpha}$, che trovasi nella (6), nel termine $\frac{5 \, a}{4}$, e calcolare poscia mediante la formula (7) il valor del peso p'. Per giustificare l'indicato cangiamento, onde rendere le formule (6) e (7)

applicabili al caso delle travi con pareti verticali piene, basta osservare che, per quanto venne detto nel numero 209, il volume e quindi il peso della parete verticale a traliccio coi pezzi inclinati a 45° è doppio di quello della parete verticale piena, della stessa altezza e della medesima resistenza.

Il signor ingegnere Collignon ha insegnato come si possa procedere alla determinazione approssimata del peso proprio d'una trave longitudinale orizzontalmente collocata su più appoggi. Egli stesso però fa osservare, come la formula a cui si arriva sia piuttosto complessa, come non possa condurre a risultamenti rigorosi, e come nella pratica, dovendosi costrurre un ponte della totale portata L composta di t travate, convenga calcolare il peso p' relativo all'unità di lunghezza di una trave longitudinale principale nell'ipotesi di un

ponte ad una sola travata di lunghezza $\frac{L}{L}$.

214. Determinazione di alcune dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti solamente da due appoggi. - I ponti in ferro con una sola travata rettilinea sono quelli che in maggior mumero s'incontrano nella pratica delle costruzioni, ed importa di ben conoscere quali norme si devono seguire per lo stabilimento delle loro travi longitudinali principali, le quali si considerano siccome orizzontalmente collocate su due appoggi e siccome caricate d'un peso uniformemente distribuito in ragione di p chilogrammi per ogni metro della loro lunghezza.

Il peso p componesi di tre distinte parti: del peso permanente trasmesso dalle travi trasversali, trasformato in peso uniformemente distribuito su ogni metro corrente di trave longitudinale, del peso proprio della trave longitudinale per la lunghezza di 1 metro, il qual peso si può approssimativamente fissare per falsa posizione, oppure coll'applicare il metodo stato esposto nel numero precedente; e finalmente del sovraccarico q riferito a quella sola trave longitudinale che si considera.

Nel caso dei ponti di piccola portata del 1°, del 2° e del 3° tipo (num. 206), le travi longitudinali situate sulle fronti non sopportano il sovraccarico q derivante dal passaggio di un treno di locomotive; tutto al più si può supporre che devono sopportare il sovraccarico proveniente dal passaggio di alcuni pedoni, il cui valore massimo non raggiungerà mai 400 chilogrammi per metro quadrato di marciapiede.

Prendendo il metro per unità di lunghezza, il chilogramma per

unità di forza, e riferendo al metro quadrato i valori dei coefficienti di rottura, si chiamino:

2 a la distanza AB (fig. 258) dei due appoggi portanti la trave longitudinale considerata;

 μ il momento inflettente per una sezione retta qualunque della trave:

I' il momento d'inerzia della stessa sezione rispetto alla orizzontale passante pel suo centro di superficie;

u l'ordinata massima del perimetro della sezione retta medesima, per rapporto all'indicata orizzontale;

nR il prodotto del coefficiente di rottura longitudinale del ferro pel relativo coefficiente di stabilità.

Assumendo per direzione dell'asse delle ascisse z, quella A B dell'asse della trave, il momento inflettente u viene dato dall'equazione

$$\mu = paz - \frac{1}{2}pz^{3} \tag{1},$$

e quindi è rappresentato dalle ordinate di una parabola, la quale passa pei due punti A e B, giacchè si ha $\mu=0$, tanto per z=0, quanto per z=2 a. Facendo z=a, si ottiene il valore particolare μ_m di μ dato da

$$\mu_{\mathbf{m}} = \frac{1}{2} p a^{\mathbf{r}} \tag{2}$$

e questo valore di μ_m rappresenta l'ordinata massima della parabola. Attribuendo a z diversi valori compresi fra 0 e 2a, si determinano mediante l'equazione (1) i valori corrispodenti di μ , e, mediante le prestabilite ascisse z ed i dedotti valori di μ , si può costrurre la parabola ADB quando si assuma una certa scala per la rappresentazione dei momenti inflettenti μ .

La costruzione della parabola ADB si può anche effettuare calcolando solo il valore massimo $\mu_{\rm m}$ di μ dato dalla formula (2), portando a sito il vertice D mediante la sua ascissa $\overline{{\rm AC}} = a$ e la sua ordinata $\overline{{\rm CD}} = \frac{1}{2}p\,a^2$, e trovando quindi alcuni punti con semplici costruzioni grafiche. Queste costruzioni si riducono: a condurre la retta DF parallela ad AB, e quindi perpendicolare all'asse DC della parabola; a prendere su essa le due lunghezze $\overline{{\rm DE}}$ e $\overline{{\rm DF}}$ eguali fra di loro, ed eguali alla metà di $\overline{{\rm AC}}$ ossia alla quarta parte

di AB; a tirare le due rette AE e BF, le quali risultano rispettivamente tangenti alla parabola nei punti A e B; a dividere per mezzo le corde AD e BD nei punti G ed H; a tirare le rette EG ed FH, le quali risultano parallele a DC; ed a dividerle per metà nei punti a e b, i quali sono due punti della parabola. Fatto questo, si traccino per a e b le due rette IK ed LM, rispettivamente parallele ad AD ed a BD, le quali determineranno i punti I e K, L ed M sulle metà di AE e DE, BF e DF; per ciascuno dei triangoli aKD, bMD, Ala e BLb si operi come venne fatto pei triangoli AED e BFD, onde determinare i punti a e b, e sarà facile ottenere gli altri quattro punti c, d, e, ed f della parabola. Trovansi così determinati i nove punti A, e, a, c, D, d, b, f e B; generalmente si ha quanto basta pel tracciamento della curva in modo da soddisfare alle esigenze della pratica; e, volendosi ancora procedere nella determinazione di altri punti, riesce facilissimo il farlo, giacchè il metodo tenuto, per determinare, per esempio, il punto e fra A ed a, conviene per trovare un altro punto fra due punti qualunque vicini già determinati.

Una volta costrutta la parabola, le cui ordinate rappresentano i momenti inflettenti, viene la quistione di determinare le lamiere da impiegarsi nella composizione delle tavole delle travi longitudinali, affinchè presentino esse la necessaria resistenza alla flessione. Si osservi perciò che, per una sezione qualunque, deve essere verificata l'equazione di stabilità

$$nR = \frac{u \mu}{\Gamma}$$
 (3),

nella quale suolsi generalmente assumere $\frac{1}{6}$ per valore di n, mentre il valore di R quasi sempre si prende in ragione di 50 chilogrammi per millimetro quadrato. Suppongasi che la trave longitudinale, per cui si vogliono determinare le lamiere componenti le tavole, abbia sezione a doppio T simmetrico rispetto alla orizzontale passante pel suo centro di superficie, e che sia costituita da tavole orizzontali A (fig. 259) formate di lamiere sovrapposte ed unite mediante ferri d'angolo B ed una lamiera verticale C. Si calcoli innanzi tutto il momento d'inerzia I_4 , rispetto all'asse XY, della sezione appartenente ai ferri d'angolo B; mediante l'ultima formola, assumendo per u la distanza ab, per I il trovato momento d'inerzia I_4 ' e per nR il numero conveniente alla qualità di ferro di cui la trave è formata (il qual numero si assume generalmente in ragione di 5 chi-

logrammi per millimetro quadrato), si deduca il corrispondente valore particolare u, di u; e questo valore u, si porti da A in N (fig. 260) sulla Au, valutandolo nella scala dei momenti inflettenti. Dopo di ciò, conoscendosi le dimensioni che deve avere la sezione di ciascuna lamiera da impiegarsi nella composizione delle tavole A, si calcoli il momento d'inerzia I, per la sezione delle due lamiere unite ai ferri d'angolo ed appartenenti, una alla tavola superiore e l'altra alla tavola inferiore; e mediante la formola (3), ponendo in essa per u la distanza de (fig. 259), per l'il momento d'inerzia I, ed il valore noto di nR, si deduca il valore particolare ue di u. Questo valore di µo, colla scala in cui sono rappresentati i momenti inflettenti, si porti da N in O (fig. 260). Suppongasi ora che le altre coppie di lamiere componenti le tavole, tuttochè capaci di resistere ad un momento inflettente di qualche poco maggiore del momento inflettente u,, cui può resistere la coppia attaccata ai ferri d'angolo, perchè un tantino più distanti dall'asse neutro, debbano pure resistere al solo momento inflettente uo; e si ripeta la distanza NO in OP e PO, finchè conducendo pei punti N, O, P e Q altrettante parallele ad AB, si trova quella che passa sopra il vertice D della parabola. Dopo di ciò deducasi un contorno poligonale ad angoli retti, col porre i vertici degli angoli rientranti sulla parabola o fuori di essa a piccola distanza; ed è da questo contorno che risulta la distribuzione delle lamiere in ciascuna tavola. Così, stando al tracciato contenuto nella figura 260, si dirà: che, tanto per la tavola superiore, quanto per la tavola inferiore, è necessaria una lamiera nei tratti \overline{Og} ed \overline{Rh} ; che ne occorrono due nei tratti il e km; e che importa impiegarne tre nel

Conviene osservare che le lamiere da impiegarsi nella composizione delle tavole orizzontali non si possono quasi mai avere così lunghe da estendersi a tutta la lunghezza della trave, e che nelle ordinarie circostanze difficilmente hanno lunghezza maggiore di 7 od 8 metri. Segue da ciò, che nella composizione delle tavole è necessario l'uso di coprigiunti, da porsi in corrispondenza delle giunture verticali delle lamiere. Talvolta, invece di coprigiunti corti ed inservienti ad una sola giuntura verticale, si fa uso di coprigiunti lunghi, ossia di pezzi di lamiera, i quali servono contemporaneamente per più giunture verticali, non poste nella stessa sezione retta, ma a non grande distanza l'una dall'altra.

La parete verticale della trave deve essere tale da poter sopportare gli sforzi di taglio. Dicendo

N lo sforzo di taglio per una sezione retta qualunque della trave, nº Rº il prodotto del coefficiente di rottura trasversale pel relativo coefficiente di stabilità, si ha

$$N = pz - pa \tag{4};$$

e quindi lo sforzo di taglio è rappresentato dalle ordinate di una linea retta, la quale passa per il mezzo C di \overline{AB} , giacchè per z = a si ha N = 0; e che taglia la retta Au, assunta come asse delle ordinate, nel punto C tale, che risulti $\overline{AS} = -pa$. Prolungando la retta determinata dai due punti C0, essa incontra la verticale innalzata per C1 alla C2 nel punto C3, e si ha $\overline{BC} = \overline{AC}$ 5. L'equazione C4 e la sua rappresentazione grafica fanno vedere che gli sforzi di taglio hanno segni differenti dall'una all'altra metà della trave; nella pratica però è solo necessario conoscere i loro valori assoluti, i quali, per una sezione qualunque della trave, sono rappresentati dalle ordinate della spezzata C4 definita col prendere, in una determinata scala, $\overline{AS} = \overline{BT} = pa$ e coll'unire C5 con C6 C7 con C8.

Descritta la spezzata SCT, le cui ordinate, per rapporto ad Az, rappresentano i valori assoluti degli sforzi di taglio nelle diverse sezioni rette della trave, viene la quistione di assegnare ad essa una conveniente parete verticale. Perciò, ritenendo che, per generale consentimento dei pratici, la parete verticale deve presentare in ogni sua sezione retta tale superficie resistente, da essere capace di sopportare stabilmente lo sforzo di taglio che in essa si verifica, usasi descrivere una linea poligonale Y qrstuv xy Z, avente tutti gli angoli retti, e coi suoi vertici fuori e poco discosti dalla spezzata SCT. Nel tracciare l'indicata linea poligonale, ben di frequente si fa in modo che i tratti Yq, rs, tu, vx ed yZ risultino eguali fra di loro, e che i vertici q, s, v ed y corrispondano a sezioni delle travi, nelle quali deve avvenire l'unione di una lamiera alla successiva mediante un coprigiunto verticale. Le ordinate AY, r'r ed s't, misurate mediante la scala che servì alla costruzione della spezzata SCT, danno gli sforzi di taglio N4, N2 ed N3; e, ponendoli successivamente invece di N nell'equazione di stabilità

$$n^{iv} R^{iv} = \frac{N}{\Omega}$$

si possono ricavare altrettanti valori Ω, Ω, ed Ω, della superficie

 Ω della parete verticale. Dividendo poi gli indicati valori di Ω per l'altezza della parete verticale, si hanno nei quozienti le tre grossezze g_4 , g_2 e g_3 da assegnarsi alle lamiere componenti la parete verticale nei tratti $\overrightarrow{Ar'}$, $\overrightarrow{r's'}$ ed $\overrightarrow{s'v'}$. Pei tratti $\overrightarrow{v'x'}$ ed $\overrightarrow{x'B}$ si impiegheranno lamiere aventi le stesse grossezze di quelle state adoperate per i tratti $\overrightarrow{r's'}$ ed $\overrightarrow{Ar'}$. Determinate le spessezze g_4 , g_2 e g_3 , si osserverà se esse sono di quelle che presentano le lamiere facili a trovarsi in commercio per soddisfare alle esigenze delle costruzioni, e, nel caso che non lo siano, si adotteranno senz'altro le grossezze delle lamiere di commercio, immediatamente superiori a quelle dedotte.

Ben di frequente avviene che, assegnando al tratto s'v' la stessa lunghezza degli altri, la lamiera da impiegarsi per questo tratto risulta troppo sottile e non sufficiente a dare una parete bastantemente rigida. In questo caso conviene assegnare al tratto s'v' una lunghezza assai maggiore di quella degli altri tratti; e nessuna delle lamiere componenti la parete verticale deve avere spessezza

inferiore a metri 0,006.

Se la parete verticale della trave deve essere reticolata, si troveranno le superficie delle sezioni rette dei diversi pezzi componenti il traliccio, seguendo le norme che verranno date parlando del modo di determinare le dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti da più di

due appoggi.

In corrispondenza degli appoggi, le travi longitudinali principali dei ponti in ferro a travate rettilinee si costruiscono in modo che le superficie delle loro sezioni orizzontali, anche al livello in cui queste sezioni sono minime, siano almeno quelle che si assegnerebbero a prismi retti di ferro, affinchè permanentemente e stabilmente possano sopportare pressioni, nel senso del loro asse, eguali alle massime reazioni degli appoggi contro le travi. Nel caso di una trave longitudinale soltanto collocata su due appoggi, posti alla distanza 2a, e caricata del peso p per ogni unità della sua lunghezza, si può ritenere che la reazione di ciascuno dei due appoggi sia data dal prodotto pa, e che per conseguenza la trave, in corrispondenza di ciascuno dei due appoggi ed in qualsiasi punto della sua altezza, debba almeno presentare una superficie Ω' , data dall'equazione di stabilità

$$nR = \frac{pa}{\Omega'}$$

nella quale si può ancora assumere il prodotto nR in ragione di 5 chilogrammi per millimetro quadrato, se pur non credesi di diminuirlo e di portarlo da 5 a 4 chilogrammi.

L'ultima equazione conduce generalmente ad ingrossare la trave nelle sue parti insistenti agli appoggi, e quest'ingrossamento si ottiene o mediante lamiere di spessezza maggiore di quelle che voglionsi adoperare nella composizione della parete verticale, o mediante nervature facili ad ottenersi con ferri d'angolo e con ferri a T, od anche accoppiando l'uso delle lamiere di maggiore spessezza a quello delle nervature.

215. Stato della quistione relativa al calcolo della resistenza e delle dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti da più di due appoggi. - Il calcolo della resistenza e delle dimensioni di molti dei principali ponti in ferro a travate rettilinee, aventi più di due appoggi, venne fatto coll'impiego di formole empiriche basate su ipotesi completamente gratuite, e principalmente o su quella dell'indipendenza totale o sull'altra dell'incastramento parziale delle diverse travate. A qual grado di approssimazione conducessero queste ipotesi, nessuno lo seppe indicare. I calcoli lunghi e faticosi, ai quali dava luogo l'applicazione della teoria sulla resistenza dei materiali, costituivano il titolo di cui facevansi forti i fautori dei metodi empirici per giustificare il falso loro procedere; e così, con enorme spreco di materia e con gravi spese, sovente inutili, oppure con pericolo più o meno lontano di funesti e sgraziati accidenti, quasi sempre si arrivava ad avere un eccesso oppure un difetto di stabilità in opere costosissime e della massima importanza.

Le formole empiriche però, risultanti da ipotesi le quali non possono essere confermate da numerose esperienze, non sono suscettive di lungo impiego nella risoluzione di quelle quistioni che, per le stesse esigenze dei tempi e delle circostanze, ad ogni momento devono essere trattate e che, per la loro importanza, vauno annoverate fra quelle di generale interesse e di pubblica utilità. La scienza non tarda ad impossessarsi di tali quistioni, ad intimamente studiarle; quasi sempre arriva a risoluzioni razionali delle quistioni prese ad esame; ai metodi empirici, fondati su basi incerte, sa contrapporre procedimenti di non dubbia riuscita e d'inconcussa esattezza; rilevando le incongruenze a cui sovente conducono quelli e facendo spiccare i vantaggi di questi, condanna i primi all'assoluto obblio, fa dei secondi la vera e l'unica guida nelle pratiche applicazioni. Questo avvenne per l'importante problema del

calcolo della resistenza dei ponti in ferro a travate rettilinee. Pei bisogni ognor crescenti di stabilire vie ferrate in circostanze nuove ed eccezionali, fra difficoltà non mai superate, queste opere sono diventate al giorno d'oggi d'un'importanza superiore ad ogni aspettazione; i procedimenti empirici per valutare il loro modo di resistere non possono più convenire all'importanza del problema; ed infatti il quesito già venne studiato e risoluto dal lato scientifico. L'ingegnere costruttore è ormai in possesso di un metodo razionale, mediante il quale in ogni caso può accingersi alla redazione del progetto di un ponte in ferro a travate rettilinee, sostenuto da più di due piedritti; assegnare ad esso la necessaria stabilità; e contemporaneamente mantenere la spesa nei limiti dello strettamente necessario.

Navier, insegnando a valutare la resistenza di un solido prismatico orizzontalmente collocato su più appoggi e caricato di pesi, diede le basi fondamentali da cui dovevasi partire per assicurare la necessaria stabilità ai ponti a travate rettilinee. Gli ingegneri Clapevron e Bertot, colle semplificazioni che felicemente seppero apportare al metodo di Navier, fecero vedere come la risoluzione del problema, avente per oggetto lo studio della flessione e della stabilità di un solido rettilineo orizzontalmente collocato su più appoggi e caricato di pesi uniformemente distribuiti sulla lunghezza delle diverse travate, poteva benissimo passare dal campo della teoria a quello della pratica e fornire all'ingegnere un metodo facile e prezioso per assicurarsi della stabilità delle travi longitudinali dei ponti a travate rettilinee. Il metodo di Clapevron venne impiegato in parecchie circostanze, ed il commendevole lavoro degli ingegneri Molinos e Pronnier, intitolato: Traité théorique et pratique de la construction des ponts métalliques, chiaramente fa vedere in qual modo e con quale spirito fu applicato. Il signor Piarron de Mondésir, ingegnere di ponti e strade, addetto alla Compagnia delle vie ferrate russe, dimostrando alcuni teoremi sulle posizioni dei carichi, supposti distribuiti su travate intiere nel momento in cui, per alcune sezioni delle travi longitudinali dei ponti in ferro a travate rettilinee, potevano venir provocate le massime resistenze, diede un carattere veramente pratico al metodo razionale pel calcolo della resistenza dei ponti in ferro a travate rettilinee. Finalmente al signor Bresse, ingegnere di ponti e strade e professore di meccanica alla scuola di ponti e strade di Parigi, su riserbata la gloria di notevolmente perfezionare la teoria diretta alla valutazione della resistenza delle travi rettilinee collocate su più appoggi e caricate di pesi, di completarla e di ridurla a forma rigorosa, conservando ad essa la massima generalità.

Il Bresse, nell'aprile e nel settembre dell'anno 1862, presentò all'Accademia delle Scienze di Parigi un trattato sulla resistenza dei ponti-travi a più travate, e finalmente questo lavoro venne pubblicato nell'anno 1865, come terzo volume costituente la terza parte del corso di meccanica professato dall'autore nella scuola di ponti e strade. Dovendo servire l'opera del Bresse per una scuola d'ingegneri pratici, era ben naturale l'astenersi dall'esporla colla teoria generale dell'elasticità, la quale costituisce d'altronde una scienza completamente estranea alla maggior parte degli ingegneri. Era imperiosa necessità per l'autore di attenersi alle ipotesi sulle quali fondasi la teoria di Navier, sulla resistenza dei solidi alla flessione, e di servirsi nella risoluzione del problema di formole derivanti da questa teoria, ormai divenuta classica presso gli ingegneri costruttori, e la quale, tuttochè non assolutamente esente da critiche, rende sufficientemente ragione dei fenomeni dovuti all'elasticità dei materiali.

Il lavoro del Bresse è diviso in due capitoli, ed è accompagnato da numerose tavole numeriche e da un formulario analitico. Nel primo capitolo trovasi svolto l'importante problema sullo studio della flessione e della stabilità delle travi longitudinali dei ponti in ferro a travate rettilinee, in tutta la sua generalità, e si hanno le norme per calcolare le dimensioni di queste travi, essendo qualungne i rapporti esistenti fra le distanze degli appoggi. Nel secondo capitolo viene trattato il caso più frequente della pratica, in cui le travate estreme sono eguali, essendo pure eguali le travate intermedie, ma diverse dalle due estreme. Le tavole numeriche rappresentano i risultati ottenuti applicando diverse formule date nel secondo capitolo, con ipotesi particolari sul valore del rapporto della lunghezza d'una travata intermedia e d'una travata estrema, e sul numero totale delle travate. Finalmente, il formulario analitico dà gli elementi già calcolati per la costruzione delle curve rappresentative dei massimi momenti degli sforzi che possono aver luogo in ciascuna sezione di travi composte di tre a dodici travate, nel caso delle due travate estreme eguali e delle travate intermedie pure eguali fra di loro, ma diverse dalle estreme, e per rapporti fra la lunghezza di una travata intermedia e la lunghezza di una travata estrema, eguali ai numeri 0,7, 0,8, 0,9, 1, 1,1, 1,2, 1,25 e 1,3. Annesso al lavoro del Bresse trovasi pure un atlante di ventiquattro tavole, costituente un formulario grafico, destinato allo stesso scopo del formulario analitico, e valevole per gli otto accennati rapporti fra la lunghezza di una travata intermedia e quella di una travata estrema e per travi composte di tre a sette travate inclusivamente.

L'elaborato del Bresse in tutto e per tutto è condotto con tale profondità di cognizioni, con tanta eleganza di metodi, con tal ordine e con tale chiarezza, che nulla si potrebbe desiderare di meglio. Questo lavoro è indubitatamente della massima utilità pratica, e deve studiarlo in tutte le sue parti chi vuol farsi un completo corredo di cognizioni sulla flessione e sulla stabilità delle travi rettilinee a più travate solidarie le une alle altre. Se però osservasi che, per apprendere un solo dei molteplici problemi che si presentano all'ingegnere costruttore nell'esercizio della sua carriera, è necessario studiare per intiero un volume di 360 pagine in ottavo, e rendersi ragione di dimostrazioni le quali esigono calcoli, se non difficili, lunghi almeno e poco famigliari a quanti trovansi dedicati alla pratica, riesce facile il persuadersi: che giammai potranno spiegare l'opera del Bresse i professori cui trovasi affidato l'insegnamento delle costruzioni nelle nostre scuole d'applicazione per gli allievi ingegneri, ad ai quali, atteso la molteplicità degli argomenti che devono esporre, tutto al più saranno concesse otto o dieci lezioni per dare le norme direttive nell'esecuzione di progetti di ponti in ferro a travate rettilinee; che l'ingegnere pratico in mezzo alle strettezze di tempo nelle quali generalmente si trova, difficilmente potrà arrivare alla fine dello studio dell'interessante lavoro del Bresse, quantunque a tale studio siasi accinto con tutta la buona volontà e col deciso proposito di volerne fare l'applicazione ad un particolare progetto. È bensì vero, che all'ingegnere pratico può benissimo servire l'esteso e ben disposto formulario analitico di cui il Bresse ha voluto fornire il prezioso suo libro, e tanto più che questo formulario è preceduto da una nota esplicativa atta a far conoscere in una maniera sufficiente, tuttochè senza dimostrazione alcuna, le operazioni da farsi allorchè l'uomo pratico se ne vuol servire. Su questo proposito però mi faccio lecito di domandare: i giovani allievi d'una scuola d'ingegneria, assuefatti come sono al rigore delle dimostrazioni delle matematiche teoriche, e portati per naturale istinto a voler conoscere il perchè d'ogni cosa, vorranno eglino adattarsi all'applicazione di procedimenti di cui non conoscono la ragione e la convenienza in lavori della massima importanza? Gli ingegneri pratici vorranno acconciarsi all'applicazione di formole delle quali non conoscono l'origine e di cui non

sanno verificare l'esattezza? La facilità d'ingannarsi sui significati delle notazioni e di prendere un'indicazione per un'altra non saranno per porre gli operatori nel continuo rischio di commettere gravi errori, quando si accingano all'applicazione di formule di cui per nulla conoscono la derivazione? Grandemente c'è da dubitare se, tanto gli allievi ingegneri quanto gli ingegneri pratici, non saranno per rendersi ribelli all'idea di meccanicamente applicare il formulario del Bresse; prima di applicarlo vorranno conoscere le fonti di verità da cui deriva; vorranno sapere quale fiducia si può avere nei risultamenti a cui esso conduce. Ma il formulario analitico del Bresse è la conclusione di tutta l'opera che lo precede; è impossibile rendersi ragione dell'uso di quello senza un lungo e maturo studio di guesta: e guindi, volendosi con conoscenza di causa applicare il detto formulario, è giuocoforza accingersi ad un lavoro lungo e soventi volte impossibile, per la strettezza di tempo in cui generalmente versano tutti coloro che lo dovrebbero condurre a compimento.

Nell'intento di rendere più numerose le applicazioni di cui è suscettivo l'interessante lavoro del Bresse sul calcolo della resistenza e della stabilità delle travi a più travate solidarie, venni nel divisamento di cercare se, per una via più facile e più spedita di quella tenuta dall'illustre autore, non era per avventura possibile arrivare ai medesimi risultati, almeno per quanto si riferisce alla pratica delle costruzioni. Attentamente studiai la quistione: cercai di dimostrare, con metodi facili e piani, i teoremi fondamentali su cui fondasi la sua risoluzione; e parmi di essere giunto alla deduzione di un metodo che in cinque o sei lezioni comodamente può essere spiegato in un corso di costruzioni per allievi ingegneri, che soddisfa a tutte le esigenze della pratica relativamente alla determinazione delle lamiere da impiegarsi per resistere alla flessione nei ponti in ferro a travate rettilinee, e che trovasi alla portata di quanti hanno soltanto famigliarità cogli ordinarii processi di calcolo. Questo metodo che, a parer mio, è di qualche pratica utilità, che gode del vantaggio di potersi speditamente esporre ad altri, ed in cui l'ingegnere costruttore può confidare per la compilazione dei progetti di ponti in ferro a travate rettilinee fra loro solidarie, venne sottoposto all'autorevole giudizio della Società degli Ingegneri e degli Industriali di Torino nell'adunanza del 2 luglio 1868; ed essa lo approvò nella successiva seduta del 18 dello stesso mese.

Il citato metodo prestasi alla determinazione delle lamiere da

impiegarsi nella composizione delle tavole delle travi longitudinali principali, che sono le parti più importanti per resistere alla flessione, ossia ai momenti inflettenti; e da esso facilmente si deduce come debbasi procedere per trovare le giuste dimensioni da assegnarsi alle pareti verticali, siano esse continue, siano a traliccio, affinchè possano presentare la necessaria resistenza agli sforzi di taglio.

246. Ipotesi che generalmente si ammettono nel calcolo delle dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti da più di due appoggi. — Tanto i carichi permanenti quanto i sovraccarichi si suppongono uniformemente distribuiti: sulle lunghezze intiere delle travi i primi; su lunghezze intiere di travate successive ed anche non successive i secondi. Questa legge di distribuzione dei carichi non si può dire rigorosamente verificata; facilmente però si comprende come non si scosti molto dal vero, e come l'ipotesi dei sovraccarichi, distribuiti con tutte le combinazioni possibili su una o su più travate, debba condurre a risultamenti in vantaggio anzichè a scapito della stabilità.

Oltre le accennate ipotesi sulla legge di ripartizione dei carichi portati dalle travi longitudinali dei ponti a travate rettilinee, si ammette innanzi tutto che le dette travi abbiano sezione trasversale costante e quindi, colle formole che risultano dopo quest'ipotesi, si determinano le sezioni trasversali definitive in modo che, almeno approssimativamente, si possano esse riguardare siccome appartenenti a solidi di egual resistenza. Si trascura la larghezza degli appoggi nella direzione parallela all'asse del ponte, e si suppone che ciascuno di essi produca lo stesso effetto, come se il solo centro della sezione trasversale corrispondente fosse sostenuto. Finalmente, atteso il considerevole peso permanente dei ponti in ferro a travate rettilinee, si ammette che le travi longitudinali si conservino tutte in contatto dei loro appoggi, comunque si trovi distribuito il sovraccarico sulle lunghezze di travate intiere.

217. Riassunto di alcune nozioni teoriche relative ai momenti inflettenti nei solidi rettilinei, orizzontalmente collocati su più appoggi e caricati di pesi uniformemente distribuiti sulle diverse travate. — In tutti i trattati sulla resistenza dei materiali trovansi le nozioni teoriche e le formole fondamentali che servono al calcolo dei momenti inflettenti per sezioni qualunque delle travi orizzontalmente collocate su più appoggi e caricate di pesi uniformemente distribuiti sulle diverse travate. Queste nozioni e queste

formole costituiscono il fondamento del metodo che intendo esporre per la determinazione dei momenti inflettenti nelle travi longitudinali dei ponti in ferro a travate rettilinee; ed eccone un succinto riassunto, tratto dal volume il quale tratta della Resistenza dei materiali e della stabilità delle costruzioni (num. 114, 115, 116 e 119).

Considerando due travate qualunque successive LM ed MN (fig. 261) di una medesima trave, assumendo come verso positivo dei momenti inflettenti quello che tende a far girare l'asse LN del solido nel senso marcato dalla freccia F, e chiamando

a' ed a" le loro lunghezze LM ed MN, ossia le distanze orizzontali fra i mezzi di tre appoggi successivi L, M ed N,

p' e p'' i pesi per ogni unità di lunghezza che gravitano rispettivamente sulle due parti \overline{LM} ed \overline{MN} ,

m', m'' ed m''' i momenti inflettenti relativi alle sezioni corrispondenti agli appoggi L, M ed N,

fra le quantità a', a'', p', p'', m', m'' ed m''' si ha la rimarchevole relazione, conosciuta col nome di relazione fra i momenti inflettenti su tre appoggi successivi,

$$m'a' + 2m''(a' + a'') + m'''a'' + \frac{1}{4}(p'a'^{5} + p''a''^{5}) = 0$$
 (1),

la quale, dividendo per m", può anche essere scritta

$$a'\frac{m'}{m''} + 2(a' + a'') + a''\frac{m'''}{m''} + \frac{1}{4}(p'a'^3 + p''a''^3)\frac{1}{m''} = 0$$
 (2).

Dicendo poi

 μ il momento inflettente relativo ad una sezione qualunque m di una travata qualsiasi MN (βq , 262),

z la distanza $\overline{Mm'}$ del centro di superficie della sezione m dal centro di superficie della sezione M corrispondente al mezzo dell'appoggio di sinistra,

p il peso uniformemente distribuito su ogni unità di lunghezza della travata che si considera,

a la sua lunghezza MN,

m' ed m" i momenti inflettenti per le sezioni le quali corrispondono ai mezzi degli appoggi M ed N, il valore di μ risulta dalla semplicissima formola

$$\mu = A + Bz - \frac{1}{2}pz^2$$
 (3),

nella quale A e B rappresentano due numeri da calcolarsi colle formole

A=
$$m'$$
, B= $\frac{1}{2}pa + \frac{m'' - m'}{a}$ (4).

Cercando di rappresentare graficamente i momenti inflettenti per le diverse sezioni di una travata qualunque MN, ponendo l'origine delle coordinate nel centro M della sezione corrispondente all'appoggio di sinistra, assumendo orizzontale e verso destra l'asse positivo delle ascisse z, verticale e volto all'insù l'asse positivo delle ordinate rappresentanti i momenti inflettenti, si trova che queste non sono altro che le ordinate di una parabola col suo asse verticale, di parametro $\frac{2}{p}$, ed il cui vertice ammette rispettivamente per ascissa e per ordinata i valori di h e di k dati da

$$h = \frac{B}{p}, \qquad k = \frac{B^2}{2p} + A \qquad (5),$$

nelle quali, essendo p il peso che trovasi sull'unità di lunghezza della travata che si considera, A e B ammettono i valori che si ottengono dalle equazioni (4).

Eguagliando a zero il secondo membro dell'equazione (3), si ottengono quei due valori particolari dell'ascissa z per cui i momenti inflettenti sono nulli, ossia si hanno le ascisse dei due punti D ed E nei quali la parabola, le cui ordinate rappresentano i momenti inflettenti, taglia l'asse delle ascisse.

218. Principio della sovrapposizione degli effetti, applicato alla flessione di una trave longitudinale principale di ponte a travate rettilinee. — In un solido rettilineo il quale, senza che avvenga snervamento, si deforma per flessione, si può ammettere che abbia luogo rotazione di una sua sezione trasversale qualunque, relativamente alla sezione trasversale infinitamente vicina; e si può accettare come principio che la rotazione, la quale corrisponde alla deformazione totale, sia la somma algebrica delle rotazioni parziali prodotte dalle forze estrinseche, supposte agire l'una indipendente-

mente dall'altra. Il principio che qui si ammette non è altro che un caso particolare del noto principio della sovrapposizione degli effetti, il quale, applicato alla flessione di una trave longitudinale di ponte a travate rettilinee, si può enunciare in questi termini: in una trave longitudinale di ponte a travate rettilinee, l'effetto prodotto in una sezione qualunque dal carico permanente e dall'insieme dei sovraccarichi esistenti su diverse travate, è la somma algebrica degli effetti parziali che isolatamente produrrebbe nella sezione che si considera ciascuno dei carichi supposti agire parzialmente.

Siccome poi in seguito alla rotazione di una sezione qualunque, relativamente alla sezione infinitamente vicina, vien messa in giuoco quella resistenza molecolare, il cui momento rispetto all'asse neutro della prima sezione deve far equilibrio al momento inflettente rispetto alla stessa sezione, si può stabilire che, per una trave longitudinale di ponte in ferro a travate rettilinee, il momento inflettente per una sezione qualunque è la somma algebrica dei momenti inflettenti che alla stessa sezione corrispondono, quando da soli si considerano il carico permanente e ciascuno dei sovraccarichi.

219. Segni dei momenti inflettenti su travate cariche e su travate scariche. — Assumendo, come già si è detto nel numero 217, per verso positivo dei momenti inflettenti quello che tende a far rotare dal basso all'alto l'asse primitivo della trave, e dicendo concava o convessa la curva che prende l'asse del solido deformato sotto l'azione delle forze estrinseche, secondochè volge esso la sua concavità o la sua convessità in alto, risulta ad evidenza: che i momenti inflettenti sono positivi per quelle sezioni i cui centri di superficie sono sulle parti concave dell'asse deformato, negativi per quelle altre i cui centri di superficie si trovano sulle parti convesse dello stesso asse.

Quando si carica una sola travata di una trave orizzontalmente posta su più appoggi e che suppongonsi assolutamente destituite di peso tutte le altre, l'asse primitivamente rettilineo della travata carica AB (fig. 263) si dispone secondo una linea curva AMNB, concava in un tratto MN, situato verso il mezzo della travata stessa, convessa in due tratti AM e BN a partire dagli appoggi. Risulta da ciò che, trovandosi sovraccaricata una sola travata di una trave rettilinea, orizzontalmente posta su più appoggi, i momenti inflettenti sono positivi per diverse sezioni site verso il suo mezzo, negativi per le due sezioni corrispondenti agli appoggi e per diverse sue sezioni a partire dagli appoggi stessi, e quindi nulli per due sezioni intermedie della travata.

In quanto alle travate scariche, che precedono e che seguono la travata carica, l'ipotesi che la trave non si stacchi dagli appoggi naturalmente porta a conchiudere: che su ciascuna di esse, come lo rappresenta la figura 264 per le travate BC, CD, DF,, le quali seguono la travata carica AB, si debbano considerare due diversi tratti dell'asse deformato della trave, separati dai punti O, P, Q,; che questi tratti siano, convesso e concavo per la travata BC, concavo e convesso per la travata CD, convesso e concavo per la travata DF, Segue da ciò, potersi stabilire: che, trovandosi sovraccaricata una sola travata di una trave rettilinea orizzontalmente posta su più appoggi, i momenti inflettenti relativi agli appoggi delle travate scariche hanno segni alternati; che in ciascuna travata vi sono alcune sezioni cui corrispondono momenti inflettenti negativi, ed una sezione cui corrisponde un momento inflettente nullo.

220. Punti di concorso pel sovraccarico sulle travate di sinistra e punti di concorso pel sovraccarico sulle travate di destra. — In una travata appartenente ad una trave orizzontalmente posta su più appoggi e sovraccaricata in modo uniforme, il momento inflettente in una sua sezione trasversale qualunque è dato dall'equazione (3) del numero 217, e quindi graficamente viene rappresentato dall'ordinata di una parabola. Se invece si considera una travata senza sovraccarico, il momento inflettente in una sua sezione qualunque in modo generico è sempre dato dalla citata equazione (5), salvo che, a motivo della non esistenza di sovraccarico, svanisce il termine $\frac{1}{2}pz^2$, e quindi, invece di essere graficamente rappresentato dall'ordinata di una parabola, lo è dall'ordinata di una linea retta.

Premesso questo, si consideri una trave orizzontalmente sostenuta da n+1 appoggi, e suppongasi che un sovraccarico passi successivamente dall'una all'altra delle n-m travate appartenenti alla parte di trave A_{m+1} A_{n+1} (fig. 265), la quale si trova a diritta della m^{ma} travata A_m A_{m+1} . L'equazione (2) del numero 217, applicata alla 1° ed alla 2°, alla 2° ed alla 5°, alla 3° ed alla 4°,....., alla $(m-1)^{ma}$ ed alla m^{ma} travata, conduce ad m-1 equazioni, le quali, osservando che è nullo il momento inflettente per la sezione corrispondente al punto A_4 e chiamando

 a_4 , a_2 , a_5 , a_4 ,, a_{m-1} , a_m le lunghezze delle m travate di cui consta la parte A_4 A_{m+1} dell'intiera trave,

 m_2 , m_5 , m_4 , m_5 ,, m_{m-1} , m_m , m_{m+1} i movimenti inflettenti

per le sezioni determinate dai punti A_2 , A_3 , A_4 , A_5 ,, A_{m-1} , A_m , A_{m+1} corrispondenti ai mezzi degli appoggi, risultano

$$2(a_{1}+a_{2})+\frac{m_{3}}{m^{2}}a_{2}=0$$

$$\frac{m_{2}}{m_{3}}a_{2}+2(a_{2}+a_{3})+\frac{m_{4}}{m_{3}}a_{3}=0$$

$$\frac{m_{3}}{m_{4}}a_{3}+2(a_{3}+a_{4})+\frac{m_{5}}{m_{4}}a_{4}=0$$

$$\dots \dots \dots \dots \dots$$

$$\frac{m_{m-1}}{m_m}a_{m-1}+2(a_{m-1}+a_m)+\frac{m_{m+1}}{m_m}a_m=0.$$

Queste equazioni mettono in evidenza come i rapporti $\frac{m_3}{m_2}$, $\frac{m_4}{m_5}$, $\frac{m_5}{m_4}$, $\frac{m_5}{m_4}$,, $\frac{m_{m+1}}{m_m}$, dipendenti soltanto dalle lunghezze delle prime m travate su cui per ipotesi non viene a portarsi il sovraccarico, devono conservarsi costanti, qualunque sia la posizione del sovraccarico su una delle altre n-m travate, e come, essendo rappresentati dalle ordinate di linee rette i momenti inflettenti per sezioni qualunque della parte di trave A_4A_{m+4} ed avendo segni alternati (num. 219) i valori dei momenti inflettenti m_{m+4} , m_m , m_{m-4} ,, m_4 , m_5 ed m_2 , si deve trovare in ciascuna delle travate poste a sinistra della sezione corrispondente al punto A_{m+4} un punto, pel quale passano tutte le rette le cui ordinate rappresentano i momenti inflettenti dovuti ai sovraccarichi esistenti su una qualunque delle travate poste a diritta della sezione corrispondente allo stesso punto A_{m+4} .

Quanto ha luogo per la parte di trave $A_i A_{m+1}$ posta a sinistra della sezione corrispondente al punto A_{m+1} , allorquando il sovraccarico si trova su una travata qualunque della parte di trave $A_{m+1} A_{n+1}$ situata a destra dello stesso punto, evidentemente si deve verificare per l'altra parte di trave $A_{m+1} A_{n+1}$, allorquando il sovraccarico esiste su una delle travate della parte di trave $A_i A_{m+1}$, e quindi si può conchiudere il seguente teorema: in ciascuna delle travate di una trave longitudinale di ponte in ferro, collocata su più

appoggi, esistono sull'asse della trave stessa due punti, pei quali passano tutte le rette le cui ordinate rappresentano i momenti inflettenti dovuti a sovraccarichi esistenti su altre travate. Uno di questi punti è quello per cui passano le rette le cui ordinate rappresentano i momenti inflettenti dovuti all'azione di sovraccarichi esistenti sulle travate di destra; l'altro invece è quello nel quale vengono a concorrere le rette le cui ordinate rappresentano i momenti inflettenti che corrispondono ai sovraccarichi posti sulle travate di sinistra.

Per ciascuna delle due travate estreme, che si possono chiamare prima travata quella di sinistra A_4A_2 ed ultima travata quella di destra A_nA_{n+4} , gli accennati due punti si riducono ad uno solo e si confondono rispettivamente coll'estremo di sinistra A_4 e coll'estremo di destra A_{n+4} dell'intiera trave. Gli stessi due punti poi, considerati sulle travate intermedie, si chiameranno punti di concorso pel sovraccarico sulle travate di sinistra, oppure punti di concorso pel sovraccarico sulle travate di destra, secondo che passano per essi quelle rette le cui ordinate rappresentano i momenti inflettenti per sovraccarichi esistenti su travate poste a sinistra, oppure su travate poste a destra di quelle che si considerano.

Ricavando dalle equazioni stabilite in questo numero i rapporti $\frac{m_3}{m_2}, \frac{m_4}{m_3}, \frac{m_5}{m_4}, \dots, \frac{m_{m+4}}{m^m}$ si ottengono le formule

dalle quali risulta facile il vedere che i valori assoluti dei detti rapporti sono tutti maggiori di 2. Segue da ciò, che

$$m_{m+4} > m_m$$
,, $m_5 > m_4$, $m_4 > m_5$, $m_5 > m_2$;

e quindi i punti di concorso pel sovraccarico sulle travate di destra devono trovarsi a sinistra dei mezzi delle travate alle qual appartengono. Quanto si è conchiuso relativamente ai punti di concorso pel sovraccarico sulle travate di destra, si applica evidentemente anche ai punti di concorso pel sovraccarico sulle travate di sinistra, per cui in generale si può conchiudere: i punti di concorso pei sovraccarichi sulle travate di sinistra sono a destra ed i punti di concorso pei sovraccarichi sulle travate di destra sono a sinistra, per rapporto ai mezzi delle travate sulle quali essi si considerano.

221. Inviluppo dei momenti inflettenti positivi, inviluppo dei momenti inflettenti negativi, ed inviluppo utile. — Se, per una trave a più travate e particolarmente per una travata, si procede al tracciamento delle linee rappresentative dei momenti inflettenti che corrispondono a tutte le possibili combinazioni del sovraccarico, non che al carico permanente, si troverà senza dubbio che alcune di queste linee sono esteriori a tutte le altre, tanto al di sopra quanto al di sotto dell'asse della trave, nella cui direzione si suppone assunto l'asse delle ascisse per la costruzione delle linee stesse. Bisulteranno due curve presentanti dei vertici, una al di sopra e l'altra al di sotto dell'asse delle ascisse; la prima di queste curve si potrà chiamare l'inviluppo dei momenti inflettenti positivi, e la seconda si potrà denominare l'inviluppo dei momenti inflettenti negativi.

Gli accennati due inviluppi tornano utili per verificare la stabilità e per convenientemente distribuire le lamiere nel dare i progetti di ponti in ferro a travate rettilinee; che anzi, siccome seguendo la pratica che generalmente venne finora adottata dagli ingegneri costruttori, di fare cioè le travi longitudinali principali, costituenti le parti resistenti di detti ponti, con sezione simmetrica rispetto alla orizzontale passante pel suo centro di superficie, basta conoscere il solo valore assoluto del più gran momento inflettente che si verifica in ciascuna sezione, è sufficiente di considerare un tale inviluppo, che le sue ordinate rappresentino per ciascuna sezione della trave il massimo momento inflettente positivo o negativo che essa deve sopportare.

Quest'inviluppo si può denominare inviluppo utile, e si determina esso dietro la conoscenza degli inviluppi dei momenti inflettenti positivi e dei momenti inflettenti negativi; giacchè, prendendo in ciascuna sezione della trave la più grande in valore assoluto delle due ordinate di questi inviluppi, facendo in modo che tutte si trovino da una medesima parte dell'asse della trave stessa, le estremità di

tutte queste ordinate danno la curva i cui punti distano dall'asse delle ascisse di quantità rappresentanti i valori assoluti dei massimi momenti inflettenti, e quindi la curva la quale venne chiamata inviluppo utile.

- 222. Proprietà dei ponti in cui la parabola del carico permanente taglia l'asse della trave. - Considerando in una travata qualunque la parabola, le cui ordinate rappresentano i momenti inflettenti dovuti al complesso del carico permanente e del sovraccarico su tutte le travate, l'ordinata di un suo punto qualunque non è altro che la somma algebrica delle due ordinate corrispondenti allo stesso punto prese, una sull'inviluppo dei momenti inflettenti positivi e l'altra sull'invilappo dei momenti inflettenti negativi. Considerando invece nella stessa travata la parabola le cui ordinate rappresentano i momenti inflettenti dovuti al solo carico permanente. non differisce essa dall'altra parabola, che nella scala delle ordinate, giacche, tanto nell'ipotesi del complesso del carico permanente e del sovraccarico, quanto nell'ipotesi del solo carico permanente, si ha sempre un peso uniformemente distribuito sulla lunghezza intiera della trave a cui la travata appartiene. Segue da ciò, potersi stabilire: che le parabole del carico permanente tagliano l'asse delle trave dove questo verrebbe intersecato dalle parabole del carico totale, e che sono equali le ordinate dei due punti dell'inviluppo dei momenti inflettenti positivi e dell'inviluppo dei momenti inflettenti negativi, nei punti in cui l'asse della trave viene intersecato dalle parabole, le cui ordinate rappresentano i momenti inflettenti dovuti all'azione del carico permanente.
- 225. Determinazione e tracciamento dell'inviluppo utile dei momenti inflettenti. L'inviluppo utile dei momenti inflettenti, ossia la curva le cui ordinate rappresentano i massimi valori assoluti dei momenti inflettenti che si verificano nelle diverse sezioni di una trave orizzontalmente disposta su più appoggi e sottoposta all'azione di un carico permanente uniformemente distribuito sulla sua lunghezza, non che di un sovraccarico il quale cangia di posizione, in modo però da caricare uniformemente intiere travate, si può determinare tenendo il seguente procedimento.
- 4° Supporre che il sovraccarico esista soltanto sulla prima travata, e determinare:
- a) i momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi intermedii;
- b) i momenti inflettenti per sezioni qualunque delle diverse travate;

c) le ascisse dei punti in cui questi momenti inflettenti sono nulli, le quali determineranno sulle travate scariche i punti di concorso pel sovraccarico sulle travate di sinistra.

2° Supporre che il sovraccarico esista soltanto sull'ultima travata,

e cercare pure:

a) i momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi intermedii;

b) i momenti inflettenti per sezioni qualunque delle diverse

travate;

- c) le ascisse dei punti in cui questi momenti inflettenti sono nulli, le quali determineranno sulle travate scariche i punti di concorso pel sovraccarico sulle travate di destra.
- 5° Supporre che il sovraccarico esista successivamente sulla seconda, sulla terza, sulla quarta, e sulla penultima travata, e determinare per ciascuna di queste ipotesi:

a) i momenti inflettenti per le sezioni corrispondenti ai mezzi

dei due appoggi fra cui cade la travata sovraccaricata;

b) i momenti inflettenti per le sezioni corrispondenti ai mezzi degli altri appoggi intermedii;

c) i momenti inflettenti per sezioni qualunque delle diverse

travate;

- d) le ascisse dei punti in cui i momenti inflettenti sono nulli per le travate con sovraccarico.
- 4º Considerare il carico permanente sulla lunghezza intiera della trave e dedurre:
- a) i corrispondenti momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi;
- b) i momenti inflettenti per sezioni qualunque dell'intiera trave;
- c) le ascisse dei punti in cui questi momenti inflettenti sono nulli.
- 5° Costrurre, o con tutto il rigore geometrico od anche in modo semplicemente dimostrativo, le linee le cui ordinate rappresentano i momenti inflettenti calcolati nell'accennata ipotesi.
- 6° Trovare per ciascuna travata, per l'inviluppo dei momenti inflettenti positivi e per l'inviluppo dei momenti inflettenti negativi:
 - a) le ordinate corrispondenti ai mezzi dei diversi appoggi;
- b) le ordinate corrispondenti ai punti di concorso pel sovraccarico sulle travate di sinistra e sulle travate di destra;
- c) le ordinate corrispondenti ai punti in cui ciascuna parabola dei sovraccarichi taglia l'asse della trave;

d) le ordinate corrispondenti ai punti in cui le parabole del carico permanente tagliano l'asse della trave.

7° Procacciarsi, per ciascuna travata, le coordinate del punto di massima altezza che, verso il suo mezzo, presenta la curva inviluppo dei momenti inflettenti positivi.

8° Costrurre con regole geometriche le linee appartenenti agli inviluppi dei momenti inflettenti positivi e dei momenti inflettenti negativi, incominciando dal porre a sito tutti i punti di cui si conoscono le coordinate.

9° Dedurre finalmente la curva inviluppo utile, riproducendo, dalla parte verso cui esiste la curva inviluppo dei momenti inflettenti positivi, le porzioni di inviluppo dei momenti inflettenti negativi, le quali trovansi fra gli appoggi e le perpendicolari all'asse della trave elevate pei punti in cui le parabole del carico permanente tagliano l'asse della trave stessa.

224. Operazione per la determinazione e pel tracciamento dell'inviluppo utile, dei momenti inflettenti in un caso particolare. — Nell'intento di ben far comprendere come in ogni caso particolare debbasi applicare il metodo generale or ora esposto, considero il caso di una trave longitudinale di ponte in ferro a travate rettilinee orizzontalmente collocata su sei appoggi, che indico colle lettere A₁, A₂, A₃, A₄, A₅ ed A₆, e chiamo

 a_4 , a_2 , a_3 , a_4 , ed a_5 le distanze $\overline{A_4}\overline{A_2}$, $\overline{A_2}\overline{A_5}$, $\overline{A_3}\overline{A_4}$, $\overline{A_4}\overline{A_5}$ ed $\overline{A_5}\overline{A_6}$ fra gli accennati appoggi (fig. 266),

 $q \ {
m e} \ q'$ il sovraccarico ed il carico permanente per ogni unità di lunghezza della trave.

4º Nell'ipotesi che il sovraccarico esista soltanto sulla prima travata, bisogna trovare: i momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi intermedii; i momenti inflettenti per sezioni qualunque delle diverse travate; le ascisse dei punti in cui questi momenti inflettenti sono nulli.

a) I momenti inflettenti per le sezioni corrispondenti ai mezzi degli appoggi intermedii si deducono applicando l'equazione (2) del numero 247, considerando la prima e la seconda, la seconda e la terza, la terza e la quarta, la quarta e la quinta travata. I momenti inflettenti per le sezioni le quali corrispondono al primo ed all'ultimo appoggio sono nulli, e fra i momenti inflettenti m_2^4 , m_3^4 , m_4^4 ed m_8^4 , per le sezioni corrispondenti ai mezzi del secondo, del terzo, del quarto e del quinto appoggio, si hanno le quattro relazioni:

$$\begin{aligned} &2(a_{4}+a_{2})+a_{2}\frac{m_{3}^{4}}{m_{2}^{4}}+\frac{1}{4}q(a_{4})^{3}\frac{1}{m_{2}^{4}}=0\\ &a_{2}\frac{m_{2}^{4}}{m_{3}^{4}}+2(a_{2}+a_{3})+a_{3}\frac{m_{4}^{4}}{m_{3}^{4}}=0\\ &a_{3}\frac{m_{3}^{4}}{m_{4}^{4}}+2(a_{3}+a_{4})+a_{4}\frac{m_{5}^{4}}{m_{4}^{4}}=0\\ &a_{4}\frac{m_{4}^{4}}{m_{5}^{4}}+2(a_{4}+a_{5})=0. \end{aligned}$$

Dalle ultime tre di queste equazioni immediatamente si possono dedurre i rapporti

$$\frac{m_4^4}{m_5^4} = H_4^4, \qquad \frac{m_3^4}{m_4^4} = H_3^4, \qquad \frac{m_2^4}{m_3^4} = H_2^4;$$

e quindi, mediante la prima, si può passare alla determinazione del momento inflettente m_2^4 . Trovato il valore di m_2^4 , servono rispettivamente la terza, la seconda e la prima delle ultime tre equazioni al calcolo dei momenti inflettenti m_5^4 , m_4^4 ed m_5^4 .

Nel calcolare i momenti inflettenti m_2^4 , m_3^4 , m_4^4 ed m_5^4 , converrà mantenere in evidenza il sovraccarico q, per cui, chiamando n_2^4 , n_3^4 , n_4^4 ed n_5^4 i valori di quei coefficienti numerici i quali rispettivamente moltiplicano q nell'espressione degli accennati momenti, si avrà

$$m_2^4 = n_2^4 q$$
, $m_3^4 = n_3^4 q$, $m_4^4 = n_4^4 q$, $m_5^4 = n_5^4 q$.

b) I momenti inflettenti per sezioni qualunque delle diverse travate si ottengono coll'applicare le equazioni (3) e (4) del numero 247. Chiamando

 μ_1^4 , μ_2^4 , μ_3^4 , μ_4^4 e μ_5^4 le espressioni generali dei momenti inflettenti per ciascuna delle travate A_4 , A_2 , A_2 , A_3 , A_4 , A_4 , A_5 ed A_5 , A_6 ,

 z_1, z_2, z_3, z_4 e z_3 le distanze che cinque sezioni qualunque, prese rispettivamente, una nella prima, una nella seconda, una nella terza, una nella quarta ed una nella quinta travata, hanno dall'appoggio sinistro della travata che si considera,

risultano le equazioni

$$\mu_{4}^{4} = \left[\left(\frac{1}{2} a_{4} + \frac{n_{2}^{4}}{a_{4}} \right) z_{4} - \frac{1}{2} (z_{4})^{2} \right] q$$

$$\mu_{2}^{4} = \left(n_{2}^{1} + \frac{n_{3}^{4} - n_{2}^{4}}{a_{2}} z_{2} \right) q$$

$$\mu_{3}^{4} = \left(n_{3}^{4} + \frac{n_{4}^{4} - n_{3}^{4}}{a^{3}} z_{3} \right) q$$

$$\mu_{4}^{4} = \left(n_{4}^{4} + \frac{n_{5}^{4} - n_{4}^{4}}{a_{4}} z_{4} \right) q$$

$$\mu_{5}^{4} = \left(n_{5}^{4} - \frac{n_{5}^{4}}{a_{5}} z_{5} \right) q$$

$$(1)$$

- c) Le ascisse dei punti, in cui i momenti inflettenti sono nulli, si determinano eguagliando a zero le trovate espressioni dei momenti $\mu_4^{\ 4},\ \mu_2^{\ 4},\ \mu_5^{\ 4},\ \mu_b^{\ 4}$ e $\mu_5^{\ 4}$. I due valori particolari Z'_4 e Z''_4 di z_4 , che ricavansi eguagliando a zero il valore di $\mu_4^{\ 4}$, definiscono quelle due sezioni della prima travata in cui i momenti inflettenti sono nulli, una delle quali è la stessa sezione corrispondente al primo appoggio, giacchè, per essere z_4 fattor comune nel valore di $\mu_4^{\ 4}$, si ha Z'_4 =0. I valori particolari $\xi_2^{\ 4},\ \xi_3^{\ 4},\ \xi_4^{\ 4}$ e $\xi_5^{\ 4}$ di $z_2,\ z_5,\ z_4$ e z_5 che si ottengono coll'eguagliare a zero i valori di $\mu_2^{\ 4},\ \mu_5^{\ 4},\ \mu_4^{\ 4}$ e $\mu_5^{\ 4}$ dànno le ascisse dei punti di concorso pel sovraccarico sulle travate di sinistra per la seconda, per la terza, per la quarta e per la quinta travata. Il valore di $\xi_5^{\ 4}$ risulta eguale ad a_5 , ossia il punto di concorso sull'ultima travata è lo stesso punto dell'asse della trave corrispondente all'ultimo appoggio.
- 2° Supponendo che il sovraccarico esista solamente sull'ultima travata, bisogna trovare ancora: i momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi intermedii; i momenti inflettenti per sezioni qualunque delle diverse travate; le ascisse dei punti in cui questi momenti inflettenti sono nulli.
- a) I momenti inflettenti $m_1^{\ s}, m_2^{\ s}, m_3^{\ s}$ ed $m_4^{\ s}$ per le sezioni corrispondenti ai mezzi degli appoggi intermedii, si devono determinare prendendo le mosse dalle equazioni che risultano applicando l'equazione (2) del numero 217 alla prima ed alla seconda , alla seconda ed alla terza , alla terza ed alla quarta, alla quarta ed alla

quinta travata. Essendo nulli i momenti inflettenti per le sezioni che corrispondono al primo ed all'ultimo appoggio, risultano le equazioni

$$\begin{aligned} &2(a_{1}+a_{2})+a_{2}\frac{m_{3}^{5}}{m_{2}^{5}}=0\\ &a_{2}\frac{m_{2}^{5}}{m_{3}^{5}}+2(a_{2}+a_{3})+a_{3}\frac{m_{4}^{5}}{m_{3}^{5}}=0\\ &a_{3}\frac{m_{3}^{5}}{m_{4}^{5}}+2(a_{3}+a_{4})+a_{4}\frac{m_{5}^{5}}{m_{4}^{5}}=0\\ &a_{4}\frac{m_{4}^{5}}{m_{5}^{5}}+2(a_{4}+a_{5})+\frac{1}{4}q(a_{5})^{3}\frac{1}{m_{5}^{5}}=0, \end{aligned}$$

le prime tre delle quali si prestano all'immediata e facile determinazione dei rapporti

$$\frac{m_3^5}{m_2^5} = H_2^5, \qquad \frac{m_4^5}{m_3^5} = H_3^5, \qquad \frac{m_5^5}{m_4^5} = H_4^5,$$

mentre l'ultima serve alla deduzione del momento m_s^5 . Ottenuto il valore di m_s^5 servono la terza, la seconda e la prima delle ultime tre equazioni per il calcolo dei momenti m_a^5 , m_5^5 ed m_2^5 ; e, dicendo rispettivamente n_2^5 , n_5^5 , n_4^5 ed n_5^5 i valori di quei coefficienti numerici che nei valori di m_2^5 , m_3^5 , m_4^5 ed m_5^5 moltiplicano il peso q, si ha

$$m_2^5 = n_2^5 q$$
, $m_3^5 = n_3^5 q$, $m_4^5 = n_4^5 q$, $m_5^5 = n_5^5 q$.

b) Attribuendo alle lettere z_4 , z_2 , z_5 , z_4 e z_5 i significati che alle medesime vennero dati nell'ipotesi del sovraccarico sulla prima travata, si ottengono le espressioni generali $\mu_4^5, \mu_2^5, \mu_3^5, \ \mu_4^5$ e μ_5^6 dei momenti inflettenti per ciascuna delle travate $A_1A_2, A_2A_5, A_5A_4, A_4A_5$ ed A_5A_6 , applicando le equazioni (3) e (4) del numero 247. Queste espressioni risultano

$$\mu_{4}^{5} = \frac{n_{2}^{5}}{a_{4}} q z_{4}$$

$$\mu_{2}^{5} = \left(n_{2}^{5} + \frac{n_{3}^{5} - n_{2}^{5}}{a_{2}} z_{2}\right) q$$

$$\mu_{3}^{5} = \left(n_{3}^{5} + \frac{n_{4}^{5} - n_{3}^{5}}{a_{3}} z_{3}\right) q$$

$$\mu_{4}^{5} = \left(n_{4}^{5} + \frac{n_{5}^{5} - n_{4}^{5}}{a_{4}} z_{4}\right) q$$

$$\mu_{5}^{5} = \left[n_{5}^{5} + \left(\frac{1}{2}a_{5} - \frac{n_{5}^{5}}{a_{5}}\right) z_{5} - \frac{1}{2}(z_{5})^{2}\right] q$$
(2).

c) Eguagliando a zero le trovate espressioni dei momenti inflettenti $\mu_1^{\ 5}$, $\mu_2^{\ 5}$, $\mu_4^{\ 5}$ e $\mu_5^{\ 5}$, si hanno le equazioni determinatrici dei punti in cui i momenti inflettenti sono nulli. I quattro valori particolari $\xi_4^{\ 5}$, $\xi_5^{\ 5}$, $\xi_5^{\ 5}$ e $\xi_4^{\ 5}$ di z_4 , z_2 , z_5 e z_4 che si ottengono eguagliando a zero i valori di $\mu_4^{\ 5}$, $\mu_2^{\ 5}$, $\mu_3^{\ 5}$ e $\mu_4^{\ 5}$ sono le ascisse dei punti di concorso quando il sovraccarico è sulle travate di destra per la prima, per la seconda, per la terza e per la quarta travata. Per la prima travata questo punto è lo stesso estremo di sinistra, giacchè $\xi_4^{\ 5}$ =0. Per l'ultima travata si ottengono le ascisse dei punti, in cui i momenti inflettenti sono nulli, nei due valori particolari Z'^5 e Z''^5 di z_5 quando si eguagli a zero il valore del momento inflettente $\mu_5^{\ 5}$.

5° Nella ipotesi che il sovraccarico venga successivamente a portarsi sulla seconda, sulla terza e sulla quarta travata, bisogna trovare: i momenti inflettenti per le sezioni corrispondenti ai mezzi dei due appoggi fra cui cade la travata sovraccaricata; i momenti inflettenti per le sezioni corrispondenti ai mezzi degli altri appoggi intermedii; i momenti inflettenti per sezioni qualunque delle diverse travate; le ascisse dei punti in cui i momenti inflettenti sono nulli per le travate sovraccaricate.

a) I momenti inflettenti m_2^2 ed m_5^2 , m_5^3 ed m_4^5 , m_5^4 ed m_5^4 per le sezioni corrispondenti ai mezzi degli appoggi A_2 ed A_3 , A_5 ed A_4 , A_4 ed A_5 , fra cui cade la travata sovraccaricata quando il sovraccarico trovasi sulla seconda, sulla terza e sulla quarta, si ottengono applicando l'equazione (2) del numero 217, col considerare

la prima e la seconda, e quindi la seconda e la terza, la seconda e la terza, e quindi la terza e la quarta, la terza e la quarta, e quindi la quarta e la quinta travata. Così procedendo, si ottengono le equazioni

$$\begin{split} &2\left(a_{4}+a_{2}\right)+a_{2}\frac{m_{3}^{2}}{m_{2}^{2}}+\frac{1}{4}q\left(a_{2}\right)^{3}\frac{1}{m_{2}^{2}}=0\\ &a_{2}\frac{m_{2}^{2}}{m_{3}^{2}}+2\left(a_{2}+a_{3}\right)+a_{3}\frac{m_{4}^{2}}{m_{3}^{2}}+\frac{1}{4}q\left(a_{2}\right)^{3}\frac{1}{m_{3}^{2}}=0,\\ &a_{2}\frac{m_{2}^{3}}{m_{3}^{3}}+2\left(a_{2}+a_{3}\right)+a_{3}\frac{m_{4}^{3}}{m_{3}^{3}}+\frac{1}{4}q\left(a_{3}\right)^{3}\frac{1}{m_{3}^{3}}=0\\ &a_{3}\frac{m_{3}^{3}}{m_{4}^{3}}+2\left(a_{3}+a_{4}\right)+a_{4}\frac{m_{5}^{3}}{m_{4}^{3}}+\frac{1}{4}q\left(a_{3}\right)^{3}\frac{1}{m_{4}^{3}}=0,\\ &a_{3}\frac{m_{3}^{4}}{m_{4}^{4}}+2\left(a_{3}+a_{4}\right)+a_{4}\frac{m_{5}^{4}}{m_{4}^{4}}+\frac{1}{4}q\left(a_{4}\right)^{3}\frac{1}{m_{4}^{4}}=0\\ &a_{4}\frac{m_{4}^{4}}{m_{5}^{4}}+2\left(a_{4}+a_{5}\right)+\frac{1}{4}q\left(a_{4}\right)^{3}\frac{1}{m_{5}^{4}}=0. \end{split}$$

Osservando ora che, a motivo dell'esistenza dei punti di concorso pel sovraccarico sulle travate di sinistra e sulle travate di destra (num. 220), si ha

$$\begin{split} &\frac{m_3^2}{m_4^2} = \frac{m_3^4}{m_4^4} = H_3^4 \quad \text{e quindi} \quad \frac{m_4^2}{m_3^2} = \frac{1}{H_3^4} \\ &\frac{m_3^3}{m_2^3} = \frac{m_3^5}{m_2^5} = H_2^5 \quad \quad \Rightarrow \quad \quad \frac{m_2^3}{m_3^3} = \frac{1}{H_2^5} \\ &\frac{m_4^3}{m_5^3} = \frac{m_4^4}{m_5^4} = H_4^4 \quad \quad \Rightarrow \quad \quad \frac{m_5^3}{m_4^3} = \frac{1}{H_4^4} \\ &\frac{m_4^4}{m_3^4} = \frac{m_4^5}{m_3^5} = H_3^5 \quad \quad \Rightarrow \quad \quad \frac{m_5^4}{m_4^4} = \frac{1}{H_3^3}, \end{split}$$

si potranno dedurre: i momenti inflettenti m_2^2 e m_3^2 dalle prime due delle sei equazioni stabilite; i momenti inflettenti m_3^3 ed m_4^3 dalla terza e dalla quarta considerate simultaneamente; e finalmente i momenti inflettenti m_4^b ed m_3^a dalla quinta e dalla sesta. Questi momenti inflettenti, mantenendo in evidenza il fattore q e chiamando n_2^2 , n_3^2 , n_3^3 , n_4^3 , ed n_3^a i coefficienti numerici per cui questo fattore è moltiplicato nella formazione dei loro valori, verranno espressi da

$$m_2^2 = n_2^2 q,$$
 $m_3^2 = n_3^2 q,$ $m_4^3 = n_4^3 q,$ $m_4^4 = n_4^4 q,$ $m_5^4 = n_5^4 q.$

b) Quanto si è detto nel già citato numero 220, facilmente conduce a trovare i momenti inflettenti m_h^2 ed m_5^2 , m_2^5 ed m_5^5 , m_2^h ed m_5^h per le sezioni corrispondenti ai mezzi degli appoggi A_4 ed A_5 , A_2 ed A_5 , A_2 ed A_5 trovandosi rispettivamente il sovraccarico sulla seconda, sulla terza, sulla quarta travata. Si ha infatti

$$\begin{split} &\frac{m_3^2}{m_4^2} = \frac{m_3^4}{m_4^4} = H_3^4 \\ &\frac{m_4^2}{m_5^2} = \frac{m_4^4}{m_5^4} = H_4^4, \\ &\frac{m_3^3}{m_2^3} = \frac{m_3^5}{m_2^5} = H_2^5 \\ &\frac{m_4^3}{m_5^3} = \frac{m_4^4}{m_5^4} = H_4^4, \\ &\frac{m_4^4}{m_3^4} = \frac{m_4^5}{m_3^5} = H_3^5 \end{split}$$

 $\frac{m_3^4}{m_9^4} = \frac{m_3^5}{m_9^5} = H_2^5$.

La prima di queste equazioni serve a ricavare m_4^2 , e la seconda si presta a dedurre m_5^2 ; il valore di m_2^5 si ottiene colla terza, e quello di m_5^5 colla quarta; mediante la quinta si calcola m_5^4 , e si trova m_2^4 colla sesta. Se poi si indicano con n_4^2 , n_5^2 , n_2^3 , n_5^5 , n_5^4 ed n_2^4 quei coefficienti numerici i quali moltiplicano il sovraccarico q nei valori di m_4^2 , m_5^2 , m_5^5 , m_5^5 , m_5^4 ed m_2^4 , si ha

$$m_1^2 = n_1^2 q,$$
 $m_5^2 = n_5^2 q,$ $m_5^3 = n_5^3 q,$ $m_5^3 = n_5^3 q,$ $m_3^4 = n_3^4 q.$ $m_2^4 = n_2^4 q,$

c) I momenti inflettenti μ_1^2 , μ_2^2 , μ_3^2 , μ_4^2 e μ_3^2 per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, quando il sovraccarico è sulla seconda, sono dati dalle equazioni

$$\mu_{1}^{2} = \frac{n_{2}^{2}}{a_{1}} q z_{1}$$

$$\mu_{2}^{2} = \left[n_{2}^{2} + \left(\frac{1}{2} a_{2} + \frac{n_{3}^{2} - n_{2}^{2}}{a_{2}} \right) z_{2} - \frac{1}{2} (z_{2})^{2} \right] q$$

$$\mu_{3}^{2} = \left(n_{3}^{2} + \frac{n_{4}^{2} - n_{3}^{2}}{a_{3}} z_{3} \right) q$$

$$\mu_{4}^{2} = \left(n_{4}^{2} + \frac{n_{5}^{2} - n_{4}^{2}}{a_{4}} z_{4} \right) q$$

$$\mu_{5}^{2} = \left(n_{5}^{2} - \frac{n_{5}^{2}}{a_{5}} z_{5} \right) q$$
(3)

I momenti inflettenti μ_1^3 , μ_2^3 , μ_3^5 , μ_4^5 e μ_5^5 , pure per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, quando il sovraccarico trovasi sulla terza, vengono espressi da

$$\mu_{1}^{5} = \frac{n_{2}^{5}}{a_{1}} q z_{1}$$

$$\mu_{2}^{5} = \left(n_{2}^{5} + \frac{n_{5}^{5} - n_{2}^{5}}{a_{2}} z_{2}\right) q$$

$$\mu_{5}^{5} = \left[n_{5}^{5} + \left(\frac{1}{2}a_{5} + \frac{n_{5}^{5} - n_{5}^{5}}{a_{5}}\right) z_{5} - \frac{1}{2}(z_{5})^{2}\right] q$$

$$\mu_{4}^{5} = \left(n_{5}^{5} + \frac{n_{5}^{5} - n_{5}^{5}}{a_{5}} z_{5}\right) q$$

$$\mu_{5}^{5} = \left(n_{5}^{5} - \frac{n_{5}^{5}}{a_{5}} z_{5}\right) q$$

$$(4)$$

Finalmente i momenti inflettenti μ_i^h , μ_i^h , μ_i^h , μ_i^h e μ_i^h per una sezione qualunque di ciascuna delle cinque travate, quando il sovraccarico trovasi solamente sulla quarta travata, ammettono i valori

$$\mu_{1}^{4} = \frac{n_{2}^{4}}{a_{4}} q z_{4}$$

$$\mu_{2}^{4} = \left(n_{2}^{4} + \frac{n_{3}^{4} - n_{2}^{4}}{a_{2}} z_{2}\right) q$$

$$\mu_{3}^{4} = \left(n_{3}^{4} + \frac{n_{4}^{4} - n_{3}^{4}}{a_{5}} z_{3}\right) q$$

$$u_{4}^{4} = \left[n_{4}^{4} + \left(\frac{1}{2}a_{4} + \frac{n_{5}^{4} - n_{4}^{4}}{a_{4}}\right) z_{4} - \frac{1}{2}(z_{4})^{2}\right] q$$

$$\mu_{5}^{4} = \left(n_{5}^{4} - \frac{n_{5}^{4}}{a_{5}} z_{5}\right) q$$

$$(5).$$

Nelle espressioni dei momenti inflettenti μ_4^2 , μ_2^2 , μ_5^2 , μ_4^2 , μ_5^2 , μ_4^5 , μ_5^5 , μ_5^5 , μ_5^5 , μ_5^5 , μ_4^5 , μ_2^5 , μ_5^4 , μ_5^4 , μ_5^4 , μ_5^4 , μ_5^4 e μ_5^4 le lettere z_4 , z_2 , z_5 , z_4 e z_5 hanno i significati che già loro vennero attribuiti fin dal principio di questo numero, supponendo il sovraccarico esistente soltanto sulla prima travata.

d) Le ascisse dei punti in cui i momenti inflettenti sono nulli per le travate sovraccaricate, si ottengono eguagliando a zero i valori dei momenti inflettenti μ_2^2 , μ_5^3 e μ_4^4 . Ciascuna delle tre equazioni che risultano è del secondo grado. La prima dà due valori particolari Z_2' e Z_2'' di z_2 , la seconda dà due valori particolari Z_3' e Z_3'' di z_3 , e la terza dà pure due valori particolari Z_4' e Z_4'' di z_4 . Queste ascisse Z_2' e Z_2'' , Z_5' e Z_3'' , Z_4' e Z_4'' determinano rispettivamente sulla seconda, sulla terza e sulla quarta travata i punti in cui la parabola del sovraccarico, supposto esistere soltanto sulla seconda, o sulla terza, o sulla quarta travata, taglia l'asse della trave.

4° Considerando ora il carico permanente sulla lunghezza dell'intiera trave, bisogna dedurre: i corrispondenti momenti inflettenti per le sezioni corrispondenti ai mezzi dei diversi appoggi; i momenti inflettenti per sezioni qualunque dell'intiera trave; le ascisse dei punti in cui questi momenti inflettenti sono nulli.

a) Per trovare i momenti inflettenti m_s , m_s , m_h ed m_h relativi alle sezioni corrispondenti ai mezzi degli appoggi intermedii, quando si considera l'intiero carico permanente distribuito in ragione di q' unità di peso per ogni unità di lunghezza della trave, si può tenere la seguente via semplice e spedita. Fare, mediante il principio enunciato al numero 218, i momenti inflettenti $m_2^{4,2,5,4,5}$, $m_5^{4,2,5,4,5}$, $m_h^{4.9.5,4.5}$ ed $m_s^{4.9.5,4.5}$ per le sezioni corrispondenti ai mezzi degli appoggi intermedii, nell'ipotesi che il sovraccarico si trovi sull'intiera trave, o, più semplicemente, ottenere i coefficienti numerici no, no, n_a ed n_a che moltiplicano il fattore q nell'espressione dei detti momenti; osservare che, tanto nell'ipotesi del sovraccarico sull'intiera trave, quanto in quella del carico permanente, trattasi di un carico uniformemente distribuito su tutta la trave; e che nelle due ipotesi le espressioni dei momenti inflettenti per le sezioni corrispondenti ai mezzi degli appoggi intermedii devono soltanto variare nel fattore rappresentante il carico uniformemente distribuito. Ora, i coefficienti numerici che nell'espressione dei momenti inflettenti $m_2^{4.2.5.6.5}$, $m_5^{4.2.5.4.5}$. $m_4^{4.2.5.4.5}$ ed $m_5^{4.2.5.4.5}$ moltiplicherebbero i fattori q, sono dati dalle formule

$$n_2 = n_2^4 + n_2^9 + n_2^3 + n_2^4 + n_2^5$$

$$n_3 = n_3^4 + n_3^9 + n_3^3 + n_3^4 + n_3^5$$

$$n_4 = n_4^4 + n_4^9 + n_4^3 + n_4^4 + n_4^5$$

$$n_5 = n_5^4 + n_5^9 + n_5^3 + n_5^5 + n_5^5,$$

e quindi i valori di m_2 , m_3 , m_4 ed m_5 , quando si mantenga in evidenza il fattore q e quando si faccia

$$\frac{q'}{q} = K$$
,

risultano

$$m_2 = n_2 \operatorname{K} q$$
, $m_3 = n_3 \operatorname{K} q_3$, $m_4 = n_4 \operatorname{K} q$, $m_5 = n_5 \operatorname{K} q$.

b) Conservando alle lettere z_4 , z_2 , z_3 , z_4 e z_5 i significati che già loro vennero attribuiti, i momenti inflettenti μ_4 , μ_2 , μ_5 , μ_4 e μ_5 per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, da ottenersi coll'applicazione delle equazioni (5) e (4) del numero 217, risultano

$$\mu_{4} = \left[\left(\frac{1}{2} a_{4} + \frac{n_{2}}{a_{4}} \right) z_{4} - \frac{1}{2} (z_{4})^{2} \right] Kq$$

$$\mu_{2} = \left[n_{2} + \left(\frac{1}{2} a_{2} + \frac{n_{3} - n_{2}}{a_{2}} \right) z_{2} - \frac{1}{2} (z_{2})^{2} \right] Kq$$

$$\mu_{3} = \left[n_{3} + \left(\frac{1}{2} a_{3} + \frac{n_{4} - n_{3}}{a_{3}} \right) z_{3} - \frac{1}{2} (z_{3})^{2} \right] Kq$$

$$\mu_{4} = \left[n_{4} + \left(\frac{1}{2} a_{4} + \frac{n_{5} - n_{4}}{a_{4}} \right) z_{4} - \frac{1}{2} (z)_{4}^{2} \right] Kq$$

$$\mu_{5} = \left[n_{5} + \left(\frac{1}{2} a_{5} - \frac{n_{5}}{a_{5}} \right) z_{5} - \frac{1}{2} (z_{5})^{2} \right] Kq$$

$$(6).$$

- c) Le ascisse dei punti in cui sono nulli i momenti inflettenti μ_4 , μ_2 , μ_5 , μ_4 e μ_5 , ossia le ascisse dei punti in cui le parabole del carico permanente tagliano gli assi delle diverse travate, si deducono eguagliando a zero i valori di questi stessi momenti, e ricavando i valori particolari z_4' e z_4'' di z_4 , z_5' e z_5'' di z_5 che verificano alle equazioni così stabilite. Il valore di z_4' si troverà eguale a zero, e sarà eguale ad a_5 quello di z_5'' .
- 5° Una volta determinati i momenti inflettenti per le sezioni corrispondenti agli appoggi, considerando il sovraccarico su ciascuna delle cinque travate ed il carico permanente sulla lunghezza della trave intiera, e calcolate le ascisse dei punti in cui i momenti in-

flettenti sono nulli, riesce agevole il costrurre, almeno in modo indicativo, le linee le cui ordinate rappresentano i momenti inflettenti per tutte le fatte ipotesi. Perciò si portino su una retta, assunta per rappresentare la direzione orizzontale dell'asse della trave, le distanze $\overline{A_4}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_5}$, $\overline{A_5}$, $\overline{A_4}$, $\overline{A_5}$ ed $\overline{A_5}$, $\overline{A_6}$ (fig. 266) rappresentanti rispettivamente le lunghezze a_1 , a_2 , a_3 , a_4 ed a_5 delle cinque travate. Mediante le ascisse Zi" e zi" si fissino sulla prima travata i due punti Z," e z,", e mediante le ascisse Z, Z, Z, , \xi2, \xi2, \xi2, \xi2, \xi2 e z," si determinino sulla seconda travata i punti individuati colle stesse lettere, rappresentanti le loro ascisse rispetto all'origine A2. Analogamente si fissino le posizioni del punti Z', Z', \xi, \xi, \xi, \xi, z' \e z'' sulla terza travata, quelle dei punti Z', Z', \xi, \xi, \xi, \xi, z' e z'' sulla quarta, e finalmente quelle dei punti Z's e z's sulla quinta. Pei punti A2, A3, A4 ed A5 si conducano delle perpendicolari alla retta A4 A6; al di sotto di questa, sulle accennate perpendicolari, a partire dai punti A2, A3, A4 ed A3 si portino i momenti inflettenti negativi per le sezioni corrispondenti ai mezzi degli appoggi intermedii, al di sopra i momenti inflettenti positivi, e si determinino così i punti m2, m_2^2 , m_2^5 , m_2^4 , m_2^5 ed m_2 sulla verticale passante per A_2 , i punti m_3^4 , m_3^2 , m_5^3 , m_5^4 , m_5^8 ed m_5 sulla verticale passante per A_5 , i punti m_4^4 , ma, ma, ma, ma, ma, ed ma sulla verticale passante per A, ed i punti m_s^4 , m_s^2 , m_s^5 , m_s^5 , m_s^5 ed m_s sulla verticale corrispondente al punto A_s .

Le linee le cui ordinate rappresentano i momenti inflettenti sono : $A_1Z_1''' m_2^{4} \xi_2^{4} m_3^{4} \xi_3^{4} m_3^{4} A_6$, che indico col numero 1, nella ipotesi del sovraccarico sulla prima travata ; $A_1 m_2^{2} Z_2' Z_2'' m_3^{2} \xi_3^{4} m_3^{4} \xi_3^{4} m_3^{4} A_6$, che indico col numero 2, nell'ipotesi del sovraccarico sulla seconda a travata ; $A_1 m_2^{5} \xi_2^{5} m_3^{5} Z_5' Z_5'' m_3^{5} \xi_3^{4} m_5^{5} A_6$, che indico col numero 3, nell'ipotesi del sovraccarico nella terza travata ; $A_4 m_2^{5} \xi_2^{5} m_3^{5} \xi_3^{5} m_4^{5} Z_3' Z_4'' m_3^{5} A_6$, che indico col numero 4, nell'ipotesi del sovraccarico sulla quarta travata ; $A_4 m_2^{5} \xi_2^{5} m_3^{5} \xi_3^{5} m_4^{5} \xi_4^{5} m_5^{5} Z_5' A_6$, che indico col numero 5, nell'ipotesi del sovraccarico sulla quinta travata ; e finalmente $A_1 z_4'' m_2 z_2' z_2'' m_3 z_5' z_3'' m_4 z_4' z_4'' m_5 z_5' A_6$, che indico colla lettera P, nell'ipotesi del carico permanente sull'intiera trave.

6° Prendendo sulla retta rappresentativa dell'asse della trave un punto qualunque β, e volendosi per la sezione corrispondente a questo punto il massimo dei momenti inflettenti positivi ed il massimo dei momenti inflettenti negativi, ossia le due ordinate, una dell'inviluppo dei momenti inflettenti positivi e l'altra dell'inviluppo dei momenti inflettenti negativi, in virtù del principio di cui venne dato l'enunciato nel numero 218, altro non si deve fare che con-

durre per β la verticale $v\beta v'$, osservare che questa retta taglia le linee 1, 3, 5 e P nei punti b_i , b_s , b_s e b al di sopra dell'orizzontale A_i , A_6 , le linee 2 e 4 nei punti b_2 e b_4 al disotto della stessa orizzontale, ed assumere quindi come ordinata dei momenti inflettenti positivi la somma

$$\overline{\beta b_1} + \overline{\beta b_3} + \overline{\beta b_5} + \overline{\beta b}$$
,

come ordinata dei momenti inflettenti negativi l'altra somma

$$\overline{\beta b_2} + \overline{\beta b_4}$$
.

Segue da ciò, potersi facilmente trovare per ciascuna travata,

per l'inviluppo dei momenti inflettenti positivi e per l'inviluppo dei momenti inflettenti negativi : le ordinate corrispondenti ai mezzi dei diversi appoggi intermedii; le ordinate corrispondenti ai punti di concorso pel sovraccarico sulle travate di sinistra e sulle travate di destra; le ordinate corrispondenti ai punti in cui ciascuna parabola dei sovraccarichi taglia l'asse della trave ; le ordinate corrispondenti ai punti in cui le parabole del carico permanente tagliano pure l'asse della trave. Le lunghezze di tutte queste ordinate verranno indicate colle lettere che sulla figura trovansi alla loro estremità: e, occorrendo di dover prendere il valore particolare dell'espressione generale di un momento inflettente o della somma di più momenti inflettenti per una data sezione, si porrà fra parentesi l'espressione generale, ed al piede della parentesi di destra si collocherà quell'ascissa che precisa quella sezione, per la quale vuolsi il valore particolare di un momento inflettente o della somma di più momenti inflettenti. Così, per esempio, $(\mu_i^2)_{7,n}$ sarà il modo di rappresentare il valore particolare del momento inflettente u, per la sezione della prima travata determinata dall'ascissa z,=Z," e $(\mu_3^5 + \mu_3^5 + \mu_5)_{\chi,4}$ indicherà il valore particolare che prende la somma dei momenti inflettenti μ_3^5 , μ_3^5 e μ_3 in quella sezione della terza travata, la quale distà dall'estremo di sinistra della stessa

a) Le ordinate dell'inviluppo dei momenti inflettenti positivi per gli appoggi A₂, A₃, A₄ ed A₅, sono rispettivamente rappresentate dai valori M₂', M₃', M₄' ed M₅' da calcolarsi colle formole

travata dell'ascissa $z_s = \xi_s^4$.

$$M_2' = m_2^3 + m_2^5$$

$${
m M_3'}{=}m_3{}^4{+}m_3{}^4$$
 ${
m M_4'}{=}m_a{}^2{+}m_a{}^5$
 ${
m M_5'}{=}m_5{}^4{+}m_5{}^3$;

e le ordinate M_2'' , M_3'' , M_4'' ed M_8'' dell'inviluppo dei momenti inflettenti negativi per le sezioni corrispondenti ai mezzi degli stessi appoggi vengono date da

$$M_{2}'' = m_{2}^{4} + m_{2}^{2} + m_{2}^{4} + m_{2}$$

$$M_{3}'' = m_{3}^{2} + m_{3}^{3} + m_{5}^{5} + m_{3}$$

$$M_{4}'' = m_{4}^{4} + m_{4}^{5} + m_{4}^{4} + m_{4}$$

$$M_{5}'' = m_{5}^{2} + m_{5}^{4} + m_{5}^{5} + m_{5}.$$

b) Le ordinate dell'inviluppo dei momenti inflettenti positivi, corrispondenti ai punti di concorso pel sovraccarico sulle travate di sinistra, sono le b_2' , b_3' e b_4' date dalle formole

$$b_{2}' = (\mu_{2}^{2} + \mu_{2}^{4})_{\xi_{9}^{4}}$$

$$b_{3}' = (\mu_{3}^{5} + \mu_{3}^{5} + \mu_{3})_{\xi_{3}^{4}}$$

$$b_{4}' = (\mu_{4}^{4} + \mu_{4})_{\xi_{4}^{4}};$$

e le ordinate b_2'' , b_3'' e b_4'' dell'inviluppo dei momenti inflettenti negativi per gli stessi punti ammettono i valori

$$b_{2}'' = (\mu_{2}^{3} + \mu_{2}^{5} + \mu_{2})_{\xi_{2}^{4}}$$

$$b_{3}'' = (\mu_{3}^{4})_{\xi_{3}^{4}}$$

$$b_{4}'' = (\mu_{4}^{5})_{\xi_{4}^{4}}.$$

Le ordinate c_3' , c_3' e c_3' dell'inviluppo dei momenti inflettenti positivi, per le sezioni le quali sono determinate dai punti di concorso pel sovraccarico sulle travate di destra, vengono date da

$$c_{2}' = (\mu_{2}^{2})_{\xi_{2}^{5}}$$

$$c_{3}' = (\mu_{3}^{4} + \mu_{3}^{3} + \mu_{3})_{\xi_{3}^{5}}$$

$$c_{4}' = (\mu_{4}^{2} + \mu_{4}^{4})_{\xi_{4}^{5}};$$

e le ordinate dell'inviluppo dei momenti inflettenti negativi per le stesse sezioni valgono

$$c_{2}'' = (\mu_{2}^{4} + \mu_{2})_{\xi_{2}^{5}}$$

$$c_{3}'' = (\mu_{3}^{2})_{\xi_{3}^{5}}$$

$$c_{4}'' = (\mu_{4}^{1} + \mu_{4}^{3} + \mu_{4})_{\xi_{4}^{5}}.$$

c) Le ordinate e_a' , f_s' ed e_s' , f_s' ed e_s' , f_s' ed e_a' , f_s' dell'inviluppo dei momenti inflettenti positivi, per le sezioni corrispondenti ai punti in cui ciascuna parabola dei sovraccarichi taglia l'asse della trave, sono

$$\begin{aligned} e_{4}' &= (\mu_{4}^{3} + \mu_{4}^{5})_{Z_{4}''} \\ f_{2}' &= (\mu_{2}^{3} + \mu_{2}^{5})_{Z_{2}'} & e_{2}' &= (\mu_{2}^{1} + \mu_{2}^{4})_{Z_{2}''} \\ f_{3}' &= (\mu_{3}^{4} + \mu_{3}^{4})_{Z_{3}'} & e_{3}' &= (\mu_{3}^{2} + \mu_{3}^{5})_{Z_{3}''} \\ f_{4}' &= (\mu_{4}^{2} + \mu_{4}^{5})_{Z_{4}'} & e_{4}' &= (\mu_{4}^{4} + \mu_{4}^{3})_{Z_{4}''} \\ f_{5}' &= (\mu_{5}^{4} + \mu_{5}^{3})_{Z_{5}'}; \end{aligned}$$

e le ordinate e_4'' , f_2'' ed e_2'' , f_3'' ed e_3'' , f_4'' ed e_4'' , f_5'' dell'inviluppo dei momenti inflettenti negativi per le stesse sezioni ammettono i valori

$$e_1'' = (\mu_1^2 + \mu_1^4 + \mu_1)_{Z_1''}$$

$$f_{2}'' = (\mu_{2}{}^{4} + \mu_{2}{}^{4} + \mu_{2})_{Z_{2}}' \qquad e_{2}'' = (\mu_{2}{}^{3} + \mu_{2}{}^{5} + \mu_{2})_{Z_{2}}''$$

$$f_{3}'' = (\mu_{3}{}^{2} + \mu_{3}{}^{5} + \mu_{3})_{Z_{3}}' \qquad e_{3}'' = (\mu_{3}{}^{4} + \mu_{3}{}^{4} + \mu_{3})_{Z_{3}}''$$

$$f_{4}'' = (\mu_{4}{}^{4} + \mu_{4}{}^{3} + \mu_{4})_{Z_{4}}' \qquad e_{4}'' = (\mu_{4}{}^{2} + \mu_{4}{}^{5} + \mu_{4})_{Z_{4}}''$$

$$f_{5}'' = (\mu_{5}{}^{2} + \mu_{5}{}^{4} + \mu_{5})_{Z_{5}}'.$$

d) Le otto ordinate degli inviluppi dei momenti inflettenti positivi e dei momenti inflettenti negativi, corrispondenti ai punti in cui le parabole del carico permanente tagliano l'asse della trave, per quanto si è detto al numero 222, sono rispettivamente eguali fra di loro; ed i loro valori assoluti g_4' , h_2' e g_2' , h_3' e g_5' , h_4' e g_4' , h_5' sono dati dalle semplicissime formole

$$\begin{split} g_{1}' &= (\mu_{1}{}^{4} + \mu_{1}{}^{3} + \mu_{1}{}^{5})_{z_{1}}{}'' = -(\mu_{1}{}^{2} + \mu_{1}{}^{4})_{z_{1}}{}'' \\ h_{2}' &= (\mu_{2}{}^{2} + \mu_{2}{}^{4})_{z_{2}}{}' = -(\mu_{2}{}^{4} + \mu_{2}{}^{3} + \mu_{2}{}^{5})_{z_{2}}{}' \\ g_{2}' &= (\mu_{2}{}^{2} + \mu_{2}{}^{4})_{z_{2}}{}'' = -(\mu_{2}{}^{1} + \mu_{2}{}^{3} + \mu_{2}{}^{5})_{z_{2}}{}'' \\ h_{3}' &= (\mu_{3}{}^{4} + \mu_{3}{}^{3} + \mu_{3}{}^{4})_{z_{3}}{}' = -(\mu_{3}{}^{2} + \mu_{3}{}^{5})_{z_{3}}{}' \\ g_{3}' &= (\mu_{3}{}^{2} + \mu_{3}{}^{3} + \mu_{3}{}^{5})_{z_{3}}{}'' = -(\mu_{3}{}^{4} + \mu_{3}{}^{4})_{z_{3}}{}' \\ h_{4}' &= (\mu_{4}{}^{2} + \mu_{4}{}^{4})_{z_{4}}{}' = -(\mu_{4}{}^{4} + \mu_{4}{}^{3} + \mu_{4}{}^{5})_{z_{4}}{}' \\ g_{4}' &= (\mu_{4}{}^{4} + \mu_{4}{}^{3} + \mu_{4}{}^{4})_{z_{4}}{}' = -(\mu_{5}{}^{2} + \mu_{5}{}^{4})_{z_{5}}{}' \\ h_{5}' &= (\mu_{5}{}^{4} + \mu_{5}{}^{3} + \mu_{5}{}^{5})_{z_{5}}{}' = -(\mu_{5}{}^{2} + \mu_{5}{}^{4})_{z_{5}}{}' \end{split}$$

7. Per procacciarsi le coordinate dei punti di massima altezza, che verso il mezzo di ciascuna travata presenta la curva inviluppo dei momenti inflettenti positivi, bisogna ottenere le espressioni dei momenti inflettenti per una sezione qualunque posta nella re-

gione centrale della prima, della seconda, della terza, della quarta e della quinta travata. Queste espressioni, come risulta dalle linee rappresentate nella figura 266, sono

$$\mu_{4}^{1} + \mu_{4}^{3} + \mu_{4}^{5} + \mu_{4}$$

$$\mu_{2}^{2} + \mu_{2}^{4} + \mu_{2}$$

$$\mu_{3}^{1} + \mu_{3}^{3} + \mu_{3}^{5} + \mu_{3}$$

$$\mu_{4}^{2} + \mu_{4}^{4} + \mu_{4}$$

$$\mu_{5}^{1} + \mu_{5}^{3} + \mu_{5}^{5} + \mu_{5}^{5}$$

La prima di esse è funzione di z_4 , la seconda di z_2 , la terza di z_5 , la quarta di z_4 e la quinta di z_5 ; e le loro derivate per rapporto a queste variabili, eguagliate a zero, somministrano le cinque equazioni determinatrici delle ascisse H_1 , H_2 , H_3 , H_4 ed H_5 , dei domandati punti d'altezza massima. Le ordinate M_1 , M_2 , M_3 , M_4 ed M_5 degli stessi punti immediatamente si ottengono nei valori particolari che prendono le cinque espressioni dei momenti inflettenti per una sezione qualunque posta nella regione centrale di ciascuna travata, quando in esse si faccia $z_4 = H_4$, $z_2 = H_2$, $z_5 = H_3$, $z_4 = H_4$ e $z_5 = H_5$.

8° Determinate così le coordinate dei punti singolari, tanto per l'inviluppo dei momenti inflettenti positivi, quanto per l'inviluppo dei momenti inflettenti negativi, si può passare alla geometrica loro descrizione. Perciò s'incominci dal portare a sito tutti i punti di cui vennero determinate le coordinate, i quali, oltre i vertici corrispondenti agli appoggi, sono in numero di tre per la prima e per l'ultima travata, in numero di sette per le travate intermedie; fra questi punti singolari si determinino quanti punti si vogliono, o fissandosi diverse ascisse e calcolando le ordinate corrispondenti, oppure segnando diverse verticali analoghe a $v \beta v'$ ed operando per tutte come su questa, per la quale si determina il punto γ' sulla parte positiva βv col prendere

$$\overline{\beta \gamma} = \overline{\beta b_4} + \overline{\beta b_3} + \overline{\beta b_5} + \overline{\beta b},$$

ed il punto γ'' sulla parte negativa $\beta v'$ coll'assumere

$\overline{\beta \gamma}'' = \overline{\beta b_2} + \overline{\beta b_4}$.

f,"h," A6.

9° Resta finalmente a dedursi la curva inviluppo utile, ossia quella linea le cui ordinate rappresentano in ciascuna sezione il massimo valore assoluto dei momenti inflettenti che per essa si possono verificare. Basta perciò osservare: che le ordinate dell'inviluppo dei momenti inflettenti positivi sono maggiori delle ordinate dell'inviluppo dei momenti inflettenti negativi, per le sezioni comprese fra i punti in cui ciascuna travata è tagliata dalla corrispondente parabola del carico permanente, e quindi per le sezioni poste fra A_1 e z_1'' , fra z_2' e z_2'' , fra z_3' e z_3'' , fra z_4' e z_4'' e fra z_3' ed A_6 ; che le ordinate dell'inviluppo dei momenti inflettenti negativi sono maggiori delle ordinate dell'inviluppo dei momenti inflettenti positivi per tutte le altre sezioni; e che le ordinate dell'inviluppo dei momenti inflettenti positivi sono eguali alle ordinate dell'inviluppo dei momenti inflettenti negativi, per le sezioni corrispondenti ai punti in cui le parabole del carico permanente tagliano l'asse della trave, e z" e z'. Segue da ciò, che per avere la curva inviluppo utile basta riprodurre al di sopra dell'asse A, A, della trave : la linea g," e," $M_2'' f_2'' c_2'' h_2''$ in $g_1' e_1''' M_2''' f_2''' c_2''' h_2'$; la linea $g_2'' b_2'' e_2''' M_3'' f_3'' h_3''$ in $g_2'b_2'''e_2'''M_3'''f_3'''h_3'$; la linea $g_3''e_3''M_4''f_4''c_4''h_4''$ in $g_3'e_3'''M_4'''f_4'''$ $c_a^{\prime\prime\prime}h_a^{\prime\prime}$; e la linea $g_a^{\prime\prime}e_a^{\prime\prime}M_s^{\prime\prime}f_s^{\prime\prime}h_s^{\prime\prime}$ in $g_a^{\prime}e_a^{\prime\prime\prime}M_s^{\prime\prime\prime}f_s^{\prime\prime\prime}h_s^{\prime\prime}$. Questa riproduzione si fa ribattendo al disopra dell'asse della trave le ordinate che cadono al di sotto: così, si determina il punto b2" corrispondente di b_2'' col prendere $\overline{\xi_2^{\ i}b_2'''} = \overline{\xi_2^{\ i}b_2''}$.

225. Semplificazione del problema nella maggior parte dei casi pratici. — Nelle ordinarie e più frequenti circostanze della pratica, o sono tutte eguali fra di loro le travate dei ponti in ferro a travate rettilinee, oppure, essendo eguali fra di loro le due estreme, lo sono pure le intermedie, ma diverse dalle prime. Questa disposizione di cose notevolmente semplifica la risoluzione del problema relativo alla determinazione degli inviluppi dei momenti inflettenti,

il quale, come appare dal caso particolare che venne trattato nel precedente numero, senza presentare difficoltà, riesce un poco lungo e faticoso. Le travi longitudinali sono simmetriche rispetto alla loro sezione di mezzo; i medesimi valori delle ascisse e delle ordinate dei punti singolari delle curve inviluppi si riproducono a distanze eguali dai due estremi; e quindi per una trave composta di n travate basta fare i calcoli nelle ipotesi che il sovraccarico venga a trovarsi soltanto su $\frac{n}{2}$ o su $\frac{n+1}{2}$ travate, secondochè n è numero pari od impari.

Nel caso di una trave composta di un gran numero di travate intermedie eguali, essendo pure eguali le due estreme, ma anche diverse dalle intermedie, a misura che si considerano delle travate poste verso il mezzo della trave, si approssimano esse a trovarsi nelle condizioni di solidi orizzontalmente incastrati ai loro estremi. Segue da ciò, che gli inviluppi, corrispondenti ad un certo numero di travate di mezzo, per una trave orizzontalmente posta su molti appoggi, devono essere sensibilmente eguali fra di loro, e potersi quindi, con sufficiente approssimazione per la pratica, far dipendere la costruzione degli inviluppi per le travi a molte travate, dalla costruzione degli inviluppi per travi a un minor numero di travate. Per accertarsi come questa previsione realmente si verifichi, basta calcolare e costrurre gli inviluppi, nel caso delle due travate estreme eguali e delle travate intermedie pure eguali fra di loro, per travi composte di otto e di più di otto travate. Da tali calcoli e da tali costruzioni risulta: che per le travate comprese fra le prime quattro e le ultime quattro gli inviluppi sensibilmente non differiscono da quello che corrisponde alla quarta travata; e che per conseguenza, dovendosi considerare una trave composta di più di otto travate, non si deve far altro che eseguire i calcoli su quella di otto travate e ripetere per tutte le travate centrali i risultati corrispondenti alla quarta, distinguendo, a motivo della simmetria, il caso in cui il numero delle travate è pari da quello in cui questo numero è impari.

Parlando dell'uso dell'inviluppo utile per la determinazione delle lamiere da impiegarsi nella composizione delle travi longitudinali dei ponti in ferro a travate rettilinee, chiaramente risulterà come basti avere nella pratica un tracciamento approssimato del detto inviluppo. Segue da ciò che, una volta ottenuti i punti singolari, si possono a dirittura sostituire le corde agli archi parabolici rappresentanti gli inviluppi per le parti non centrali delle diverse

travate. Per le parabole poi, le cui ordinate rappresentano i momenti inflettenti nelle parti centrali, basta generalmente determinare due punti, uno a diritta e l'altro a sinistra del vertice, e servirsi per questa determinazione della nota proprietà che in una parabola la sottotangente è doppia dell'ascissa. Così, volendosi determinare il punto d posto sulla parabola c, M, b, a diritta del suo vertice M3, si tirino l'orizzontale M3T e la corda M3 b3; dividasi per metà quest'ultima e si conduca la verticale λε: il punto δ posto sul mezzo di questa verticale è un punto della curva, perchè, conducendo per questo punto una retta ∂_{η} parallela alla corda $\overline{M_3} b_3^{\prime\prime}$ ed una perpendicolare $\partial \pi$ all'asse M_3H_3 , si ottiene il segmento $\eta \pi$ doppio di $\overline{M}_{2}\pi$, il qual risultato porta a conchiudere essere $\partial \gamma$ tangente alla parabola in ô, ed essere quindi questo punto un punto della parabola. Come si è determinato il punto o a diritta del vertice Ms, si può trovare un altro punto a sinistra dello stesso vertice. - Una volta determinati il vertice, l'asse ed un punto di una delle parabole rappresentanti i momenti inflettenti nelle parti centrali, qualora lo si creda conveniente, riesce facile trovare quanti suoi punti si vogliono, col metodo che venne dato nel numero 214, ragionando sulla figura 258.

226. Determinazione delle lamiere componenti le tavole orizzontali delle travi longitudinali principali. — Resta a vedersi come l'inviluppo utile dei momenti inflettenti serva a determinare le lamiere da impiegarsi nella composizione delle travi longitudinali principali dei ponti in ferro a travate rettilinee, affinchè presentino esse la necessaria resistenza alla flessione. Si osservi perciò, che chiamando

u la mezza altezza della trave,

μ il momento inflettente per una sua sezione qualunque,

I' il momento d'inerzia di questa sezione per rapporto all'asse neutro,

R il coefficiente di rottura per la materia di cui la trave è formata,

n il coefficiente di stabilità, si ha, come al numero 214,

$$nR = \frac{u \mu}{I'}$$

nelle quali suolsi assumere di $\frac{1}{6}$ il valore di n, ed in ragione di 50 chilogrammi per millimetro quadrato il valore di R.

Premesso questo, si consideri una trave in ferro la cui sezione ha forma nota e, per fissare le idee, quella rappresentata nella figura 267 con sezione simmetrica rispetto all'orizzontale XY passante pel suo centro di superficie, e costituita da tavole orizzontali A, formate con lamiere sovrapposte ed unite mediante ferri d'angolo B ad altre lamiere verticali C, fra cui trovansi le pareti reticolate D. Si calcoli innanzi tutto il momento d'inerzia L' rispetto all'asse XY della sezione appartenente alla parte continua della trave ossia della sezione dei ferri d'angolo B e delle lamiere verticali C, e mediante l'ultima formola, assumendo per u la distanza \overline{ab} , per l' il trovato momento d'inerzia I,' e per nR il numero conveniente alla qualità di ferro, di cui la trave è formata (il qual numero si assume generalmente in ragione di 6 chilogrammi per ogni millimetro quadrato), si deduca il corrispondente valore particolare u, di u. Questo valore u, si porti da A, in o sulla figura 266, valutandolo nella scala dei momenti inflettenti e non dimenticando se venne fatta qualche ipotesi sul valore del sovraccarico q, che generalmente si assume siccome eguale all'unità. Dopo di ciò, conoscendosi le dimensioni che deve avere la sezione di ciascuna lamiera da impiegarsi nella composizione delle tavole A (fig. 267), si calcoli il momento d'inerzia L' per la sezione delle due lamiere unite ai ferri d'angolo ed appartenenti una alla tavola superiore e l'altra alla tavola inferiore: e. mediante l'ultima formola, ponendo in essa per u la distanza \overline{dc} della superficie esterna di una delle indicate lamiere dalla retta XY, per I' il momento d'inerzia I, e per nR il numero conveniente, si deduca il valore particolare μ_0 di μ_1 . Questo valore μ_2 , avendo riguardo alla scala in cui sono rappresentati i momenti inflettenti nella figura 266 ed alla fatta ipotesi sul valore del sovraccarico, si porti da o in 4. Suppongasi ora che le altre coppie di lamiere componenti le tavole, tuttochè capaci di resistere ad un momento inflettente di qualche poco maggiore di quello cui può resistere la coppia attaccata ai ferri d'angolo, perchè un tantino più distanti dall'asse neutro, debbano pure resistere al solo momento inflettente ua; e si ripeta la distanza od in dd', d'd", d"d" e d'"d" finchè, conducendo pei punti ψ, ψ', ψ" e ψ' delle parallele all'asse della trave, si trova quella che passa sopra il punto più alto dell'inviluppo utile. Dopo di ciò, deducasi un contorno poligonale ad angoli retti, ponendo i vertici degli angoli rientranti sull'inviluppo utile o poco distanti da questo; ed è da questo contorno che risulta la distribuzione delle lamiere in ciascuna tavola. Così, stando al tracciato contenuto nella

figura 266, si dirà che tanto per la tavola superiore, quanto per la tavola inferiore, occorrono: una lamiera nei tratti $\overline{1}$ $\overline{2}$, $\overline{5}$ $\overline{6}$, $\overline{21}$ $\overline{22}$, $\overline{57}$ $\overline{58}$, $\overline{53}$ $\overline{54}$, $\overline{61}$ $\overline{62}$, $\overline{69}$ $\overline{70}$ e $\overline{77}$ $\overline{78}$; due lamiere nei tratti $\overline{34}$, $\overline{78}$, $\overline{1920}$, $\overline{2524}$, $\overline{3536}$, $\overline{3940}$, $\overline{5152}$, $\overline{5556}$, $\overline{5960}$, $\overline{6364}$, $\overline{6768}$, $\overline{7172}$ e $\overline{7576}$; tre lamiere nei tratti $\overline{910}$, $\overline{1718}$, $\overline{2526}$, $\overline{3334}$, $\overline{4142}$, $\overline{4950}$, $\overline{5758}$, $\overline{6566}$ e $\overline{7374}$; quattro lamiere nei tratti $\overline{1112}$, $\overline{1516}$, $\overline{2728}$, $\overline{3132}$, $\overline{4344}$ e $\overline{4748}$; e finalmente cinque lamiere nei tratti $\overline{1314}$, $\overline{2950}$ e $\overline{4546}$.

In quei siti in cui le ordinate dell'inviluppo utile sono piccole, è giuocoforza eseguire il contorno poligonale in modo che si sc ost molto dal detto inviluppo, per la necessità di prolungare certi elementi su tutta la lunghezza della trave, quantunque non siano essi per intiero indispensabili alla stabilità. Per il caso contemplato nella figura 266, si verifica questo nei tratti in cui la retta φ χ passa al di sopra dell'inviluppo utile.

In corrispondenza delle giunture delle lamiere componenti le tavole, giunture le quali non si possono evitare, giacchè nelle ordinarie circostanze della pratica le lamiere hanno lunghezza non maggiore di 7 od 8 metri, è necessario l'impiego di coprigiunti. Talvolta più giunture si pongono in sezioni rette differenti poco distanti, ed in questo caso un solo coprigiunto sufficientemente lungo può contemporaneamente servire per tutte le giunture.

227. Riassunto di alcune nozioni teoriche relative agli sforzi di taglio nelle travi orizzontalmente collocate su più appoggi e caricate di pesi uniformemente distribuiti sulle diverse travate.

— Partendo dall'espressione generale, del momento inflettente in una sezione qualunque di qualsiasi travata MN (fig. 262) di una trave orizzontalmente collocata su più appoggi e caricata di pesi uniformemente distribuiti su travate intiere (num. 217),

$$\mu = A + Bz - \frac{1}{2}pz^2$$

facendone la prima derivata pel rapporto a z (Resistenza dei materiali e stabilità delle costruzioni, num. 147 e 120), e cangiando in essa i segni, si trova la seguente espressione generale dello sforzo di taglio N

$$N = -B + pz \tag{1},$$

nella quale B, p e z hanno i significati che alle stesse lettere vennero dati nel numero 247.

L'ultima equazione dimostra che, assumendo gli sforzi di taglio quali ordinate di una linea di ascisse z, essi variano come le ordinate di una linea retta, riferita ai due assi coordinati Mz ed Mu, rispettivamente diretti secondo l'asse della trave e secondo la sua perpendicolare passante pel centro della sezione corrispondente all'appoggio di sinistra.

Indicando poi con N' lo sforzo di taglio relativo all'appoggio di sinistra M e con N'' lo sforzo di taglio relativo all'appoggio di destra N, col fare nell'ultima equazione z = 0 ed N = N', z = MN = a ed N = N'', si ricava

$$N' = -B$$

$$N'' = -B + pa$$

$$\begin{cases} (2); \end{cases}$$

e questi valori di N' e di N" rappresentano le ordinate dei due punti estremi della retta rappresentante gli sforzi di taglio nella travata considerata.

Eguagliando a zero il secondo membro dell'equazione (1), ottiensi quel valore particolare dell'ascissa z per cui lo sforzo di taglio è nullo, ossia si ha l'ascissa del punto nel quale la retta, le cui ordinate rappresentano gli sforzi di taglio, incontra l'asse Mz. Quest'ascissa, che indico colla lettera h, viene data da

$$h = \frac{B}{p} \tag{3},$$

e quindi, come già si trovò nel numero 217, è l'ascissa stessa del vertice della parabola, le cui ordinate rappresentano i momenti inflettenti.

228. Principio della sovrapposizione degli effetti, applicato allo scorrimento trasversale provocato in una trave longitudinale principale di ponte a travate rettilinee. — In una trave la quale, senza che avvenga snervamento, si deforma sotto l'azione degli sforzi di taglio a cui trovasi sottoposta, si può ammettere che abbia luogo strisciamento di una sua sezione trasversale qualunque relativamente alla sezione trasversale infinitamente vicina, e si può accettare il principio della sovrapposizione degli effetti ossia che lo strisciamento corrispondente alla totale deformazione, sia la somma algebrica degli strisciamenti parziali causati dalle forze estrinsiche, supposte agire l'una indipendentemente dall'altra.

Siccome poi, verificandosi lo strisciamento o scorrimento trasversale di una sezione qualunque relativamente alla sezione infinitamente vicina, viene messa in giuoco quella resistenza molecolare che deve fare equilibrio allo sforzo di taglio relativo alla stessa sezione, si può stabilire, che lo sforzo di taglio in una sezione qualunque di una trave longitudinale principale di ponte a travate rettilinee è la somma algebrica degli sforzi di taglio che alla stessa sezione corrispondono, quando da soli si considerano il carico permanente e ciascuno dei sovraccarichi.

229. Segni degli sforzi di taglio su travate cariche e su travate scariche. — Trovandosi carica una sola delle travate di una trave orizzontalmente posta su più appoggi e supponendo assolutamente destituite di peso tutte le altre, lo sforzo di taglio in una sua sezione qualunque d'ascissa Mm' (fig. 262) è rappresentato dall'ordinata m'n della retta FG. Questa retta, come si è detto nel numero 227, taglia l'asse M z della trave in un punto C', e questo punto, determinando la sezione della travata cui corrisponde il massimo momento inflettente, trovasi di necessità fra i punti M ed N. Segue da ciò che, trovandosi sovraccaricata una sola travata di una trave rettilinea orizzontalmente posta su più appoggi, gli sforzi di taglio sono, negativi per una parte della travata, positivi per l'altra, e la sezione separante queste due parti, alla quale sezione corrisponde lo sforzo di taglio nullo, è quella riferentesi al vertice della parabola dei momenti inflettenti.

Considerando un appoggio intermedio a due travate successive, nella sezione corrispondente al suo mezzo si può considerare lo sforzo di taglio N' che le viene trasmesso dalla travata di sinistra, e lo sforzo di taglio N' che le viene trasmesso dalla travata di destra. Ora, siccome i valori assoluti delle ordinate delle linee, le quali rappresentano i momenti inflettenti, sono decrescenti tanto a dritta quanto a sinistra di ciascun appoggio intermedio, ne risulta che devono essere di segno contrario le due derivate dell'una e dell'altra di queste funzioni per le ascisse corrispondenti alla sezione di mezzo dell'appoggio considerato. Segue da ciò, che anche i due sforzi di taglio, rappresentati dalle accennate derivate coi segni cangiati, devono avere segni contrari, per cui si pùò stabilire che nella sezione corrispondente al mezzo di un appoggio intermedio qualunque sono eguali e di segno contrario i due sforzi di taglio che vengonle trasmessi dalle due travate adiacenti.

Per le travate scariche si ha p=0, e le equazioni (2) del numero

227 chiaramente fanno vedere che sono eguali fra di loro gli sforzi di taglio N' ed N" per le sezioni estreme di ciascuna di esse. Combinando questo risultato con quello relativo alla diversità di segno dei due sforzi di taglio per la sezione corrispondente al mezzo di un appoggio qualunque, facilmente si viene a conchiudere che sono rappresentati dalle ordinate di rette parallele all'asse della trave gli sforzi di taglio per le travate scariche, e che queste rette sono alternativamente poste una da una parte e l'altra dall'altra parte per rapporto all'asse della trave.

250. Inviluppo degli sforzi di taglio positivi, inviluppo degli sforzi di taglio negativi, ed inviluppo utile. — Procedendo per una trave a più travate al tracciamento delle linee rappresentative degli sforzi di taglio, che corrispondono a tutte le possibili combinazioni del sovraccarico su travate intiere e del carico permanente, si arriva a trovare che alcune di queste linee trovansi esteriori a tutte le altre tanto al di sopra quanto al di sotto dell'asse della trave, nella cui direzione si suppone assunto l'asse delle ascisse nella costruzione delle linee stesse. Risultano due linee poligonali, una al di sopra e l'altra al di sotto dell'asse delle ascisse; la prima di queste linee si può chiamare l'inviluppo utile degli sforzi di taglio positivi, e la seconda l'inviluppo utile degli sforzi di taglio negativi.

Gli accennati due inviluppi hanno qualche analogia con quelli dei momenti inflettenti, in quanto riescono utili per verificare la stabilità e per convenientemente determinare le pareti verticali delle travi longitudinali principali dei ponti in ferro a travate rettilinee; e, siccome basta conoscere il solo valore assoluto del più grande sforzo di taglio che si verifica in ciascuna sezione della trave, è sufficiente di considerare un tale inviluppo, che le sue ordinate rappresentino per ciascuna sezione della trave il massimo sforzo di taglio positivo o negativo che essa deve sopportare.

Quest'inviluppo si può chiamare inviluppo utile, e si determina esso dietro la conoscenza degli inviluppi degli sforzi di taglio positivi e degli sforzi di taglio negativi; giacchè, prendendo in ciascuna sezione della trave quella delle due ordinate di questi inviluppi che presenta il maggior valore assoluto, e facendo in modo che queste ordinate di maggior valore assoluto si trovino tutte da una medesima parte dell'asse della trave stessa, le loro estremità danno la linea poligonale, i cui punti distano dall'asse delle ascisse di quantità rappresentanti i valori assoluti dei massimi sforzi di taglio, e quindi la linea poligonale che venne chiamata inviluppo utile.

231. Proprietà del punto in cui la retta del carico permanente taglia l'asse della trave. - Se in una travata qualunque considerasi la retta le cui ordinate rappresentano gli sforzi di taglio dovuti al complesso del carico permanente e del sovraccarico su tutta la trave, l'ordinata di un punto qualsiasi dell'indicata retta altro non può essere che la somma algebrica delle due ordinate corrispondenti allo stesso punto, prese, una sull'inviluppo degli sforzi di taglio positivi e l'altra sull'inviluppo degli sforzi di taglio negativi. Considerando invece nella stessa travata la retta le cui ordinate rappresentano gli sforzi di taglio dovuti al solo carico permanente, non differisce essa dall'altra retta che nella scala delle ordinate, giacchè tanto nell'ipotesi del carico permanente e del sovraccarico, quanto nell'ipotesi del solo carico permanente, si ha sempre un peso uniformemente distribuito sulla lunghezza intiera della trave a cui la travata appartiene. Segue da ciò, potersi stabilire: che la retta del carico permanente taglia l'asse della trave dove questo verrebbe intersecato dalla retta del carico totale, e che sono equali le ordinate dei due punti dell'inviluppo degli sforzi di taglio positivi o dell'inviluppo degli sforzi di taglio negativi, dove l'asse della trave viene intersecato dalla retta le cui ordinate rappresentano gli sforzi di taglio dovuti all'azione del carico permanente.

252. Determinazione e tracciamento dell'inviluppo utile degli sforzi di taglio. — L'inviluppo utile degli sforzi di taglio, ossia la linea poligonale le cui ordinate rappresentano i massimi valori assoluti degli sforzi di taglio che si verificano nelle diverse sezioni di una trave orizzontalmente posta su più appoggi e sottoposta all'azione di un carico permanente, uniformemente distribuito sulla sua lunghezza e di un sovraccarico il quale cangia di posizione, in modo però da trovarsi uniformemente distribuito su travate intiere, si può determinare col seguente procedimento.

1° Suppongasi che il sovraccarico esista successivamente sulla prima, sulla seconda, sulla terza, sulla quarta.... sull'ultima travata

e si determinino:

 a) gli sforzi di taglio per le sezioni corrispondenti ai diversi appoggi, i quali sforzi di taglio sono sempre in numero di due per le sezioni corrispondenti ai mezzi degli appoggi intermedii;

b) le ascisse dei punti in cui gli sforzi di taglio sono nulli per

le travate con sovraccarico.

2° Si consideri il carico permanente sulla lunghezza intiera della trave e si deducano:

a) gli sforzi di taglio per le sezioni corrispondenti ai diversi

appoggi, i quali sforzi di taglio sono in numero di due per le sezioni corrispondenti ai mezzi degli appoggi intermedii;

b) le ascisse dei punti in cui questi sforzi di taglio sono nulli.

- 5° Si costruiscano, o con tutto il rigore geometrico od anche in modo semplicemente dimostrativo, le linee rette le cui ordinate rappresentano gli sforzi di taglio calcolati nelle accennate ipotesi.
- 4° Si trovino in ciascuna travata, per l'inviluppo degli sforzi di taglio positivi e per l'inviluppo degli sforzi di taglio negativi:

a) le ordinate corrispondenti ai punti d'appoggio;

 b) le ordinate corrispondenti ai punti in cui ciascuna retta dei sovraccarichi taglia l'asse della trave;

c) le ordinate corrispondenti ai punti in cui le rette del carico

permanente tagliano l'asse della trave.

- 5° Si facciano le linee poligonali appartenenti agli inviluppi degli sforzi di taglio positivi e degli sforzi di taglio negativi, incominciando dal porre a sito tutti i vertici di cui si conoscono le coordinate;
- 6° Si deduca finalmente la linea inviluppo utile, riproducendo dalla parte verso cui esiste la linea inviluppo degli sforzi di taglio negativi le porzioni di inviluppo degli sforzi di taglio positivi, le quali ultime trovansi, per ciascuna travata, fra la sezione corrispondente al punto in cui la retta del carico permanente taglia l'asse della trave e la sezione corrispondente all'appoggio di destra.
- 253. Operazioni per la determinazione e pel tracciamento dell'inviluppo utile degli sforzi di taglio in un caso particolare. Si consideri il caso della trave a cinque travate diseguali, per la quale già si fecero le ricerche del numero 224 e si ritengano tutte le denominazioni che già in questo numero vennero stabilite.
- 4° Nell'ipotesi che il sovraccarico venga successivamente a trovarsi sulla prima, sulla seconda, sulla terza, sulla quarta e sulla quinta travata, bisogna determinare: gli sforzi di taglio per le sezioni corrispondenti ai sei appoggi, i quali sforzi di taglio sono sempre in numero di due per le sezioni corrispondenti ai mezzi degli appoggi intermedii; le ascisse dei punti in cui gli sforzi di taglio sono nulli per le travate con sovraccarico.
- a) Gli sforzi di taglio ν_4^4 , ν_2^4 , ν_5^4 , ν_4^4 e ν_5^4 per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, quando il sovraccarico è sulla prima, sono le derivate, coi segni cangianti e prese per rapporto alle ascisse z_4 , z_2 , z_3 , z_4 e z_5 ,

delle espressioni dei momenti inflettenti μ_4^4 , μ_2^4 , μ_5^4 , μ_5^4 e μ_5^4 date dalle equazioni (1) del numero 224, di maniera che risulta

$$\nu_{i}^{4} = \left[-\left(\frac{1}{2}a_{i} + \frac{n_{2}^{1}}{a_{i}}\right) + z_{i} \right] q$$

$$\nu_{2}^{1} = -\frac{n_{3}^{1} - n_{2}^{1}}{a_{2}} q$$

$$\nu_{3}^{1} = -\frac{n_{4}^{1} - n_{3}^{1}}{a_{3}} q$$

$$\nu_{4}^{1} = -\frac{n_{5}^{1} - n_{4}^{1}}{a_{4}} q$$

$$\nu_{5}^{1} = \frac{n_{5}^{1}}{a_{5}} q.$$

I due valori particolari N_i del N_i dello sforzo di taglio ν_i , per le sezioni rispettivamente corrispondenti all'appoggio di sinistra ed al mezzo dell'appoggio di destra della prima travata, si ottengono facendo $z_i = 0$ e $z_i = a_i$ nel secondo membro del valore di ν_i , per cui si ha

$$N_i' = -\left(\frac{1}{2}a_i + \frac{n_2!}{a_i}\right)q$$

$$N_{i}'' = \left(\frac{1}{2}a_{i} - \frac{n_{2}^{i}}{a_{i}}\right)q.$$

Gli sforzi di taglio ν_2^4 , ν_5^4 , ν_4^4 e ν_5^4 sono costanti e quindi sono essi rappresentati dalle ordinate di rette parallele all'asse della trave. N_4' è lo sforzo di taglio per la sezione corrispondente al primo appoggio, N_4'' e ν_2^4 i due sforzi di taglio per la sezione corrispondente al mezzo del secondo appoggio, ν_2^4 e ν_3^4 i due sforzi di taglio per la sezione corrispondente al mezzo del terzo appoggio, ν_3^4 e ν_4^4 i due sforzi di taglio per la sezione corrispondenti al mezzo del quarto appoggio, ν_4^4 e ν_5^4 i due sforzi di taglio per la sezione corrispondente al mezzo del quinto appoggio, ν_5^4 lo sforzo di taglio per la sezione corrispondente al mezzo del quinto appoggio, ν_5^4 lo sforzo di taglio per la sezione corrispondente all'ultimo appoggio.

Gli sforzi di taglio v,2, v,2, v,2, v,2 e v,2 per sezioni qualunque della

prima, della seconda, della terza, della quarta e della quinta travata, quando il sovraccarico è sulla seconda, sono le derivate, coi segni cangiati e prese per rapporto alle ascisse z_4 , z_2 , z_3 , z_4 e z_5 delle espressioni dei momenti inflettenti μ_1^2 , μ_2^2 , μ_3^2 , μ_4^2 e μ_8^2 date dalle equazioni (3) del numero 224, cosicchè risulta

$$\nu_1^2 = -\frac{n_2^2}{a_1} q$$

$$\nu_2^2 = \left[-\left(\frac{1}{2}a_2 + \frac{n_3^2 - n_2^2}{a_2}\right) + z_2 \right] q$$

$$\nu_3^2 = -\frac{n_4^2 - n_3^2}{a_3} q$$

$$\nu_4^2 = -\frac{n_5^2 - n_4^2}{a_4} q$$

$$\nu_5^2 = \frac{n_5^2}{a_5} q.$$

I due valori particolari N_2' ed N_2'' dello sforzo di taglio ν_2^2 , per le due sezioni rispettivamente corrispondenti al mezzo dell'appoggio di sinistra ed al mezzo dell'appoggio di destra della seconda travata, si ottengono ponendo nell'equazione che dà ν_2^2 , $z_2 = 0$ e $z_2 = a_2$, e quindi risulta

$$N_{2}' = -\left(\frac{1}{2}a_{2} + \frac{n_{3}^{2} - n_{2}^{2}}{a_{2}}\right)q$$

$$N_{2}'' = \left(\frac{1}{2}a_{2} - \frac{n_{3}^{2} - n_{2}^{2}}{a_{2}}\right)q.$$

Gli sforzi di taglio ν_4^2 , ν_5^2 , ν_h^2 e ν_5^2 sono costanti, e quindi sono essi rappresentati dalle ordinate di rette parallele all'asse della trave. Lo sforzo di taglio per la sezione corrispondente al primo appoggio è ν_4^2 ; ν_1^2 ed N_2 sono i due sforzi di taglio relativi alla sezione corrispondente al mezzo del secondo appoggio, N_2 ed ν_5^2 quelli per la sezione corrispondente al mezzo del terzo appoggio, ν_5^2 e ν_h^2 quelli per la sezione corrispondente al mezzo del quarto appoggio, ν_5^2 e ν_5^2 quelli per la sezione corrispondente al mezzo del quarto appoggio, ν_5^2 e ν_5^2 quelli per la sezione corrispondente al mezzo del quinto appog-

gio, e v5ª lo sforzo di taglio per la sezione corrispondente al sesto

ossia all'ultimo appoggio.

Gli sforzi di taglio ν_4^5 , ν_2^5 , ν_5^3 , ν_4^5 e ν_5^5 per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, quando il sovraccarico è sulla terza, sono le derivate, coi segni cangiati e prese per rapporto alle ascisse z_4 , z_2 , z_3 , z_4 e z_5 delle espressioni dei momenti inflettenti μ_4^5 , μ_2^5 , μ_3^5 , μ_4^5 e μ_5^5 date dalle equazioni (4) del numero 224, e quindi si ha

$$\nu_1^3 = -\frac{n_2^3}{a_1} q$$

$$\nu_2^3 = -\frac{n_3^3 - n_2^3}{a_2} q$$

$$\nu_3^3 = \left[-\left(\frac{1}{2}a_3 + \frac{n_4^3 - n_3^3}{a_3}\right) + z_3 \right] q$$

$$\nu_4^3 = -\frac{n_5^3 - n_4^3}{a_4} q$$

$$\nu_5^3 = \frac{n_5^3}{a_5} q.$$

I due valori particolari N_s' ed N_s'' che prende lo sforzo di taglio ν_s ⁵ per $z_s = 0$ e $z_s = a_s$, ossia per le due sezioni corrispondenti al punto di mezzo dell'appoggio di sinistra e dell'appoggio di destra della terza travata, sono

$$N_{3}' = -\left(\frac{1}{2}a_{3} + \frac{n_{4}^{3} - n_{3}^{3}}{a_{3}}\right)q$$

$$N_{3}'' = \left(\frac{1}{2}a_{3} - \frac{n_{4}^{3} - n_{3}^{3}}{a^{3}}\right)q.$$

Gli sforzi di taglio ν_4^5 , ν_2^5 , ν_4^8 e ν_5^5 hanno valori costanti, e ciascuno di essi è rappresentato dalle ordinate di una retta parallela all'asse della trave. Lo sforzo di taglio per la sezione corrispondente al primo appoggio è ν_4^5 ; i due sforzi di taglio per la sezione corrispondente al mezzo del secondo appoggio sono ν_4^5 e ν_2^5 ; per la sezione corrispondente al mezzo del terzo appoggio si verificano i due

sforzi di taglio ν_3^5 ed N_5' ; nella sezione corrispondente al mezzo del quarto appoggio hanno luogo gli sforzi di taglio N_5'' ed ν_4^5 ; si verificano gli sforzi di taglio ν_4^5 ed ν_5^5 nella sezione corrispondente al mezzo del quinto appoggio: e finalmente ν_5^5 costituisce lo sforzo di taglio per la sezione corrispondente all'ultimo appoggio.

Quando il sovraccarico trovasi sulla quarta travata, si possono ottenere gli sforzi di taglio $\nu_i^{\ a},\ \nu_z^{\ b},\ \nu_z^{\ b},\ \nu_b^{\ a}$ e $\nu_s^{\ b}$ per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, col fare le derivate, per rapporto alle ascisse $z_4,\ z_2,\ z_3,\ z_4$ e z_5 , dei valori di $\mu_i^{\ a},\ \mu_z^{\ b},\ \mu_z^{\ b},\ \mu_b^{\ a}$ e $\mu_s^{\ b}$ dati dalle equazioni (5) del numero 224, e col cangiare i segni a tutte queste derivate. Si ha dunque

$$\nu_1^4 = -\frac{n_2^4}{a_4}q$$

$$\nu_2^4 = -\frac{n_3^4 - n_2^4}{a_2}q$$

$$\nu_3^4 = -\frac{n_4^4 - n_3^4}{a_3}q$$

$$\nu_4^4 = \left[-\left(\frac{1}{2}a_4 + \frac{n_5^4 - n_4^4}{a_4}\right) + z_4\right]q$$

$$\nu_5^4 = \frac{n_5^4}{a_5}q.$$

I due valori particolari N_a' ed N_a'' dello sforzo di taglio $\nu_a{}^a$, quando nella sua espressione si faccia $z_a = 0$ e $z_a = a_a$, sono rispettivamente gli sforzi di taglio che si verificano nella sezione corrispondente al mezzo dell'appoggio di sinistra e nella sezione corrispondente al mezzo dell'appoggio di destra della quarta travata. Questi valori particolari sono dati da

$$\begin{aligned} N_4' &= -\left(\frac{1}{2}a_4 + \frac{n_5^4 - n_4^4}{a_4}\right)q \\ N_4'' &= \left(\frac{1}{2}a_4 - \frac{n_5^4 - n_4^4}{a_4}\right)q. \end{aligned}$$

Gli sforzi di taglio, che hanno valori costanti e che per conse-

guenza sono rappresentati dalle ordinate di rette parallele all'asse della trave sono $\nu_4{}^a$, $\nu_2{}^a$, $\nu_3{}^a$ e $\nu_5{}^a$. Lo sforzo di taglio $\nu_4{}^a$ è quella che si verifica nella sezione corrispondente al primo appoggio; le coppie di sforzi di taglio $\nu_4{}^a$ e $\nu_2{}^a$, $\nu_2{}^a$ e $\nu_5{}^a$, $\nu_5{}^a$ e $N_4{}'$, $N_4{}''$ e $\nu_5{}^a$ sono quelle che hanno luogo per le sezioni corrispondenti ai mezzi del secondo, del terzo, del quarto, del quinto appoggio; e finalmente si ha lo sforzo di taglio $\nu_5{}^a$ nella sezione che corrisponde all'ultimo appoggio.

Trovandosi il sovraccarico sulla quinta travata, si ha che gli sforzi di taglio ν_4^5 , ν_2^5 , ν_5^5 , ν_4^5 e ν_5^8 , per sezioni qualunque della prima, della seconda, della terza, della quarta e della quinta travata, sono le derivate, coi segni cangiati e per rapporto alle ascisse z_4, z_2, z_5, z_4 e z_5 , dei momenti inflettenti $\mu_4^5, \mu_2^5, \mu_3^5, \mu_4^5$ e μ_5^6 dati dalle equazioni (2) del numero 224. Segue da ciò, che si ha

$$\nu_{4}{}^{5} = -\frac{n_{2}{}^{5}}{a_{4}} q$$

$$\nu_{2}{}^{5} = -\frac{n_{3}{}^{5} - n_{2}{}^{5}}{a_{2}} q$$

$$\nu_{5}{}^{5} = -\frac{n_{4}{}^{5} - n_{5}{}^{5}}{a_{5}} q$$

$$\nu_{4}{}^{5} = -\frac{n_{5}{}^{5} - n_{4}{}^{5}}{a_{4}} q$$

$$\nu_5^5 = \left[-\left(\frac{1}{2}a_5 - \frac{n_5^5}{a_5}\right) + z_5 \right] q.$$

Alla sezione corrispondente al mezzo dell'appoggio di sinistra ed alla sezione corrispondente all'appoggio di destra della quinta travata corrispondono rispettivamente gli sforzi di taglio N_s ' ed N_s " rappresentati dal secondo membro dell'ultima equazione, quando all'ascissa z_s si diano i due valori particolari 0 ed a_s . Questi sforzi di taglio sono adunque dati da

$$N_{5}' = -\left(\frac{1}{2}a_{5} - \frac{n_{5}^{5}}{a_{5}}\right)q$$

$$N_{5}'' = \left(\frac{1}{2}a_{5} + \frac{n_{5}^{5}}{a_{5}}\right)q.$$

Gli sforzi di taglio che hanno valori costanti e che per conseguenza sono rappresentati dalle ordinate di rette parallele all'asse della trave sono $\nu_1^5, \nu_2^5, \nu_5^5$ e ν_4^5 . Nella sezione corrispondente al primo appoggio si verifica lo sforzo di taglio ν_4^5 ; le coppie di sforzi di taglio ν_4^5 e ν_2^5, ν_2^5 e ν_3^5, ν_3^5 e ν_4^5, ν_4^5 ed N_5 sono quelli che rispettivamente hanno luogo nelle sezioni corrispondenti ai mezzi del secondo, del terzo, del quarto, del quinto appoggio; e finalmente lo sforzo di taglio N_5 è quello a cui trovasi sottoposta la sezione corrispondente all'ultimo appoggio.

b) Eguagliando a zero le espressioni degli sforzi di taglio ν_4^4 , ν_2^2 , ν_5^3 , ν_h^a e ν_5^8 , si hanno le equazioni atte a calcolare le ascisse z_4^4 , z_2^2 , z_5^3 , z_h^a e z_5^5 determinanti su ciascuna travata la sezione in cui lo sforzo di taglio è nullo, quando su essa trovasi il sovraccarico.

2º Considerando ora il carico permanente sulla lunghezza dell'intiera trave, importa dedurre: gli sforzi di taglio per le sezioni corrispondenti ai diversi appoggi, i quali sforzi di taglio sono in numero di due per le sezioni corrispondenti ai mezzi degli appoggi intermedii; le ascisse dei punti in cui questi sforzi di taglio sono nulli.

a) Gli sforzi di taglio ν_4 , ν_2 , ν_3 , ν_h e ν_5 per sezioni qualun que della prima, della seconda, della terza, della quarta e della quinta travata, quando il carico permanente trovasi sulla trave intiera, sono le derivate, coi segni cangiati e per rapporto alle ascisse z_4 , z_2 , z_3 , z_4 e z_5 dei momenti inflettenti μ_1 , μ_2 , μ_5 , μ_4 e μ_5 dati dalle equazioni (6) del numero 224. Risulta adunque

$$\nu_{4} = \left[-\left(\frac{1}{2}a_{4} + \frac{n_{2}}{a_{4}}\right) + z_{4} \right] K q$$

$$\nu_{2} = \left[-\left(\frac{1}{2}a_{2} + \frac{n_{3} - n_{2}}{a_{2}}\right) + z_{2} \right] K q$$

$$\nu_{3} = \left[-\left(\frac{1}{2}a_{3} + \frac{n_{4} - n_{3}}{a_{3}}\right) + z_{3} \right] K q$$

$$\nu_{4} = \left[-\left(\frac{1}{2}a_{4} + \frac{n_{5} - n_{4}}{a_{4}}\right) + z_{4} \right] K q$$

$$\nu_{5} = \left[-\left(\frac{1}{2}a_{5} - \frac{n_{5}}{a_{5}}\right) + z_{5} \right] K q.$$

Facendo $z_i = 0$ e $z_i = a_i$ nella prima di queste equazioni, $z_2 = 0$ e

 $z_2 = a_2$ nella seconda, $z_3 = 0$ e $z_3 = a_3$ nella terza, $z_4 = 0$ e $z_4 = a_4$ nella quarta, $z_5 = 0$ e $z_5 = a_5$ nella quinta, ognuna di esse dà i dne valori particolari ν_4 ' e ν_4 '' di ν_4 , ν_2 ' e ν_2 '' di ν_2 , ν_3 ' e ν_3 '' di ν_3 , ν_4 ' e ν_4 '' di ν_4 , ν_5 ' e ν_5 '' di ν_5 , e si ottengono le formole

$$\nu_{4}' = -\left(\frac{1}{2}a_{4} + \frac{n_{2}}{a_{4}}\right) Kq$$

$$\nu_{4}'' = \left(\frac{1}{2}a_{4} - \frac{n_{2}}{a_{4}}\right) Kq$$

$$\nu_{2}'' = -\left(\frac{1}{2}a_{2} + \frac{n_{3} - n_{2}}{a_{2}}\right) Kq$$

$$\nu_{2}'' = \left(\frac{1}{2}a_{2} - \frac{n_{3} - n_{2}}{a_{2}}\right) Kq$$

$$\nu_{3}' = -\left(\frac{1}{2}a_{3} + \frac{n_{4} - n_{8}}{a_{3}}\right) Kq$$

$$\nu_{3}'' = \left(\frac{1}{2}a_{3} - \frac{n_{4} - n_{3}}{a_{3}}\right) Kq$$

$$\nu_{4}' = -\left(\frac{1}{2}a_{4} + \frac{n_{5} - n^{4}}{a_{4}}\right) Kq$$

$$\nu_{4}'' = \left(\frac{1}{2}a_{4} - \frac{n_{5} - n_{4}}{a_{4}}\right) Kq$$

$$\nu_{5}' = -\left(\frac{1}{2}a_{5} - \frac{n_{5}}{a_{5}}\right) Kq$$

$$\nu_{5}'' = \left(\frac{1}{2}a_{5} + \frac{n_{5}}{a_{5}}\right) Kq$$

Nella sezione corrispondente al primo appoggio si verifica lo sforzo di taglio ν_4' ; nelle sezioni corrispondenti ai mezzi del secondo, del terzo, del quarto e del quinto appoggio hanno rispettivamente luogo le coppie di sforzi di taglio ν_4'' e ν_2' , ν_2'' e ν_3' ν_3'' e ν_4' , ν_4'' e ν_5' ; finalmente nella sezione corrispondente al sesto appoggio si ha lo sforzo di taglio ν_5'' .

b) Le ascisse dei punti in cui sono nulli gli sforzi di taglio ν_4 , ν_2 , ν_3 , ν_4 e ν_5 , ossia le ascisse dei punti in cui le rette rappresentanti questi sforzi di taglio iucontrano gli assi delle diverse travate, si deducono eguagliando a zero i valori di questi stessi sforzi di taglio, ricavando i valori particolari ζ_4 di z_4 , ζ_2 di z_2 , ζ_3 di z_3 , ζ_4 di z_4 e ζ_5 di z_5 , che soddisfano alle equazioni così stabilite.

3° Una volta determinati gli sforzi di taglio per le sezioni corrispondenti agli appoggi, col considerare il sovraccarico su ciascuna delle cinque travate ed il carico permanente sulla lunghezza della trave intiera, e calcolate le ascisse dei punti in cui gli sforzi di taglio sono nulli, si può passare a costrurre, almeno in modo indicativo, le rette le cui ordinate rappresentano gli sforzi di taglio per tutte le fatte ipotesi. Così, considerando una travata qualunque, per esempio la seconda, si porti su una retta, assunta per rappresentare la direzione orizzontale dell'asse della trave, la distanza A, A, (fig. 268) rappresentante la lunghezza a, della seconda travata; mediante le ascisse zo2 e Zo si fissino i due punti individuali colle stesse lettere delle ascisse che li determinano sull'asse A, A, per rapporto all'origine A, pei punti A, ed A, si conducano due perpendicolari alla retta A, A,; al disotto di questa, sulle accennate perpendicolari, ed a partire dai punti A, ed A, si portino gli sforzi di taglio negativi per le sezioni corrispondenti ai mezzi degli appoggi, fra cui trovasi la seconda travata, ed al di sopra si portino gli sforzi di taglio positivi. Così facendo si determineranno: i punti ν24, N2, ν24 e ν2 al disotto della retta A2 A3 ed i punti ν23 e ν_o⁵ al di sopra della stessa retta sulla verticale passante per A_o; i punti ve e ve sotto la retta AeAs ed i punti ve , ve , Ne e ve al di sopra della stessa retta sulla verticale passante pel punto A3.

Le linee rette, le cui ordinate rappresentano gli sforzi di taglio per la seconda travata, sono: la $\nu_2^4\nu_2^4$, indicata col numero 1 e parallela all'asse A_2 A_3 , nell'ipotesi del sovraccarico sulla prima travata; la $N_2'N_2''$, indicata nel numero 2 ed incontrante l'asse della trave nel punto z_2^2 di ascissa $\overline{A_2} z_2^2 = z_2^2$, nell'ipotesi del sovraccarico sulla seconda travata; le $\nu_2^3\nu_2^3$, $\nu_3^4\nu_3^4$ e $\nu_2^5\nu_2^5$, indicate rispettivamente coi numeri 3, 4 e 5, e parallele all'asse A_2A_3 , nell'ipotesi del sovraccarico sulla terza, sulla quarta e sulla quinta travata; e finalmente la $\nu_2'\nu_2''$, indicata colla lettera P ed incontrante l'asse della trave nel punto ζ_2 d'ascissa $\overline{A_2\zeta_2} = \zeta_2$, nell'ipotesi del carico permanente sulla intiera trave. — I complessi delle linee portanti i numeri 1, 2, 3, 4 e 5 rappresentano rispettivamente,

mediante le loro ordinate, gli sforzi di taglio nelle cinque diverse ipotesi del sovraccarico sulla prima, sulla seconda, sulla terza, sulla quarta e sulla quinta travata; e l'assieme delle linee segnate colla lettera P dà, nelle sue ordinate, gli sforzi di taglio nell'ipotesi del carico permanente sulla trave intiera.

 4° Se prendesi sulla retta rappresentativa dell'asse della trave un punto qualunque β , e se, per la sezione corrispondente a questo punto , vuolsi il massimo degli sforzi di taglio positivi ed il massimo degli sforzi di taglio negativi, ossia le due ordinate, una dell'inviluppo degli sforzi di taglio positivi e l'altra dell'inviluppo degli sforzi di taglio negativi, per il principio stato enunciato nel numero 228, altro non si deve fare che condurre per β la verticale $v \beta v'$; osservare che questa verticale taglia le rette 1 e 4 nei punti b_4 e b_4 al di sopra dell'orizzontale A_4A_6 e le rette 2, 3, 5 e 10 nei punti 12, 13, 13, 14 e 15 al di sotto della stessa orizzontale; assumere, come ordinate dell'inviluppo degli sforzi di taglio positivi, la somma

$$\overline{\beta b_1} + \overline{\beta b_4};$$

ed assumere, come ordinata dell'inviluppo degli sforzi di taglio negativi, la somma

$$\overline{\beta b_2} + \overline{\beta b_3} + \overline{\beta b_5} + \overline{\beta b_5}$$

L'indicata costruzione fa vedere come facilmente si possano trovare per ciascuna travata, per l'inviluppo degli sforzi di taglio positivi e per l'inviluppo degli sforzi di taglio negativi: le ordinate corrispondenti ai punti d'appoggio; le ordinate corrispondenti ai punti in cui ciascuna retta dei sovraccarichi taglia l'asse della trave; e le ordinate corrispondenti ai punti in cui le rette del carico permanente tagliano l'asse della trave. Occorrendo di dover prendere il valore particolare dell'espressione generale d'uno sforzo di taglio o della somma di più sforzi di taglio per una data sezione, precisamente come già venne indicato pei momenti inflettenti, si porrà fra parentesi l'espressione generale, ed al piede della parentesi di destra si collocherà quell'ascissa che precisa quella sezione per cui vuolsi il valore particolare di uno sforzo di taglio o della somma di più sforzi di taglio.

a) Le ordinate dell'inviluppo degli sforzi di taglio positivi per le sezioni corrispondenti agli appoggi di sinistra della prima, della seconda, della terza, della quarta e della quinta travata sono rispettivamente rappresentate dai valori P,', P,', P,', P,' e P,' da calcolarsi colle formole

$$P_{4}^{s} = \nu_{4}^{s} + \nu_{4}^{s}$$

$$P_{9}^{s} = \nu_{9}^{3} + \nu_{2}^{s}$$

$$P_{3}^{s} = \nu_{3}^{1} + \nu_{3}^{4}$$

$$P_{4}^{s} = \nu_{4}^{2} + \nu_{4}^{5}$$

$$P_{5}^{s} = \nu_{5}^{1} + \nu_{5}^{3};$$

e le ordinate P, a, P, d, P, d, P, d e P, d dell'inviluppo degli sforzi di taglio positivi per le sezioni rispettivamente corrispondenti agli appoggi di destra della prima, della seconda, della terza, della quarta e della quinta travata, sono date da

$$\begin{split} &P_{4}^{\ d} = N_{4}'' + \nu_{4}^{\ 2} + \nu_{4}^{\ 4} + \nu_{4}'' \\ &P_{2}^{\ d} = N_{2}'' + \nu_{2}^{\ 3} + \nu_{2}^{\ 5} + \nu_{2}'' \\ &P_{3}^{\ d} = N_{3}'' + \nu_{3}^{\ 1} + \nu_{3}^{\ 4} + \nu_{3}'' \\ &P_{4}^{\ d} = N_{4}'' + \nu_{4}^{\ 2} + \nu_{4}^{\ 5} + \nu_{4}'' \\ &P_{6}^{\ d} = N_{6}'' + \nu_{5}^{\ 1} + \nu_{5}^{\ 3} + \nu_{5}''. \end{split}$$

Le ordinate dell'inviluppo degli sforzi di taglio negativi per le sezioni corrispondenti agli appoggi di sinistra della prima, della seconda, della terza, della quarta e della quinta travata, sono rispettivamente rappresentati dai valori N₁, N₂, N₃, N₄ ed N₅ dati dalle formole

$$\begin{split} N_1^s &= N_1' + \nu_4^3 + \nu_4^5 + \nu_4' \\ N_2^s &= N_2' + \nu_2^4 + \nu_2^4 + \nu_2' \\ N_3^s &= N_3' + \nu_3^2 + \nu_3^5 + \nu_3' \\ N_4^s &= N_4' + \nu_4^4 + \nu_4^3 + \nu_4' \\ N_5^s &= N_5' + \nu_5^2 + \nu_5^4 + \nu_5'; \end{split}$$

e le ordinate $N_1^{\ d}$, $N_2^{\ d}$, $N_3^{\ d}$, $N_4^{\ d}$ ed $N_5^{\ d}$ dell'inviluppo degli sforzi di taglio negativi per le sezioni, le quali rispettivamente corrispondono agli appoggi di destra della prima, della seconda, della terza, della quarta e della quinta travata, risultano

$$\begin{aligned}
 N_4^d &= \nu_4^3 + \nu_4^5 \\
 N_2^d &= \nu_2^1 + \nu_2^4 \\
 N_3^d &= \nu_3^2 + \nu_3^5 \\
 N_4^d &= \nu_4^1 + \nu_4^3 \\
 N_5^d &= \nu_5^2 + \nu_5^4.
 \end{aligned}$$

b) Stando alla figura 263, risulta che le cinque ordinate dell'inviluppo degli sforzi di taglio positivi, corrispondenti ai punti in cui le cinque rette dei sovraccarichi tagliano l'asse della trave, sono le d_4' , d_2' , d_3' , d_4' , d_5' date da

$$d_{4}' = (\nu_{4}^{2} + \nu_{1}^{4} + \nu_{4})_{z_{4}^{1}}$$

$$d_{2}' = (\nu_{2}^{3} + \nu_{2}^{5} + \nu_{2})_{z_{2}^{2}}$$

$$d_{3}' = (\nu_{3}^{1} + \nu_{3}^{4} + \nu_{3})_{z_{8}^{3}}$$

$$d_{4}' = \nu_{4}^{2} + \nu_{4}^{5}$$

$$d_{5}' = \nu_{5}^{1} + \nu_{5}^{3};$$

che le cinque ordinate dell'inviluppo degli sforzi di taglio negativi per gli stessi punti, ammettono i valori d_4'' , d_2'' d_3'' d_4'' e d_5'' risultanti da

$$d_{4}'' = \nu_{4}^{3} + \nu_{4}^{5}$$

$$d_{2}'' = \nu_{2}^{1} + \nu_{2}^{4}$$

$$d_{3}'' = \nu_{3}^{2} + \nu_{3}^{5}$$

$$d_{4}'' = (\nu_{4}^{1} + \nu_{4}^{3} + \nu_{4})_{2_{4}^{4}}$$

$$d_{5}'' = (\nu_{5}^{2} + \nu_{5}^{4} + \nu_{5})_{2_{5}^{5}};$$

c) Le cinque ordinate dell'inviluppo degli sforzi di taglio positivi per punti in cui le rette del carico permanente tagliano l'asse della trave, per la proprietà del numero 251, sono eguali alle cinque ordinate dell'inviluppo degli sforzi di taglio negativi per gli stessi punti, e, per quanto risulta dalla figura 263, i loro valori assoluti e_1' , e_2' , e_3' , e_4' ed e_3' sono dati dalle ordinate dell'inviluppo degli sforzi di taglio positivi, per le cinque sezioni determinate dai cinque punti in cui le rette del carico permanente tagliano l'asse della trave. Si ha adunque

$$\begin{split} &e_{1}{'} = \nu_{1}{}^{2} + \nu_{1}{}^{4} = -(\nu_{1}{}^{1} + \nu_{1}{}^{3} + \nu_{1}{}^{5})_{\zeta_{1}} \\ &e_{2}{'} = \nu_{2}{}^{3} + \nu_{2}{}^{5} = -(\nu_{2}{}^{1} + \nu_{2}{}^{2} + \nu_{2}{}^{4})_{\zeta_{2}} \\ &e_{3}{'} = \nu_{3}{}^{1} + \nu_{3}{}^{4} = -(\nu_{3}{}^{2} + \nu_{3}{}^{3} + \nu_{3}{}^{5})_{\zeta_{3}} \\ &e_{1}{'} = (\nu_{1}{}^{2} + \nu_{1}{}^{4} + \nu_{1}{}^{5})_{\zeta_{4}} = -(\nu_{1}{}^{1} + \nu_{1}{}^{3}) \\ &e_{5}{'} = (\nu_{5}{}^{1} + \nu_{5}{}^{3} + \nu_{5}{}^{5})_{\zeta_{5}} = -(\nu_{5}{}^{2} + \nu_{5}{}^{4}). \end{split}$$

5° Le operazioni, di cui si è parlato, conducono a trovare le coordinate dei vertici, tanto dell'inviluppo degli sforzi di taglio positivi, quanto dell'inviluppo degli sforzi di taglio negativi; e, mediante queste coordinate, riesce facile la loro costruzione. Perciò s'incomincia dal portare a sito i punti di cui vennero determinate le coordinate, i quali per ciascuno dei due inviluppi sono in numero di quattro per ogni travata. Così, prendendo per la prima travata le ascisse $\overline{A_i \zeta_i} = \zeta_i$ ed $\overline{A_i z_i} = z_i$ nella scala delle distanze orizzontali, e portando nella scala che vuolsi adottare per la rappresentazione degli sforzi di taglio le ordinate A, P, = P, ed A, N, = N, $\overline{z_i e_i'} = \overline{z_i e_i''} = e_i', \overline{z_i' d_i'} = d_i' e \overline{z_i' d_i''}, = d_i'', \overline{A_i P_i}^d = P_i^d \text{ ed } \overline{A_i N_i}^d$ = N, d, nella spezzata P, e' d, P, d si ha l'inviluppo degli sforzi di taglio positivi e nella spezzata N. e," d," N, si ottiene l'inviluppo degli sforzi di taglio negativi. Analogamente, la spezzata P. e. d. P. d rappresenta l'inviluppo degli sforzi di taglio positivi, e la spezzata No eo ' do ' No l'inviluppo degli sforzi di taglio negativi per la seconda travata. Ciascuno dei due inviluppi di ciascuna travata consta di tre lati, ed uno di questi tre lati è parallelo all'asse della trave.

6° Resta finalmente a dedursi l'inviluppo utile degli sforzi di

taglio, ossia quella spezzata le cui ordinate rappresentano in ciascuna sezione il massimo valore assoluto degli sforzi di taglio che in essa si possono verificare. Basta perciò osservare: che le ordinate dell'inviluppo degli sforzi di taglio positivi sono maggiori delle ordinate dell'inviluppo degli sforzi di taglio negativi per le parti delle diverse travate, le quali trovansi a destra della loro sezione corrispondente al punto in cui la retta del carico permanente taglia l'asse della trave : che le ordinate dell'inviluppo degli sforzi di taglio negativi sono maggiori delle ordinate dell'inviluppo degli sforzi di taglio positivi, per le parti delle diverse travate poste a sinistra della stessa sezione; e che le ordinate dell'inviluppo degli sforzi di taglio positivi sono eguali alle ordinate dell'inviluppo degli sforzi di taglio negativi, per le sezioni corrispondenti ai punti in cui le rette del carico permanente tagliano l'asse della trave, e quindi per le sezioni corrispondenti ai punti ζ_1 , ζ_2 , ζ_3 , ζ_4 e ζ_5 . Segue da ciò che, per avere la linea inviluppo utile, si possono riprodurre al di sotto dell'asse A, A, della trave quelle parti degli inviluppi degli sforzi di taglio positivi che trovansi a destra delle sezioni corrispondenti agli ultimi indicati punti. Per la prima travata si riproduce e'd,' P, d in $e_1''d_1'''P_1$, per la seconda travata si riproduce $e_2'd_2'P_2$ in $e_2''d_2'''P_2$ e si procede nella stessa maniera per tutte le altre travate. Questa riproduzione si fa ribattendo al di sotto dell'asse della trave le ordinate che cadono al di sopra; così, si determina il punto $d_2^{"}$ corrispondente di d_2' col prendere $\overline{z_2^2 d_2'''} = \overline{z_2^2 d_2'}$.

La determinazione degli inviluppi degli sforzi di taglio notevolmente si semplifica nelle ordinarie circostanze della pratica in cui, o le travate sono tutte eguali fra di loro, oppure, essendo eguali fra di loro le due travate estreme, lo sono pure le intermedie, ma diverse dalle prime. Le semplificazioni che risultano in questi casi, non che quella la quale presentasi quando la trave consta di più di otto travate, sono quelle stesse che vennero indicate nel numero 225 parlando degli inviluppi dei momenti inflettenti.

234. Determinazione delle pareti verticali delle travi longitudinali principali. — Per questa determinazione serve l'inviluppo utile degli sforzi di taglio. Perciò, come già venne detto nel numero 214, per ogni travata si descrive una linea poligonale avente tutti gli angoli retti, co' suoi vertici fuori e poco distanti dalla spezzata costituente il citato inviluppo utile; e le ordinate di questa spezzata si assumono siccome rappresentanti gli sforzi di taglio da porsi nelle equazioni determinatrici delle pareti verticali.

Supponendo che trattisi di una trave longitudinale con doppia

parete verticale reticolata (fig. 267), e che gli inviluppi utili degli sforzi di taglio siano quelli rappresentati nella figura 268, ecco come si procede per la determinazione della superficie delle sezioni rette dei diversi pezzi componenti il traliccio per una travata qualunque, per esempio per la seconda. Si descrive la linea poligonale $ab\ cd\ ef\ g\ hi\ kl\ m$ cogli angoli retti e co' suoi vertici esteriori all'inviluppo $N_2^s\ e_2^{\ \prime\prime}\ d_2^{\ \prime\prime\prime}\ P_2$, ma poco distanti da questo. I lati poi della indicata linea poligonale, che sono paralleli alla $A_4\ A_6$, ben di frequente si pongono equidistanti e si assumono eguali fra di loro, in modo che la loro lunghezza sia multipla della distanza fra i punti d'attacco del traliccio; ed è solo per il lato ef, maggiormente vicino ad $A_4\ A_6$ che sovente si assume con lunghezza maggiore degli altri.

Dopo di ciò, essendo

α l'angolo acuto misurante l'inclinazione degli assi dei diversi pezzi del traliccio all'orizzonte,

m il numero dei pezzi del traliccio tagliati da una sezione retta qualunque della trave,

ω la superficie della sezione retta di un pezzo qualunque del traliccio,

N lo sforzo di taglio per una sezione qualunque della trave,

nR il prodotto del coefficiente di rottura longitudinale del ferro costituente i pezzi del traliccio pel relativo coefficiente di stabilità, si applicherà l'equazione di stabilità

$$nR = \frac{\frac{1}{2}N}{m \omega \operatorname{sen} \alpha},$$

nella quale, pel caso di una trave con doppia parete reticolata, si deve mettere la metà dello sforzo di taglio N, giacchè questo sforzo di taglio corrisponde, non ad una sola, ma a due pareti verticali perfettamente eguali. In quanto al valore di n, si assume esso eguale alla frazione $\frac{4}{6}$, e si prende in ragione di 30 chilogrammi per millimetro quadrato il valore di R.

Ponendo nell'ultima equazione i valori noti di n, R, m ed α , e quindi dando successivamente ad N i valori degli sforzi di taglio somministrati dalle ordinate della spezzata abcdefghiklm in corrispondenza delle due sezioni rette della travata in cui cessano le sue

parti insistenti agli appoggi, e delle sezioni rette corrispondenti ai punti d'attacco dei diversi pezzi del traliccio, riesce facile determinare le superficie « delle sezioni rette dei pezzi medesimi per una parete verticale. I due sforzi di taglio, corrispondenti a quelle sezioni rette in cui cessano le parti insistenti agli appoggi, determinano le superficie della sezione retta da assegnarsi a tutti i pezzi del traliccio intersecati dalla stessa sezione; e gli sforzi di taglio per le sezioni rette della travata, corrispondenti ai diversi punti d'attacco del traliccio, determinano, in conformità di quanto venne detto nel numero 200 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, le superficie delle sezioni rette di due soli pezzi del traliccio, che sono i due inclinati verso il mezzo della travata e partenti, uno dall'attacco inferiore e diretto dal basso all'alto, l'altro dall'attacco superiore e diretto dall'alto al basso.

L'indicato metodo per la determinazione del traliccio di una delle pareti verticali della seconda travata, serve pure per le altre travate; e, una volta ottenute le superficie delle sezioni rette dei pezzi di traliccio componenti una parete della trave, si hanno pure quelle da assegnarsi ai pezzi componenti l'altra parete, giacchè devono essere perfettamente identici i pezzi aventi rispettivamente lo stesso posto nelle due pareti.

Trovate le superficie delle sezioni rette dei diversi pezzi componenti le pareti reticolate, si osserverà se queste corrispondono a ferri facili a trovarsi in commercio per soddisfare alle esigenze delle costruzioni, e, nel caso che ciò non avvenga, si prescriveranno quei ferri di commercio che danno sezioni rette immediatamente superiori a quelle somministrate dal calcolo.

Nei casi di travi longitudinali principali con pareti verticali piene, si determineranno le grossezze di queste lamiere, tracciando prima le linee poligonali cogli angoli retti ed esteriori agli inviluppi utili degli sforzi di taglio, e procedendo quindi come venne indicato nel numero 214.

235. Determinazione delle sezioni orizzontali delle travi longitudinali principali in corrispondenza degli appoggi. — Queste sezioni orizzontali devono presentare superficie non inferiori a quelle che si assegnerebbero a prismi retti di ferro, atti a permanentemente e stabilmente sopportare pressioni, nel senso dei loro assi, eguali alle massime reazioni degli appoggi contro la trave. Per quanto si è dedotto nel numero 118 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, la reazione di un

appoggio qualunque per un solido orizzontalmente collocato su più appoggi e caricato di pesi, è la somma dei valori assoluti dei due sforzi di taglio che hanno luogo nella sezione corrispondente al mezzo dell'appoggio che si considera, quando questa sezione si consideri siccome simultaneamente appartenente alla travata di sinistra ed alla travata di destra. Segue da ciò che, dovendosi considerare la massima reazione di un appoggio qualunque, si potrà essa dedurre col prendere la somma dei valori assoluti dei due sforzi di taglio, uno appartenente all'inviluppo degli sforzi di taglio positivi e l'altro all'inviluppo degli sforzi di taglio negativi. Se adunque si considera la trave, per la quale nella figura 268 vennero eseguiti l'inviluppo degli sforzi di taglio positivi, l'inviluppo degli sforzi di taglio negativi e l'inviluppo utile, e se chiamansi ρ_4 , ρ_9 , ρ_5 , ρ_4 , ρ_5 e ρ₆ le massime reazioni possibili del primo, del secondo, del terzo, del quarto, del quinto e del sesto appoggio, si ha: che i valori di ρ₄, ρ₂, ρ₅, ρ₆, ρ₅ ed ρ₆ sono rispettivamente rappresentati dalle rette $\overline{A_4 N_4^s}, \overline{P_4^d N_2^s} = \overline{A_2 P_4} + \overline{A_2 N_2^s}, \overline{P_3^d N_3^s} = \overline{A_3 P_2} + \overline{A_3 N_3^s}, \overline{P_3^d N_4^s} = \overline{A_4 P_3}$ $+\overline{A_a}\overline{N_a}^s$, $\overline{P_a}^t\overline{N_s}^s = \overline{A_s}\overline{P_a} + \overline{A_s}\overline{N_s}^s$ e $\overline{A_6}\overline{P_s}^t$, misurate sulla scala che ha servito per la valutazione degli sforzi di taglio. Se poi si vogliono i valori numerici delle indicate reazioni massime, sono essi dati da

$$ho_4 = -N_4^s$$
 $ho_2 = P_4^d - N_2^s$
 $ho_3 = P_2^d - N_3^s$
 $ho_4 = P_3^d - N_4^s$
 $ho_5 = P_4^d - N_5^s$
 $ho_6 = P_8^d$.

Ottenuta la massima reazione ρ di un appoggio qualunque, si determina la superficie Ω della sezione orizzontale della trave in corrispondenza dell'appoggio medesimo, mediante l'equazione di stabilità

$$nR = \frac{\rho}{\Omega};$$

cosicchè, nel caso della trave a cinque travate, le superficie Ω_{i} , Ω_{2} ,

 Ω_s , Ω_s , Ω_s ed Ω_s delle sezioni orizzontali della trave in corrispondenza del primo, del secondo, del terzo, del quarto, del quinto e del sesto appoggio sono rispettivamente date dalle equazioni di stabilità

$$nR = \frac{\rho_4}{\Omega_4}$$
, $nR = \frac{\rho_3}{\Omega_2}$, $nR = \frac{\rho_5}{\Omega_5}$, $nR = \frac{\rho_6}{\Omega_5}$, $nR = \frac{\rho_6}{\Omega_5}$.

Il valore di n si assume ordinariamente eguale ad 1/6 ed il valore di R quasi sempre si prende in ragione di 30 chilogrammi per ogni millimetro quadrato, se pure non si crede di diminuirlo e di portarlo da 30 a 24 chilogrammi.

236. Piedritti dei ponti in ferro a travate rettilinee. - Le pile sono quasi sempre di struttura murale, ma s'incontrano alcuni esempi in cui sono esse costituite da due colonne formate con anelli di ghisa o di ferro, e piene nel loro interno di calcestruzzo. Le due colonne di una stessa pila sono disposte coi loro assi in un piano verticale perpendicolare all'asse del ponte, sono rilegate da appositi ferri, disposti in modo da formare una specie di traliccio, sono generalmente spaziate da asse ad asse, come le travi longitudinali principali del ponte, e superiormente portano gli apparecchi destinati a ricevere le dette travi, permettendo gli allungamenti e gli accorciamenti causati dalle variazioni di temperatura. Le dimensioni delle pile generalmente si determinano colla condizione che esse siano capaci di stabilmente e permanentemente sopportare sè stesse e le pressioni massime che possono ricevere dalle indicate travi, le quali pressioni massime sono in intensità eguali alle reazioni massime degli appoggi, delle quali si parlò nel precedente numero.

Per quanto spetta alle spalle, che generalmente sono di struttura murale, conviene fare due ipotesi sulla determinazione della loro grossezza. — La prima ipotesi consiste nell'ammettere che esse debbano resistere: alle azioni dei loro pesi; alle pressioni verticali le quali loro possono venire trasmesse dalle travi longitudinali principali quando non esiste sovraccarico, le quali pressioni sono in intensità eguali alle reazioni degli appoggi estremi; alle spinte orizzontali, che, in conseguenza delle indicate pressioni, si verificano alle loro sommità per resistenza d'attrito che si sviluppa sugli scorritoi o sulla faccia d'appoggio dei rulli, allorquando le travi si accorciano per abbassamenti di tem-

peratura; alle spinte che le spalle ricevono dalla terra, la quale agisce contro di esse. Tenendo conto di queste quattro forze, le prime due delle quali operano dall'alto al basso, mentre le altre due sono dirette verso il mezzo del ponte, si può determinare la grossezza delle spalle, ponendo le due condizioni che non abbia luogo in una loro sezione orizzontale qualunque, nè rottura per scorrimento, nè rottura per rovesciamento. - La seconda ipotesi si riduce a considerare le stesse quattro forze, ritenendo che le pressioni trasmesse dalle travi alle spalle siano eguali in intensità alle massime reazioni degli appoggi estremi, da determinarsi come si è detto nel precedente numero. Quando si fa questa seconda ipotesi, conviene principalmente accertarsi se non esiste pericolo di schiacciamento dei materiali sugli spigoli delle basi attorno ai quali tende manifestarsi la rottura per rovesciamento. - Le indicate due ipotesi condurranno a valori differenti delle grossezze delle spalle, e sarà la grossezza maggiore quella che definitivamente bisognerà adottare.

. Indicando con

R la pressione che una spalla riceve dalle travi longitudinali principali, con

a l'altezza degli apparecchi di dilatazione per rapporto alla base della spalla, con

f il coefficiente d'attrito tra le superficie in contatto delle piastre costituenti gli scorritoi, oppure i rulli, e la faccia superiore della piastra su cui sono collocati,

si ha: che la spinta orizzontale Q, la quale dalle travi longitudinali di un ponte in ferro a travate rettilinee può essere trasmessa ad una spalla, viene data da

Q = fR;

e che il momento Qa di questa spinta, rispetto alla base della spalla, risulta

$$Qa = faR$$
.

Alcuni ingegneri assumono f=0.50, nel caso di travi longitudinali poste in opera sopra scorritoi; e prendono il valore dello stesso coefficiente d'attrito f variabile fra 0.05 e 0.05, nel caso di travi longitudinali collocate sopra rulli col diametro di metri 0.10 a metri 0.15.

Vi sono parecchi costruttori che, nel determinare la grossezza delle spalle dei ponti in ferro a travate rettilinee, prevedono anche la possibilità della non esistenza della parte metallica. Suppongono che le spalle debbano sopportare solamente le spinte delle terre che ad esse verranno addossate, le considerano come muri di sostegno, e adottano le grossezze che ne risultano ogni qual volta le trovino maggiori di quelle calcolate colle due ipotesi già precedentemente indicate.

La resistenza d'attrito ehe si sviluppa sugli scorritoi e sulla faccia d'appoggio dei rulli, allorquando le travi si accorciano o si allungano per variazioni di temperatura, può notevolmente influire sulla stabilità delle pile molto alte, la cui grossezza si deve allora determinare considerandole come piedritti destinati a sopportare: il loro peso; la pressione massima che possono ricevere dalle travi longitudinali; e la resistenza d'attrito corrispondente a questa pressione.

237. Osservazioni sulla convenienza relativa delle travi continue e delle travi discontinue. - Le resistenze che vengono provocate nelle varie parti delle travi continue, al passaggio di carichi che cambiano posizione da un istante all'altro, sono talvolta resistenze all'estensione e talvolta resistenze alla compressione. Questa inversione di resistenze non è favorevole alla buona conservazione del metallo, e sotto tale rapporto i ponti in ferro a travate solidarie sono meno convenienti di quelli a travate indipendenti, giacchè le diverse parti di queste ultime, qualunque sia la posizione del sovraccarico, trovansi sempre assoggettate o a soli sforzi di trazione o a soli sforzi di pressione. Questo spiega, perchè alcuni costruttori alle travate solidarie preferiscono le travate indipendenti. Così procedendo, è giuocoforza impiegare maggior quantità di metallo nella formazione delle travi longitudinali principali, ma per contro si ha il vantaggio di produrre pressioni un po' minori su alcuni piedritti. Finalmente i ponti con travate indipendenti senza inconvenienti possono subire i lievi abbassamenti a cui sono soggette le spalle e le pile.

Se ben si considera però che i ponti a travate solidarie permettono di realizzare la massima economia di metallo, ben si spiega perchè i moderni costruttori, quasi senza eccezione, abbiano abbandonato il sistema delle travate indipendenti, il quale viene considerato come conveniente pei soli ponti che può avvenire di dover tagliare per scopi militari. Per questi ponti importa che le travate siano indipendenti, affinchè la distruzione di una di esse non porti con sè la distruzione delle travate vicine.

Vi sono parecchi esempi di ponti metallici a più travate, le quali

sono indipendenti soltanto su alcuni appoggi. I più rimarchevoli sono : il ponte di Dirschau, sulla Vistule, numerante sei travate, aventi ciascuna le portata di metri 152,51, indipendenti sul terzo e sul quinto appoggio; il ponte Vittoria, sul Saint-Laurent, a Montréal, composto di venticinque travate. In quest'ultimo ponte, la travata centrale, lunga metri 100,58, è indipendente, e le altre ventiquattro, ciascuna delle quali ha la lunghezza di metri 70,07, sono indipendenti sugli appoggi di due in due, in modo da formare dodici travi continue di due travate, simmetricamente poste da ciascun lato della travata centrale. Questa soluzione mista, in cui le travate sono solidarie su alcuni appoggi ed indipendenti su alcuni altri, sembra poco commendevole in quanto che riunisce gli inconvenienti delle travate solidarie e delle travate indipendenti, senza presentare vantaggi speciali; essa conduce ad una grande ineguaglianza di pressioni sui piedritti; non permette una grande economia di metallo, ed è causa che in alcune parti delle travi vengano cimentate resistenze di diversa natura, quando il sovraccarico si sposta.

Nei ponti molto lunghi però, se vuolsi che le variazioni di lunghezza delle travi longitudinali principali, pei cangiamenti di temperatura, non si facciano sentire in modo troppo sensibile alle loro estremità, conviene interrompere la continuità di dette travi su alcuni appoggi. Così, pel ponte sul Po presso Mezzanacorti, il quale consta di dieci travate la cui portata tra mezzo e mezzo di due pile successive è di metri 76,10, le travi longitudinali principali sono indipendenti sul piedritto di mezzo, di modo che l'intiero ponte si presenta siccome due ponti distinti, ciascuno dei quali consta di cinque travate solidarie.

258. Collocamento dei ponti in ferro a travate rettilinee sui loro appoggi — Molti sono i procedimenti che vennero posti in pratica per lo stabilimento dei ponti in ferro a travate rettilinee sui loro piedritti; ed ecco un breve cenno dei principali e di quelli che hanno ricevuto più numerose applicazioni.

Elevando una costruzione provvisoria di legname, ossia un ponte di servizio fino all'altezza alla quale si trovano gli appoggi delle travi, si può operare la riunione delle varie parti di un ponte nel sito stesso in cui definitivamente devono rimanere, e così si adotta un sistema di collocamento in opera in tutto analogo a quello che si segue nella costruzione dei ponti di muratura e dei ponti di legname. Questo procedimento, che è il più facile ed il più sicuro per condurre allo scopo, conviene quando il ponte di servizio non deve essere troppo elevato, quando non si possono incontrare gravi

difficoltà nella sua costruzione e quando non esige una troppo ragguardevole spesa.

Un secondo metodo consiste nell'impiego di un ponte di servizio, scorrevole su castelli di legname al livello cui deve essere posto in opera il ponte in ferro, e lungo più di una travata. Questo ponte di servizio deve constare di due robuste travi longitudinali, spaziate in modo che fra esse possa stare l'intiera larghezza del ponte da costruirsi, e deve presentare tali disposizioni che fra l'una e l'altra di queste travi longitudinali si possa stabilire e togliere un sufficiente numero di travi trasversali. Trovandosi il ponte di servizio fra il primo ed il secondo piedritto, sulle sue travi trasversali si costruisce la prima travata, in modo che le sue estremità abbiano appoggio sui piedritti; si tolgono le travi trasversali del ponte di servizio, si fanno avanzare le travi lungitudinali di questo fra il secondo ed il terzo appoggio; si pongono a sito le sue travi trasversali; si fa la seconda travata, collegandola alla prima in corrispondenza del secondo appoggio; e così si continua finchè l'intiero ponte in ferro sia posto in opera. Questo procedimento, venne applicato in diverse circostanze, conviene nei fiumi in cui le acque hanno sempre una ragguardevole altezza, ed in cui risulterebbe eccessivamente dispendioso un ponte di servizio su tutta la lunghezza del ponte da costruirsi.

Un terzo metodo consiste nel costrurre le diverse travate del ponte presso le rive del corso d'acqua da attraversarsi sopra apposite barche convenientemente riunite, nel far venire il complesso delle barche sopportanti ciascuna travata ai piedi dei rispettivi piedritti, e nell'operare il sollevamento della travata ed il suo collocamento sui piedritti mediante convenienti meccanismi. Per evitare questo sollevamento, che costituisce sempre un lavoro difficile e delicato, quando la disposizione delle rive e le altezze dei piedritti lo permettano, si possono dare alle barche forme speciali per ottenere di costrurre su esse le travate ad un'altezza di qualche poco maggiore di quella a cui si trovano i punti d'appoggio. Il castello galleggiante, colla travata su esso costrutta, si fa venire ai piedi dei rispettivi piedritti, lasciando entrare acqua in appositi recipienti che si trovano nella parte immersa di detto castello; si può ottenere che esso si abbassi e che lasci così la travata sui suoi appoggi. Quando due o più travate successive sono a posto, riesce facile il congiungerle, se le travi longitudinali vennero calcolate nell'ipotesi della solidarietà delle diverse travate.

Un quarto metodo, molto usato dai moderni costruttori, e che

quasi totalmente dispensa dall'impiego di opere provvisorie, consiste : nell'operare la riunione delle varie parti del ponte sulle due rive e sul prolungamento dell'asse del ponte medesimo; nello stabilire l'intiero sistema sopra rotelle, sopra rulli o sopra carrelli scorrevoli su guide di ferro, e nello spingerlo avanti da un piedritto all'altro, finchè abbia raggiunto una pila centrale, od anche la sponda opposta, se il lavoro si fa da una sola parte. Nel fare quest'operazione, accuratamente bisogna procurare, che la parte di ponte che resta sporgente fra un piedritto e l'altro, non s'infletta sotto l'azione del proprio peso, e per raggiungere lo scopo si ha ricorso ad un apposito armamento, che si stabilisce sulle travi longitudinali. per una parte non minore di quella che deve rimanere sporgente nel passaggio da un piedritto al successivo. I rulli che si devono porre sulle pile per far scorrere le travate, non sono gli stessi rulli i quali devono permettere le dilatazioni quando l'opera sarà finita; ma sono appositi rulli di trazione, generalmente disposti in modo da essere possibile di farli girare intorno ai loro assi mediante leve o mediante funi avvolgentisi a puleggie di cui sono muniti. Quando le travate sono a posto, mediante opportuni congegni si possono abbassare e togliere i detti rulli di trazione, e lasciare l'intiero ponte su' suoi appoggi definitivi. Importa che le capocchie dei chiodi delle tavole inferiori non pongano ostacolo all'avanzamento delle travate, e, per raggiungere lo scopo, può servire la costante interposizione di robuste piastre fra i rulli e le dette tavole, oppure l'impiego di rulli con scanalature trasversali in corrispondenza delle file dei chiodi.

Quest'ultimo metodo, ardito ed imponente, presenta serie difficoltà, e, a quelle risultanti dalla natura stessa del lavoro, viene spesso ad aggiungersi il pericolo di rovina derivante dalla violenza dei venti. Il successo di un tale modo di operare riposa sulla conoscenza delle condizioni di resistenza in cui saranno per trovarsi le diverse parti del sistema nelle varie posizioni che sarà per prendere, e le cure più minute si devono avere, giacchè la più lieve trascuranza e la minima imprudenza può essere causa di gravi e funesti accidenti. Nel numero 251 si hanno le norme per accertarsi della stabilità del ponte durante il periodo del suo collocamento in opera.

239. Ponti con archi metallici. — Questi ponti possono presentare una sola o più arcate, e le loro parti metalliche possono essere di ferro o di ghisa.

Le arcate dei ponti di ferro constano di più archi di lamiera e

ferri speciali, presentanti disposizioni analoghe a quelle che si adottano per le travi longitudinali dei ponti in ferro a travate rettilinee, e con sezione retta a doppio T. Questa sezione non è sempre quella di un doppio T simmetrico, e vi sono esempli di importanti ponti, i cui archi hanno sezione di doppio T dissimetrico, colla tavola più larga dalla parte del loro intrados. La parete verticale di tali archi è quasi sempre continua, ma nulla osta all'impiego di una parete reticolata; l'altezza della loro sezione retta general. mente cresce dalla chiave alle imposte. Gli archi di una medesima arcata devono presentare la stessa corda e la stessa monta, e ciascuno di essi, mediante ritti verticali ed altri inclinati, sostiene una longarina o trave longitudinale orizzontale. A queste longarine sono attaccate le travi trasversali del ponte, su cui si fa lo stabilimento della via, con disposizioni analoghe a quelle che si seguono nei ponti a travate rettilinee. Per avere poi un rubusto concatenamento fra le diverse parti di un'arcata, gli archi che la compongono si rilegano mediante ferri orizzontali e mediante ferri inclinati, disposti con una certa simmetria rispetto ai piani verticali determinati dall'asse del ponte e dall'asse dell'arcata. Altri pezzi di collegamento si pongono pure in corrispondenza dei timpani, ossia dei pezzi costituenti il sistema situato fra l'estrados degli archi e le travi longitudinali a cui sono fermate le travi trasversali. Nella figura 269, in proiezione verticale ed in sezione secondo un piano passante per la chiave degli archi, si ha la rappresentazione di una mezza arcata di ponte di ferro per via ferrata a due binarii, nell'ipotesi che la coperta sia costituita da lamiere di ferro foggiate a guisa di vôlte a padiglione e che trovisi sovr'essa uno strato di ballast con altezza conveniente allo stabilimento delle rotaie su traversine.

I ponti con archi di ferro si costruiscono per vie carreggiabili e per vie ferrate; e, per quanto spetta alle principali dimensioni di questi ponti, si può dire: che le corde più comuni degli archi sono quelle comprese fra 20 e 50 metri; che le loro saette variano generalmente fra $\frac{1}{5}$ ed $\frac{4}{10}$ delle corde; che si ha l'esempio di un'arcata

colla corda di 80 metri e colla saetta di $\frac{4}{43}$ della corda; e che le larghezze al livello del suolo stradale si possono assumere come venne indicato nel numero 448, parlando dei ponti di struttura murale. Nei ponti per strade ferrate si mette generalmente un arco sotto ciascuna rotaia, cosicchè in un ponte per via ferrata a due binarii, i due archi di uno stesso binario distano di metri 1,50 da

mezzo a mezzo, mentre i due archi vicini di due binarii differenti distano di una quantità eguale all'entrovia, cioè da metri 4.80 a metri 2.10. Questa disposizione di porre gli archi sotto le rotaie non è sempre adottata: nel ponte sul canale Saint-Denis in Francia, destinato al servizio della via ferrata a due binarii del Nord, i quattro archi che trovansi nell'unica sua arcata distano di metri 1,75 da mezzo a mezzo; nel ponte sul Theiss, a Szegedin, in Ungheria, anch'esso destinato al servizio di una via ferrata a due binarii, ciascuna arcata numera pure quattro archi: quelli di fronte distano dal loro vicino di metri 1.738, e quelli di mezzo, a motivo della grandezza dell'entrovia la quale è di metri 2.502, trovansi spaziati di metri 2,262. Nei ponti per strade carreggiabili, gli archi si pongono generalmente a distanze eguali, che abitualmente variano da metri 1.50 a metri 2. I marciapiedi dei ponti con archi di ferro sono generalmente sostenuti da mensole, e le estremità di queste quasi sempre vengono riunite con una trave longitudinale.

Gli archi dei ponti di ghisa si formano mediante cunei di questo metallo, aventi lunghezza di quattro o cinque metri e presentanti la sezione retta di un doppio T. Questi cunei si fanno entrare nella composizione di un arco, col inchiavardarli l'uno sull'altro, e per operare quest'unione sono necessarie apposite nervature nel senso delle sezioni rette secondo cui i cunei devono venire collegati. Quella parte di ogni cuneo che trovasi fra le tavole costituenti l'intrados e l'estrados e fra le due nervature d'unione, quasi mai è liscia, ma sibbene trovasi rinforzata di tanto in tanto da nervature, dirette nel senso dell'asse e delle sezioni rette dell'arco, per dare al cuneo maggior resistenza sotto l'azione delle potenti pressioni alle quali dovrà andare sottoposto quando sarà in opera. Il sistema dei cunei con sezione retta a doppio T è preferibile a quello degli archi tubulari, quali vennero impiegati a Parigi nel ponte del Carrousel; i detti cunei riescono di più facile esecuzione ed assai più comodamente si pongono in opera. Gli archi di una stessa arcata presentano la stessa corda e la stessa monta: l'altezza della loro sezione retta cresce generalmente dalla chiave verso le imposte; per raggiungere il livello del suolo stradale, sopra l'estrados dell'arco trovansi inchiavardati i pezzi di ghisa costituenti i timpani, i quali, principalmente per gli archi che si presentano sulle fronti del ponte, sono convenientemente decorati mediante risalti e mediante trafori adatti alla natura del materiale di cui sono composti ed alle pressioni alle quali saranno per trovarsi esposti. I timpani sostengono le travi trasversali; e generalmente queste sono

fortemente inchiavardate a quelli. Sulle travi trasversali poi si fa lo stabilimento della via, con metodi analoghi a quelli che si seguono pei ponti metallici a travate rettilinee. Anche nei ponti di ghisa è indispensabile ottenere un robusto concatenamento fra le diverse parti di una stessa arcata, e questo concatenamento, che si ottiene in parte mediante le travi trasversali, viene completato da travi in ghisa, aventi sezioni rette a doppio T e lunghe come le distanze fra le pareti verticali vicine di due archi successivi. Queste travi si inchiavardano agli archi e ai pezzi costituenti i timpani. Sovente gli indicati mezzi di concatenamento, invece di essere di ghisa, sono di ferro, e consistono in tiranti analoghi a quelli che s'impiegano nei ponti con archi in ferro. Alcuni costruttori di ponti di ghisa, volendo impiegare il ferro per operare l'indicato concatenamento fra le diverse parti di una stessa arcata, e volendo simulare l'impiego della ghisa, adoperarono ferri rotondi contenuti in pezzi forati di ghisa, presentanti esternamente la forma di solidi di rivoluzione.

Fra i ponti di ghisa che finora vennero costrutti, alcuni sono destinati al passaggio di vie carreggiabili ed altri al servizio di vie ferrate. Siccome però la ghisa è un materiale eminentemente fragile e nel quale possono avvenire gravi inconvenienti sotto l'azione di forti vibrazioni, pare che questo metallo convenga di più nella costruzione dei ponti per vie carreggiabili, anziche di quelli per vie ferrate. Le corde più comuni delle arcate dei ponti in ghisa sono quelle comprese fra 15 e 30 metri, e le loro saette variano generalmente fra 1/5 ed 1/10 delle rispettive corde. Si hanno però esempli di corde assai maggiori e di monte assai minori: il ponte di Tarascon, sul Rhône in Francia, serve pel passaggio d'una via ferrata a due binarii, ha sette arcate della corda di 60 metri caduna e colla saetta eguale ad 1/12 della corda; il ponte Saint-Louis, sulla Seine, a Parigi, destinato al passaggio d'una via carreggiabile, ha una sola arcata di 64 metri di corda e colla saetta di 1/11 dell'indicata corda. Per rapporto alla larghezza dei ponti di ghisa al livello del suolo stradale, vale quanto si è detto in questo numero, parlando dei ponti in ferro. Tutti gli ingegneri costruttori di ponti in ghisa hanno sinora manifestato una tendenza a porre gli archi d'una stessa arcata a distanze minori di quelle che già vennero indicate per gli archi di ferro: nel citato ponte di Tarascon ciascuna arcata consta di otto archi, i sei archi intermedii distano di metri 1,25 da mezzo a mezzo ed i due archi di testa distano di metri 1,555 pure da mezzo a mezzo; nel ponte di Villeneuve-Saint-Georges, sull'Yères, ciascun'arcata consta di sette archi spaziati di metri 1,34 da asse ad asse. Pare che nella costruzione di ponti con archi di ghisa e per vie ferrate, non si segua il partito di porre un arco sotto ciascuna rotaia, e che sia quasi generale il sistema di stabilire la via sopra traversine, come si fa sul terreno e sui ponti di struttura murale. Per sostenere il ballast poi si ricorre all'impiego di piastre di ghisa poste sulle travi trasversali, od all'impiego di vôlte sostenute dalle stesse travi. Nei ponti di ghisa per le strade carreggiabili, gli archi si pongono quasi sempre a distanze eguali, che possono variare da metri 1,20 a metri 1,50. — Nella costruzione dei ponti di ghisa, ben difficilmente si sostengono i marciapiedi mediante mensole, e quasi sempre l'intiera loro impalcatura trovasi direttamente sostenuta da archi.

Gli archi si pongono in opera sui piedritti coll'intermezzo di piastre di ghisa o di acciaio; e, nell'intento di ottenere un conveniente appoggio degli archi sui piedritti, quasi sempre si ricorre all'impiego di cunei d'acciaio, disposti per coppie, a distanze eguali e con simmetria rispetto al mezzo della sezione d'imposta. Per ogni imposta degli archi, i cunei trovansi entro vani parallelepipedi appositamente lasciati nella piastra di posa, ed è su questi cunei che direttamente si colloca l'imposta, la quale, per gli archi di ferro, consiste talvolta in una piastra di riporto in ghisa od in acciaio, con incavature atte a ricevere i cunei per tutta la loro lunghezza e per una parte della loro altezza. Talvolta gli archi appoggiano, in corrispondenza di ciascuna delle loro imposte, sopra un cilindro d'acciaio e sopra due coppie di cunei dello stesso metallo, una a dritta e l'altra a sinistra del detto cilindro. Una volta poste in opera tutte le parti di un'arcata, si battono i cunei, finchè si ha ragione di credere che essi producano eguali pressioni contro le due superficie fra cui giacciono, e si arriva così a convenientemente serrare gli archi sulle loro imposte.

Alcuni moderni costruttori, volendo realizzare la condizione di porre i punti d'applicazione delle pressioni alla chiave ed all'imposta sull'asse degli archi, vennero nel divisamento di fare ciascun arco in due parti. Queste due parti sono unite con un robusto snodo d'acciaio nel mezzo della chiave, e ciascuna delle estremità dell'arco trova appoggio su una robusta imposta arrotondata, di ghisa o di acciaio, la quale riceve l'arco in corrispondenza del suo asse.

240. Paragone fra i ponti di ferro con archi ed i ponti di ferro a travate rettilinee. — Si può dimostrare che i ponti con archi di ferro e con una sola arcata, esigono meno metallo di quelli con una sola travata rettilinea, posti in identiche condizioni per

rapporto alla portata ed al sovraccarico, ed aventi altezza eguale a quella della saetta degli archi. Questa verità, che risulta paragonando fra di loro le espressioni del peso del metallo dell'arco e della travata, riesce quasi evidente, quando si consideri che nel sistema dei ponti con archi concorrono le spalle ad equilibrare le spinte orizzontali degli archi, mentre nei ponti a travate rettilinee tutte le azioni che si sviluppano nel sistema metallico sono per intiero equilibrate dal materiale componente il sistema medesimo. - Si può adunque stabilire, che un ponte con una sola arcata metallica, per rapporto all'economia di metallo, riesce generalmente più economico di un ponte con una sola travata rettilinea. Conviene però osservare: che i ponti con archi esercitano sulle spalle una spinta orizzontale, di cui non si può neutralizzare l'effetto, senza dare alle spalle medesime una grossezza, la quale rapidamente aumenta colla loro altezza : che la spesa per la costruzione delle spalle può talvolta esser tale da distruggere il vantaggio economico dell'arcata sulla travata rettilinea; e che in ogni caso, prima di appigliarsi ad un partito finale, conviene fare i progetti comparativi delle due opere. Una circostanza in cui l'arcata metallica indubitatamente riesce più economica della travata rettilinea, è quella nella quale le spalle del ponte sono costituite da roccia resistente.

Allorquando i piedritti di un ponte devono essere più di due, in generale si può dire che la travata rettilinea, continua da una testata all'altra, riesce più vantaggiosa delle arcate metalliche. Quando queste si trovano in un ponte per via ferrata, al passaggio dei convogli, il sovraccarico si distribuisce inegualmente sulle arcate e produce così su ciascuna di esse degli sforzi ineguali, i quali possono dare origine a spinte orizzontali anche considerevoli, a motivo delle quali possono risultare nelle pile dei nocivi movimenti, capaci di modificare la stabilità della costruzione.

Fino ad un certo punto si può rimediare al notato inconveniente dei ponti metallici con più arcate, dando a queste una massa considerevole. È questo il partito che venne adottato da parecchi valenti costruttori, facendo la coperta delle arcate con lamiere di ferro, arcuate, foggiate a guisa di vôlte a padiglione, con ferri Zorès, con robuste piastre di ghisa, oppure con vôlte murali impostate sulle travi trasversali; e stabiliendo la strada su tali coperte come sui ponti di struttura murale. A questo sistema di ponti con impalcatura pesante appartengono: il ponte in ferro di Lumes, sulla Meuse, le cui travi trasversali portano più vôltini costituenti la coperta, sulla quale trovasi uno strato di ballast dell'altezza di circa me-

tri 0,50; il ponte di Villeneuve-Saint-Georges, sull'Yères, in cui ciascuna delle sue arcate è formata da sette archi di ghisa sopportanti direttamente sulle loro tavole superiori una coperta di piastre pure di ghisa. Le teste di quest'ultimo ponte sono completamente chiuse, e l'interno della cassa, che così ne risulta, è riempita di ballast.

Contrariamente all'opinione manifestata da molti valenti costruttori, alcuni ingegneri hanno cercato di dare ai ponti con archi metallici la maggior leggierezza possibile. Il ponte più ardito sotto questo riguardo è il già citato ponte sul Theiss, a Szegedin, il quale consta di otto arcate di ferro, portate da sette pile tubulari di ghisa e da due spalle in muratura. Queste pile terminano al livello delle imposte, ed a partire da questo livello si elevano appositi montanti di ferro, che con tutta la cura possibile vennero rilegati alle longarine o alle travi longitudinali insistenti ai diversi archi, le quali travi sono continue da una testata all'altra del ponte. Mediante queste precauzioni, fu possibile di opporsi efficacemente alle azioni delle spinte orizzontali prodotte dall'ineguaglianza di sovraccarico in movimento, e così, in grazia della resistenza meccanica del metallo, sono impedite le deformazioni eccessive e si ottiene la rigidità dell'intiero ponte. Questo sistema conduce effettivamente ad un'apprezzevole economia di metallo; ma non è men certo che il peso morto di ponti così costrutti è tanto piccolo, in confronto dei sovraccarichi in movimento, che le vibrazioni riescono ben più considerevoli di quelle che si verificano nei ponti con impalcatura pesante, e che la loro durata deve riuscire minore di quella di questi ultimi. Così, dalla maggior parte degli ingegneri è ritenuta siccome buona pratica quella di aumentare la massa delle arcate, entro certi limiti che non siano incompatibili con una ben ragionata economia di metallo.

Un inconveniente dei ponti con archi metallici, che venne rilevato dagli ingegneri inglesi, i quali fecero costrurre molti di tali ponti, quasi tutti di ghisa, consiste nella difficoltà che incontrasi a ripartire la pressione trasmessa da un arco, la cui superficie di imposta è relativamente assai piccola, in tutta la massa della muratura dei singoli piedritti. La trasmissione delle pressioni ai piedritti, per quanto si può, deve operarsi in modo uniforme in ciascuno di essi, e costituisce una quistione la quale merita di essere studiata nello stabilimento dei ponti con archi metallici.

Le arcate metalliche sono soggette a variazioni di lunghezza pei cangiamenti di temperatura, ai quali trovansi esposte; ed alcuni ingegneri molto si preoccupano delle dilatazioni, dicendo che queste possono costituire un grave inconveniente e compromettere la stabilità degli archi metallici, aumentando eccessivamente le pressioni nelle diverse loro sezioni. L'esperienza però ha provato che l'influenza di queste dilatazioni è meno dannosa di quello che si crede generalmente; essa ha per effetto di cangiare le dimensioni degli archi e d'aumentare le loro saette, producendo una piccola sopraelevazione alla chiave. Questa sopra-elevazione poi si fa tanto più facilmente, quanto più sono piccole le dimensioni dell'arco alla chiave.

Se però le variazioni di temperatura non possono avere per effetto di eccessivamente accrescere le pressioni nelle varie sezioni degli archi, esse possono produrre tali cangiamenti di forma, ora nel senso di allungare gli archi ed ora nel senso di accorciarli, da compromettere la fermezza delle unioni. Quest'inconveniente si fa sentire su ampia scala in quegli archi formati di pezzi molto lunghi e presentanti poche unioni, ed è di lieve momento in quegli altri in cui vi sono numerose unioni, quasi uniformemente distribuite sulla loro lunghezza.

- 241. Timpani dei ponti con archi metallici. La forma dei timpani dei ponti con archi metallici deve essere tale da prestarsi a trasmettere su tutta la superficie d'estrados degli archi od in molti punti di essa, le pressioni che ricevono dal carico permanente sovr'essi esistente e dai sovraccarichi. Nel ponte del Carrousel, a Parigi, i timpani sono formati con cerchii di ghisa, ciascuno dei quali, non avendo cogli archi che un solo punto di contatto, trasmette in un solo punto di questi le pressioni dovute agli accennati carichi. Tale disposizione è causa delle deformazioni negli archi. e quindi delle vibrazioni che si verificano in questo ponte. Per ottenere l'indicato scopo dei timpani, conviene farli in modo che presentino una specie di traliccio, i cui pezzi, attaccati da una parte alla trave longitudinale o longarina superiore, dall'altra a differenti punti dell'arco, e rilegati fra di loro, contribuiscono alla rigidità dell'intiero sistema ed a sviluppare delle forze interne, che concorrono a diminuire le vibrazioni. Questi timpani a traliccio assai facilmente si possono costrurre in ghisa, e sono quasi una necessità nei ponti di lamiera di ferro.
- 242. Cenni sulla determinazione di alcune principali dimensioni dei ponti con archi metallici. — Le norme, che vennero indicate nel numero 200 per la determinazione delle principali dimensioni dei ponti con archi di legno, sono quelle stesse che si

devono seguire nel determinare le principali dimensioni dei ponti con archi metallici.

S'incomincia dalla coperta del ponte, la quale, quando è di tavole o di lastre metalliche, si può considerare siccome avente ciascuno de' suoi pezzi posto nelle condizioni di un solido orizzontalmente collocato su due appoggi e caricato di un peso uniformemente distribuito sulla sua lunghezza. Quando invece la coperta consta di vôlte poste fra le travi trasversali, la corda delle indicate vôlte suol essere di circa un metro, la loro monta da metri 0,45 a metri 0,20, e la loro grossezza varia da metri 0,12 a metri 0,25.

Le travi trasversali dei ponti per vie carreggiabili e dei ponti per vie ferrate, colle rotaie poste direttamente sopra gli archi, si considerano siccome solidi orizzontalmente collocati su due appoggi e caricati di un peso uniformemente distribuito sulla loro lunghezza. Nei ponti per strade ferrate, nei quali le rotaie non insistono direttamente agli archi, può avvenire che le travi trasversali, analogamente a quelle della maggior parte dei ponti in ferro a travate rettilinee (num. 212), oltre di sopportare un peso uniformemente distribuito sulla loro lunghezza, debbano sopportare un sovraccarico da supporsi applicato in punti simmetricamente posti rispetto al mezzo.

Le longarine o travi longitudinali si suppongono generalmente siccome presentanti interruzione di continuità in corrispondenza degli appoggi loro somministrati dai timpani; si considera, delle parti in cui questa ipotesi conduce ad immaginarle divise, quella che presenta maggiore portata, e si ritiene siccome un solido orizzontalmente collocato su due appoggi e siccome caricato di un peso uniformemente distribuito sulla sua lunghezza. Così procedendo, si opera in favore della stabilità, e, qualora si reputi questo processo di calcolo troppo dannoso all'economia, ciascuna delle indicate parti si può considerare siccome orizzontalmente incastrata o almeno siccome semi-incastrata alle sue due estremità. Questo modo di considerare le travi longitudinali non è conforme alla verità; sia perchè le forze che su esse operano non sono uniformemente distribuite, ma concentrate nei punti che danno appoggio alle travi trasversali; sia perchè ben di frequente i detti punti d'appoggio trovansi solo in corrispondenza dei punti d'unione delle longarine coi timpani, di maniera che quelle non hanno allora altro ufficio fuorchè di servire da tiranti o da mezzi di concatenamento per mantenere a sito le estremità superiori dei pezzi componenti i timpani stessi.

I timpani sono destinati a trasmettere agli archi le azioni del carico permanente e del sovraccarico; e quindi i pezzi di cui sono formati trovansi assoggettati a sforzi di pressione. Questi sforzi si possono determinare con composizioni e scomposizioni di forze, e, quando il problema riesce indeterminato per la ragione che in un sol punto concorrono più di tre pezzi, le cui pressioni sono incognite, è possibile togliere l'indeterminazione, tenendo conto delle deformazioni elastiche che ne conseguono.

Nel caso rappresentato dalla figura 269, se non si tiene conto dell'elasticità dei pezzi componenti i timpani, si ha che i pezzi verticali sopportano tutte le pressioni che dalle travi longitudinali vengono trasmesse ai timpani e che i pezzi inclinati non sopportano pressione alcuna. Se invece si tiene conto dell'elasticità, riesce possibile e facile determinare tanto le pressioni dei pezzi verticali quanto quella dei pezzi inclinati. Nella pratica però usasi generalmente considerare i pezzi inclinati come unicamente destinati a rinforzare il traliccio e ad impedire che le estremità dei pezzi verticali subiscano spostamenti orizzontali. Le superficie delle sezioni rette di questi ultimi si possono allora determinare, operando come si è detto pei ritti del ponte con archi di legno, stato considerato nel numero 200.

In quanto agli archi, si considera ciascuno di essi siccome una centina simmetrica rispetto al suo mezzo, cogli estremi fissi, e caricata d'un peso uniformemente distribuito sulla sua corda. I calcoli per determinare alcune delle principali dimensioni degli archi, si fanno con norme analoghe a quelle che vennero date nei numeri 200 e 201, quando i loro assi sono circolari; coi metodi stati svolti nel numere 202, quando i loro assi sono curve circolari di piccola monta, oppure curve paraboliche.

I carichi permanenti ed i sovraccarichi, dei quali devesi tener conto nel calcolo delle principali dimensioni dei ponti con archi metallici, sono facili ad ottenersi in seguito alla conoscenza degli elementi che vennero dati nei numeri 150, 192, 195 e 210.

I pezzi di concatenamento sono destinati a conservare la verticalità e ad impedire quei dannosi movimenti ondulatorii che si potrebbero manifestare nel ponte al passaggio di grandi sovraccarichi. La determinazione delle dimensioni di questi pezzi non è subordinata a regole fisse, e sta al criterio del costruttore di assumerle in modo da non far contrasto colle dimensioni delle altre parti del ponte.

245. Paragone fra i ponti con archi di ferro ed i ponti con archi di ghisa. — Il coefficiente di rottura per trazione è per la

ghisa assai minore di quello del ferro, e viceversa il coefficiente di rottura per pressione è nella prima molto maggiore dello stesso coefficiente pel secondo. Ora, se osservasi che gli archi dei ponti con arcate metalliche, e che i loro timpani sono soggetti a pressione. e che la ghisa costa molto meno del ferro, sotto questi riguardi non può nascere dubbio sulla maggiore economia che si può sperare dall'impiego della ghisa nella costruzione dei ponti con archi metallici. Se però si nota, che le travi longitudinali insistenti ai timpani e le travi trasversali sono soggette a flessione, e che tutti i pezzi di concatenamento sono sottoposti a sforzi di trazione, agevolmente si comprende come i vantaggi che presenta l'impiego della ghisa su quello del ferro, di molto si riducono, sia per le maggiori dimensioni da darsi agli ultimi indicati pezzi, sia per il maggior carico che essi producono sugli archi. Aggiungasi ancora: che le vibrazioni, le quali sono di non lieve entità nei ponti, e principalmente in quelli per vie ferrate, riescono molto più dannose alla ghisa che al ferro; che, per ovviare ai gravi danni i quali possono essere causati da queste vibrazioni, è imperiosa necessità opporre una grande massa al peso ed alla velocità dei veicoli e dei convogli, coll'adottare le impalcature pesanti; che, per generale consentimento dei pratici, conviene porre gli archi di ghisa a distanza minore di quella di cui abitualmente si spaziano gli archi di ferro, onde diminuire la portata delle travi trasversali e dei pezzi di concatenamento. Queste considerazioni notevolmente diminuiscono il vantaggio dei ponti con arcate di ghisa in confronto di quelli con arcate di ferro, e solo lo studio comparativo dei due progetti può, in ogni caso particolare, portare alla definitiva conclusione sulla convenienza del ferro o della ghisa.

La Compagnia francese delle strade ferrate dell'Ovest volendo, nel 1859, far ricostrurre il ponte sulla Seine a Chatou, invitò parecchi costruttori a volerle sottomettere le loro proposizioni. Alcuni presentarono il progetto di un ponte con archi di ferro, altri presentarono il progetto di un ponte con archi di ghisa; si trovò più conveniente una delle proposte dei primi; e venne costrutto un ponte con archi di ferro. La stessa Compagnia, volendo ricostrurre nell'anno 1865, ancora a Chatou, il ponte di legno che attraversava il secondo braccio della Seine, prese il partito di farlo eseguire con archi di ferro.

I signori Molinos e Pronnier, nel loro commendevole lavoro, intitolato Traité théorique et pratique de la construction des ponts métalliques, si esprimono, dicendo : che la ghisa non dovrebb'essere

impiegata che per arcate, la cui corda non eccede 50 metri, e che il ferro, tanto per il suo modo di resistere nella costruzione dei ponti, quanto per la maniera con cui sono distribuite le unioni, deve ispirare maggior confidenza per le grandi portate. Si può ancora aggiungere, che l'impiego della ghisa può essere di qualche utilità nei ponti per vie ordinarie, ma che nei ponti per vie ferrate conviene ricorrere all'uso del ferro.

244. Piedritti dei ponti con archi metallici. — I piedritti dei ponti con archi metallici sono per la massima parte di struttura murale, ed è solo in alcune rare circostanze che vennero usate le pile metalliche.

Già si fece osservare nel numero 240, che un inconveniente dei ponti con archi metallici sta nella difficoltà che incontrasi per ripartire la pressione, trasmessa dagli archi, a tutta la massa della muratura. Quest'inconveniente però non è di tale natura da non potervisi ovviare. Generalmente si ottengono piedritti posti in buone condizioni di stabilità, facendo uso di robusti e lunghi cuscinetti d'imposta in pietra di taglio, e ponendo questi cuscinetti per tutta la lunghezza dei piedritti, in modo che ciascuno di essi riceva l'imposta di uno o di più archi, e che questo si verifichi possibilmente nel mezzo o in punti simmetricamente posti rispetto al mezzo di ciascun cuscinetto.

Per quanto spetta alla determinazione delle dimensioni delle pile e delle spalle dei ponti con archi metallici, quando sono esse di struttura murale, valgono le norme che vennero date nei numeri 154 e 156, parlando dei ponti in muratura. La determinazione della spinta orizzontale e della pressione verticale, riferite all'unità di di lunghezza di spalla, può essere fatta col metodo che venne indicato nel numero 203, dove parlasi dei piedritti dei ponti con archi di legname.

245. Collocamento degli archi dei ponti metallici sui loro appoggi. — Questa operazione generalmente viene eseguita, mettendo assieme i diversi archi sul cantiere stabilito a poca distanza del sito in cui si devono porre in opera; trasportandoli ai piedi dei piedritti che li devono sopportare; levandoli mediante appositi meccanismi, in modo che i piani dei loro assi siano verticali, e conducendoli finalmente a trovarsi sulle imposte destinate a riceverli. Di mano in mano che si pongono in opera gli archi, conviene operare su essi un concatenamento provvisorio; quando sono a posto tutti gli archi di una stessa arcata, si fa il concatenamento definitivo, e finalmente si pongono a sito tutte le altre parti dell'arcata.

Nei ponti a più arcate, colle pile di grossezza insufficiente a sopportare la spinta delle arcate, è necessario che queste sieno costrutte contemporaneamente; il lavoro dev'essere condotto analogamente a quanto si disse sul finire del numero 157 per le arcate in muratura.

Quando gli archi di un'arcata di ponte sono di grandi dimensioni e molto pesanti, si pongono in opera per parti, con procedimenti analoghi a quelli che vennero indicati nel numero 63, in cui parlasi del collocamento in opera delle incavallature e delle centine per tettoie.

Una volta a posto tutte le parti di un'arcata o tutte le arcate di un ponte, quando queste debbono essere in qualche modo collegate, bisogna procedere a dare ai diversi pezzi del sistema le tensioni e le pressioni convenienti ad ottenere nelle arcate altrettanti sistemi, per quanto si può, rigidi, non soggetti a deformazioni, e capaci di opporsi alle azioni dei carichi che devono sopportare. Questo generalmente si ottiene serrando alcune viti, di cui sono muniti alcuni pezzi di concatenamento, e battendo i cunei su cui sono stabilite le imposte degli archi.

CAPITOLO V.

Viadotti.

246. Viadotti, loro scopo e loro struttura. — Allorquando una strada, dovendo passare ad una certa altezza sopra la superficie naturale del terreno, per soddisfare a certe esigenze locali o per ragioni d'economia, vuol essere sopportata da un'opera d'arte presentante una struttura analoga a quella dei ponti, si ha ricorso alle costruzioni che prendono il nome di viadotti. Questi edifizi risultano d'ingenti dimensioni, quando si elevano per l'attraversamento di larghe e profonde vallate coi corsi d'acqua scorrenti nei loro impluvii, quando si fanno per passare nell'interno od al di sopra di grandi centri popolati, e quando si costruiscono in montagna, per superare estese coste in frana e profondi burroni.

Nella costruzione dei viadotti si adoperano gli stessi materiali che vengono impiegati per la costruzione dei ponti, e quindi: i viadotti di struttura murale, i viadotti di legname ed i viadotti metallici. I viadotti di struttura murale, che erano in piccolo numero e che venivano citati come rarità, e come portenti dell'arte edificatoria, prima della costruzione delle strade ferrate, sono ora assai numerosi e di frequente si presenta il caso di doverne eseguire. A

motivo della provvisorietà che il legname induce nelle opere in cui viene adoperato, sono assai rari i viadotti costrutti con questo materiale, e pare che i moderni costruttori abbiano totalmente rinunziato al suo impiego nella costruzione di opere d'arte, le quali per la loro importanza domandano una struttura definitiva e di lunga durata. I viadotti metallici, e principalmente quelli di ferro a travate rettilinee, hanno già ricevuto numerose ed importanti applicazioni; e, fra le opere che non possono a meno d'ispirare l'ammirazione ed il rispetto per la prodigiosa attività sviluppata dal genio moderno in questo secolo, vi sono i viadotti di ferro sopportati da pile in parte di ferro ed in parte di ghisa, che si possono annoverare fra i ritrovati più moderni dell'arte di costrurre. I viadotti di ghisa sono in numero assai limitato, e solo si hanno alcuni pochi esempi di viadotti completamente di ghisa, di piccola altezza, e coi piedritti assai vicini.

247. Viadotti di struttura murale con un solo ordine di arcate. — Questi viadotti presentano la stessa struttura, e disposizioni analoghe a quelle dei ponti murali. Per potersi quasi sempre disporre di grandi altezze, le loro arcate si fanno generalmente a tutta monta; e la loro corda varia fra 40 metri e 20 metri. Presentandosi il caso di un viadotto, il quale per una parte della sua lunghezza deve attraversare un fiume o l'alveo di un torrente soggetto a grandi piene o il fondo incassato di un burrone o un altro ostacolo qualunque, capace d'impedire o di rendere troppo dispendioso lo stabilimento di solidi piedritti, per l'indicata parte si possono adottare arcate con corde maggiori di 20 metri. Così nel viadotto di Nogent-sur-Marne, vi sono quattro grandi arcate della straordinaria corda di 50 metri, cui fanno seguito, da una parte venticinque e dall'altra cinque arcate, aventi ciascuna la corda di 15 metri.

L'altezza massima dei viadotti con un solo ordine di arcate è generalmente inferiore a metri 40. Quando quest'altezza è un po' grande ed eccedente 12 o 15 metri, i piedritti si fanno quasi sempre colle loro facce a scarpa al di sotto delle imposte delle arcate. La scarpa delle facce di fronte varia fra 1/16 ed 1/10; quella delle facce laterali suol essere di 1/25 ad 1/20. Nei viadotti in curva per vie ferrate, a motivo della forza centrifuga che si sviluppa al livello delle rotaie nel passaggio dei convogli, suolsi assegnare alle facce poste dalla parte convessa una scarpa maggiore di quella che si dà alle facce situate dalla parte concava; e ritenendo le scarpe variabili da 1/16 ad 1/10 per queste, si può dare a quelle una scarpa compresa fra 1/8 ed 1/5.

Le dimensioni da assegnarsi alle varie parti dei viadotti con un solo ordine di archi, si determinano precisamente colle norme che vennero date nei numeri 143, 149, 150, 151, 152, 153, 154, 155 e 156. Per le pile si determina la grossezza che devono avere al livello delle imposte delle arcate: e, assegnando alle facce di fronte ed alle facce laterali le scarpe indicate, si ottiene la maggior grossezza che devono presentare dalla loro sommità al loro piede. Le pile-spalle, di cui al numero 157 si fece conoscere l'importanza nei lunghi ponti, non devono essere dimenticate nei lunghi viadotti; e riesce assai vantaggiosa alla stabilità la pratica di prolungarle, almeno esternamente, fino alla cornice di coronamento. Nella figura 270 in elevazione ed in sezione trasversale secondo il piano verticale determinato dalla retta X Y, si ha la rappresentazione di una porzione di viadotto per via ferrata ad un solo binario. La parte rappresentata fa vedere essersi adottata la dispersione di una pila-spalla ad ogni tre arcate; sono pile i piedritti P, è una spalla il piedritto S ed è una pila-spalla il piedritto P.,

Avviene qualche volta che, per ben proporzionare le diverse parti di un alto viadotto, importa lasciare una certa distanza fra l'estrados degli archi ed il livello del suolo stradale. In questo caso si può raggiungere il livello, al quale devesi incominciare la posa dei materiali costituenti il letto del suolo stradale, mediante due o tre vôlte coi loro assi nel senso della lunghezza del viadotto, e colle generatrici più alte della loro superficie d'iutrados passanti ad una certa altezza sulle generatrici più alte dell'estrados delle arcate del viadotto. Questa disposizione, nel mentre alleggerisce il viadotto e diminuisce la pressione sui piedritti, permette di avere due o tre gallerie, mercè cui si possono visitare le arcate e farvi le opportune riparazioni. Affinchè le vôlte coprenti le indicate gallerie possano resistere ai carichi che devono sopportare, e non subire gravi dissesti al passaggio dei convogli nei viadotti per vie ferrate, importa di assegnare loro una corda non maggiore di metri 1,50 con una grossezza alla chiave non al di sotto della dimensione massima del mattone, ossia non inferiore a metri 0.24. Conviene poi che i piedritti portanti queste vôlte corrano in corrispondenza delle rotaie.

Nella costruzione dei viadotti in curva, si fa sempre in modo che siano fra loro parallele le due generatrici d'imposta di una stessa arcata. Da questa disposizione, generalmente adottata nelle arcate, consegue: che i piedritti non conservano eguale grossezza nel senso dell'asse del viadotto; che questa grossezza va diminuendo andando dalla parte convessa alla parte concava, e che le fronti delle arcate

e dei sovrastanti muri andatori sono costituite da superficie cilindriche parallele, una concava e l'altra convessa. Alcune volte le piante dei viadotti, i quali devono dare passaggio ad un tronco di strada col suo asse curvilineo, si fanno in modo da essere rettangoli le proiezioni orizzontali delle arcate, e trapezii le sezioni dei piedritti per le parti che danno appoggio alle arcate. Con questa disposizione si ottiene, che le dette piante, considerate per la larghezza che corrisponde alla lunghezza delle generatrici delle arcate, invece di essere limitate da due curve parallele, si trovano comprese fra due linee poligonali, inscritte a queste stesse curve.

In un viadotto, sul quale deve giacere una strada con una data pendenza, generalmente si fa la cornice di coronamento in modo da seguitare l'andamento della strada, e, volendosi che le chiavi delle diverse arcate, supposte eguali, conservino la stessa distanza dalla detta cornice, importa abbassare le imposte a misura che le arcate si approssimano all'estremo più basso del viadotto. Così, essendo ABG e DEF (fig. 271) due arcate successive di un viadotto in cui la cornice di coronamento discende da M verso N, si ha che l'imposta più alta D, dell'arco DEF, deve trovarsi al di sotto dell'imposta più alta A, dell'arco ABG, di una tale quantità da risultare la retta AD parallela ad MN. Segue da ciò che, essendo

p la pendenza della retta AD eguale a quella della retta MN,

c la corda orizzontale AC dell'arco ABC,

d la larghezza GD del piedritto all'imposta,

x la differenza di livello fra il punto D ed il punto A, rappresentata dalla retta $\overline{GC} = \overline{DL}$, si ha

$$x = p(c+d)$$
.

L'arco ABG deve avere la sua imposta più bassa G al livello dell'imposta più alta dell'arco successivo DEF; e, immaginando condotta per A la orizzontale AC, il tratto $\overline{\text{CG}}$ del primo arco deve essere costituito da una retta verticale di lunghezza x.

248. Viadotti di struttura murale con più ordini di arcate.

— Nella figura 272 si ha l'elevazione e la sezione trasversale, secondo il piano verticale determinato dalla retta XY, di una porzione di viadotto con tre ordini di arcate. I viadotti con due o più ordini di arcate s'impiegano nel caso di altezze molto grandi, e principalmente quando la loro altezza massima è superiore a 40 metri. In questi viadotti, le corde delle arcate difficilmente sono maggiori di 15 metri, e solo in quelle località in cui importa dar sfogo a grandi

corsi d'acqua ed in cui s'incontrano serie difficoltà nelle fondazioni dei piedritti, si cerca di diminuire il numero dei piedritti costruendo il minor numero possibile di arcate con grande apertura. Le arcate dell'ordine più alto, che sono generalmente a tutta monta, devono presentare nel senso delle loro generatrici lunghezza conveniente alla larghezza della strada che sovr'esse deve passare. Le arcate degli altri ordini, che talvolta si fanno a tutta monta, ma che ben sovente sono a monta depressa, servono di ritegni e di rinforzi per impedire la flessione trasversale dei piedritti, la cui grossezza, mediante questo ripiego, può essere ridotta a quella necessaria a poter permanentemente e stabilmente sopportare le massime pressioni alle quali saranno per trovarsi esposti.

La lunghezza di queste arcate nel senso delle loro generatrici può essere eguale a quella delle arcate dell'ordine più alto; in molti casi però, osservando che gli archi inferiori possono benissimo disimpegnare l'ufficio a cui sono destinati, anche con una lunghezza minore, si giudicò conveniente di farli con lunghezza più piccola di quella delle arcate dell'ordine superiore. Si trovano anche numerosi esempli di viadotti, in cui ciascuna arcata degli ordini inferiori è formata di due arcate distinte, situate verso le fronti del edifizio, e poste ad una certa distanza, in corrispondenza del mezzo dell'edifizio medesimo. I piedritti dei viadotti con più ordini di arcate quasi sempre sono muniti di aperture praticate nelle metà delle pareti laterali, ed aventi le loro soglie a tal livello da poter servire al passaggio di vie, le quali generalmente si stabiliscono sopra ciascun ordine di arcate, o per servizio dei pedoni, o per rendere facili i lavori di riparazioni.

Per rapporto all'inclinazione da darsi alle facce dei piedritti, possono valere i dati del precedente numero. Vennero costrutti parecchi viadotti, in cui sono verticali le facce laterali dei piedritti, in guisa però da crescere la loro grossezza nel passare da un piano qualunque al piano inferiore; e si trovano pure esempi di viadotti, i quali verso le fronti presentano i piani inferiori in risalto sui piani superiori. Di questo genere è il viadotto di Gælschthal per la strada ferrata sassone-bavarese da Leipziz a Hof. Esso ha la massima altezza di metri 80,34, è costrutto con quattro ordini di arcate, presenta sulle fronti un risalto nel passaggio dal piano inferiore al secondo piano, ed un risalto assai maggiore nel passare dal secondo al terzo piano.

Per quanto si riferisce al modo di ripartire la pianta nel caso di

un viadotto in curva, valgono le osservazioni già fatte nel precedente numero.

Dovendosi costrurre un viadotto con più ordini di arcate per una strada in pendenza, si possono osservare le norme che vennero date nel numero precedente per rapporto alla direzione delle cornici e fasce di coronamento dei diversi piani, ed alle imposte degli archi. Se però la pendenza della strada non è molto grande, si può mantenere orizzontale la fascia di coronamento di ciascuno dei piani sottostanti a quello più elevato, e quindi porre allo stesso livello le due imposte di una qualunque delle arcate di questi piani.

Venendo alle dimensioni delle diverse parti di un viadotto con più ordini di arcate, si deve dire: che pel piano più elevato esse si determinano precisamente come nel caso di un ponte di struttura murale, e seguendo quindi le norme già date nei numeri 143, 149, 150, 151, 152, 153, 154, 155 e 156; che, per un piano qualunque diverso dal più elevato, si deve tener conto delle massime pressioni che i suoi piedritti possono ricevere dalla parte d'edifizio ad esso sovrastante, e considerare le sue arcate siccome sopportanti il massimo carico che sulle medesime può verificarsi pel passaggio di pedoni o per l'eseguimento di riparazioni.

249. Viadotti metallici. — Le spalle dei viadotti metallici, e principalmente dei grandi viadotti in ferro a travate rettilinee, sono quasi sempre di struttura murale, e le pile talvolta si costruiscono in muratura e talvolta in ghisa e ferro. I viadotti in ferro a travate rettilinee, con spalle e pile in muratura, non differiscono dai ponti in ferro a travate rettilinee di grande portata, dei quali si parlò nel numero 208, e, potendosi disporre di una grande altezza, quasi sempre si adotta il tipo di travate, in cui il suolo stradale trovasi nella parte superiore delle travi longitudinali. I viadotti in ferro a travate rettilinee, sopportate da piedritti metallici, non presentano particolarità nelle loro travate; nelle pile però si trovano disposizioni affatto nuove, per le quali si crede conveniente un breve cenno.

I viadotti in ferro a travate rettilinee con pile metalliche sono costruzioni, il cui numero è ancora assai limitato; e nell'Europa se ne annoveravano soltanto ventitre al principio del 1870. Gli ultimi di questi viadotti vennero costrutti in Francia per la via ferrata ad un solo binario da Commentry a Gannat; essi sono il viadotto della Bouble, il viadotto di Bellon, il viadotto della Sioule ed il viadotto di Neuvial; ed è nelle pile di questi che si riscontrano le disposizioni giudicate le più economiche e le più convenienti.

Ciascuna pila consta di quattro colonne o puntoni di ghisa con

sezione circolare, convenientemente riuniti da tiranti orizzontali e da pezzi inclinati di ferro, i quali ultimi costituiscono una specie di traliccio su ciascuna delle quattro facce della pila. I tiranti orizzontali non solo si trovano sulle quattro fronti delle pile; ma anche fra i puntoni diagonalmente opposti. I quattro puntoni sono inclinati in modo da concorrere i loro assi in un sol punto dell'asse verticale della pila, e sono costituiti da tubi inchiavardati l'uno sopra l'altro. I tiranti orizzontali ed i pezzi componenti il traliccio sono inchiodati ad apposite nervature, di cui sono forniti i tubi componenti i puntoni; ed i tiranti orizzontali, che diagonalmente uniscono due puntoni opposti, attraversano questi ultimi nel senso dei loro diametri.

Tutte le pile indistintamente misurano superiormente, in senso normale all'asse della strada e da asse ad asse dei puntoni, una lunghezza di metri 3,50, eguale alla distanza a cui si trovano da mezzo a mezzo le travi longitudinali. Nel senso parallelo alla strada, la larghezza superiore delle pile è i 5/7 di 3,50 ossia di metri 2,50. I tiranti orizzontali sono posti ad ogni 5 metri, e quest'altezza è quella di ognuno dei piani di cui si compone una pila, non che dei tubi componenti i puntoni. Il diametro esterno di questi tubi è di metri 0,50. Su ciascuna delle quattro facce della pila e per ogni piano, vi sono due pezzi inclinati in senso opposto, costituenti un traliccio semplice. Gli assi dei puntoni poi hanno tale inclinazione, che corrisponde alla scarpa di 0,043. Il punto di concorso degli assi dei quattro puntoni componenti una stessa pila, si trova all'altezza di 50 metri al di sopra del piano determinato dalle loro basi superiori, e ogni pila presenta: la scarpa di 0,025, quando s'osserva nell'elevazione del viadotto; la scarpa di 0,035, quando si osserva nella sezione trasversale. La figura 273 fa vedere di fronte e di fianco la struttura di una di tali pile, quali vennero costrutte nei viadotti della Bouble e della Sioule.

Per combattere l'azione del vento, la quale tende a rovesciare le alte pile metalliche, nei citati due ultimi viadotti si ebbe ricorso all'impiego di apposite gambe di rinforzo. Queste gambe sono costituite da tubi di sezione ellittica, aventi per asse un arco circolare di circa 24 metri di raggio; in opera abbracciano l'altezza dei tre piani inferiori di ogni pila, e gli estremi inferiori delle due di esse, poste sulla stessa fronte, convergono in modo da fare i rostri delle pile. — Nei due viadotti di Bellon e di Neuvial, in cui l'altezza delle pile non è molto grande, invece d'adottare gambe di rinforzo,

si prese il partito di allargare le pile alle loro basi, impiegando tubi curvi nella formazione dei due piani inferiori.

Le unioni dei tubi componenti i puntoni di una stessa pila si trovano di poco al di sopra dei piani orizzontali determinati dagli assi dei tiranti orizzontali, e queste unioni sono fatte mediante chiavarde aventi diametro da metri 0,045 a metri 0,050, disposte a distanze eguali sui bordi in contatto dei tubi da unirsi, ed in modo che il loro numero cresca da quattro ad otto dalla sommità al piede della pila.

Nei due viadotti della Bouble e di Bellon, i tubi componenti i puntoni portano alle loro estremità superiori due nervature ottenute nella fondita, a ciascuna delle quali, mediante dieci chiodi ribaditi, è fissato un pezzo di lamiera di ferro, onde potervi inchiodare i tiranti orizzontali posti sulle facce, non che i pezzi componenti il traliccio di ogni pila. Questo sistema di unione presenta una certa difficoltà di esecuzione, per quanto si riferisce all'inchiodamento sulla ghisa. L'esperienza però ha dimostrato che abili ed esperti operai possono evitare ogni inconveniente ed ottenere un'unione posta in buone condizioni di stabilità. — Nei viadotti della Sioule e di Neuvial, i pezzi di lamiera per inchiodarvi i tiranti orizzontali ed i pezzi del traliccio, vennero inseriti nei tubi formanti i puntoni al momento del loro getto, e così totalmente si evitò l'inconveniente dell'inchiodamento sulla ghisa.

I tiranti orizzontali, posti sulle facce delle pile, sono costituiti da ferri con sezione a T; i pezzi inclinati formanti il traliccio hanno sezione ad U, ed i pezzi destinati al collegamento dei puntoni nel senso delle diagonali, sono ferri con sezione ad U nei viadotti della Bouble e di Bellon, e ferri con sezione a T nei viadotti della Sioule e di Neuvial. Questi ultimi pezzi di collegamento devono attraversare le pile, e, non prestandosi a quest'attraversamento i ferri con sezioni ad U e a T, si prese il partito di unirli a pezzi cilindrici con una loro estremità lavorata a vite, e con una parte piatta all'altra estremità. Per ognuno di questi pezzi di collegamento, le due estremità a vite sporgono dai due puntoni che attraversano, e mediante apposite chiocciole si produce quella tensione che vale a dar fermezza e rigidità al sistema.

Le pile metalliche devono essere poste in opera sopra robusti piedestalli di muratura, ed in questi debbono trovarsi solidamente impiantate mediante opportuni mezzi d'ormeggio. Tanto le gambe di rinforzo, quanto i piedi incurvati dei puntoni, permettono di porre i perni d'ormeggio in buone condizioni, giacchè, rimanendo esterne le loro teste, riesce facile estrarli, visitarli e rinnovarli. Di più, le gambe di rinforzo e i puntoni incurvati alle loro estremità inferiori, contribuendo ad accrescere la base delle pile, diminuiscono l'importanza degli indicati pezzi d'ormeggio, i quali, invece di penetrare nel masso di muratura per una lunghezza di 6 e più metri, come venne fatto per tutte le pile con puntoni perfettamente rettilinei da un'estremità all'altra, si addentrano appena di metri 2,50. La figura 274, in sezione secondo il piano orizzontale determinato dalla retta U V ed in sezione secondo il piano verticale determinato dalla retta X Y, fa vedere quali disposizioni si devono adottare nel fermare i piedi della parte metallica di una pila sul piedestallo di muratura. Le piastre d'ormeggio sono collocate entro nicchie, che si possono chiudere mediante muricci o mediante apposite piastre di ghisa.

I quattro puntoni di ogni pila si devono collegare alle loro estremità superiori. Per ottenere questo collegamento, l'estremità d'ogni puntone è munita di un cappello di ghisa, avente forma di parallelepipedo, e vuoto nel suo interno. Le facce di questi quattro parallelepipedi, due a due poste in uno stesso piano verticale, permettono di operare il voluto collegamento mediante quattro travi di ferro a doppia parete verticale. Sulle due di queste travi, le quali sono disposte secondo la lunghezza del viadotto (fig. 275), trovansi appositi sostegni di ghisa, destinati a ricevere le travi longitudinali principali, coll'intermezzo degli apparecchi di dilatazione.

Nei citati viadotti per la via ferrata ad un solo binario da Commentry a Gannat, la grossezza dei tubi componenti i puntoni cresce da metri 0,03 a metri 0,045. I tubi che si trovano nell'alto delle pile sono quelli che hanno la minore grossezza, la quale gradatamente va aumentando, fino alla base per le pile coi puntoni incurvati al loro piede, fino ai punti d'attacco delle gambe di rinforzo per le alte pile, in cui si ebbe ricorso all'impiego delle dette gambe per combattere l'azione del vento. I puntoni hanno la grossezza di metri 0,03, al di sotto dei detti punti d'attacco, e sono ellissi le sezioni rette delle gambe di rinforzo. Gli assi minori delle indicate ellissi sono orizzontali ed hanno la lunghezza di metri 0,50; gli assi maggiori ammettono quella di metri 0,60. La grossezza delle gambe di rinforzo, in corrispondenza degli assi minori delle loro sezioni rette, è costantemente di metri 0,045, mentre in corrispondenza degli assi maggiori aumenta in modo da essere di metri 0,045 alla sommità e di metri 0,08 verso il mezzo di una stessa gamba.

Il vano dei puntoni è riempito di calcestruzzo, che serve ad aumentare il peso delle pile ed a rendere meno facile il loro rovesciamento. In quanto al diametro dei perni di ormeggio, si giudicò sufficiente quello di metri 0,07.

Nell'Italia meridionale, sulla linea da Bari a Taranto, trovansi tre viadotti con pile metalliche. Il più importante è quello di Castellanetta, e vengono dopo quelli di Palagianello e di San Stefano. Ogni pila consta di quattro puntoni, formanti coi loro assi gli spigoli d'una piramide di base rettangolare. Alla sommità della pila, il rettangolo orizzontale, avente i suoi vertici sugli assi dei puntoni, ha i lati di metri 2,54 nel senso dell'asse della strada e di metri 4,50 nel senso normale al detto asse. Il traliccio è costituito da pezzi inclinati di circa 45° all'orizzonte, e, nell'intento di mantenere uniformità d'inclinazione su tutta l'altezza delle facce delle pile, vennero queste divise in piani decrescenti in altezza dalla loro base alla loro sommità. Il traliccio non è semplice; sulle facce di fronte è tale che un piano orizzontale taglia quattro pezzi, e sulle facce laterali presenta tale disposizione, che un piano orizzontale taglia otto pezzi. Le maglie del traliccio decrescono di grandezza, andando dal piede alla sommità delle pile.

250. Cenno sulla determinazione delle dimensioni delle principali parti delle pile metalliche. — Le pressioni che le pile metalliche ricevono dalle travate che sopportano e le spinte contro esse prodotte dal vento, sono le principali forze di cui conviene tener conto per assegnare dimensioni convenienti alle diverse parti delle pile metalliche degli alti viadotti.

Le pressioni che le pile ricevono dalle sovrastanti travate sono facili ad ottenersi, tanto nell'ipotesi del solo carico permanente, quanto nell'ipotesi del carico permanente e del sovraccarico; giacchè, essendo esse eguali e direttamente contrarie alle reazioni degli appoggi, risultano dalle operazioni e dalle costruzioni grafiche, che importa eseguire per assegnare convenienti dimensioni alle travi longitudinali principali del viadotto (num. 252, 253, 254 e 255). In quanto alle spinte del vento, si possono esse dedurre dai dati che trovansi nella seconda tabella del numero 44, la quale dà la pressione di chilogrammi 186,08 per ogni metro quadrato nel caso più sfavorevole di un uragano. Le spinte del vento tendono a produrre il rovesciamento delle pile; il caso in cui questo rovesciamento più facilmente può avvenire, si verifica quando il vento soffia in direzione perpendicolare alle pareti verticali delle travi longitudinali; e si deve tener conto della pressione che il vento esercita

contro la trave longitudinale per la parte compresa fra mezzo e mezzo delle due travate adiacenti alla pila che si considera, non che della pressione che ha luogo sulla faccia di fronte della pila stessa. L'esistenza del traliccio sulle facce spinte può rendere un po' lunga l'operazione di determinare le pressioni del vento che importa di considerare: e, nelle pratiche applicazioni, si possono considerare come continue le pareti spinte e dedurre le pressioni che presumibilmente esse sopportano in ragione di 100 chilogrammi per metro quadrato. Questo metodo conduce generalmente ad operare in favore della stabilità nel caso dei tralicci a maglie larghe, ossia nei casi più frequenti della pratica, in cui l'effettiva superficie esposta all'azione del vento è minore di quella delle maglie. Se però il traliccio è a maglie assai piccole, da essere la loro superficie minore di quella effettivamente esposta al vento, importa assumere un numero maggiore di 100 chilogrammi per pressione del vento su ogni metro quadrato di parete reticolata, supposta continua.

La pressione del vento sull'indicata parte di trave longitudinale è applicata alla metà della sua altezza, e la pressione del vento, chi si verifica su ogni piano della pila, si può supporre applicata nel mezzo dell'altezza del piano stesso (quantunque, a motivo dell'inclinazione dei puntoni, sia effettivamente un po' al di sotto di questo mezzo). Il complesso dei quattro puntoni della pila si può ritenere siccome un solido verticalmente incastrato pel suo estremo inferiore e sollecitato: dalla pressione verticale, diretta secondo il suo asse, che riceve dalla sovrastante fravata; dalla pressione che il vento esercita sulla parte di trave longitudinale compresa fra mezzo e mezzo delle due travate adiacenti alla pila che si considera; e dalle pressioni che il vento esercita su ciascuno dei piani della pila. Le dottrine relative alla resistenza dei materiali conducono a stabilire le equazioni di stabilità relative ad una sezione orizzontale qualunque dei diversi piani, e quindi a determinare la grossezza dei varii tubi componenti i puntoni. - Questo calcolo della grossezza dei tubi componenti i puntoni dev'essere instituito, tanto nell'ipotesi del solo carico permanente, quanto nell'ipotesi del carico permanente e del sovraccarico. Queste due ipotesi condurranno a trovare due differenti grossezze per ogni tubo, e la grossezza maggiore sarà quella da adottarsi. Trovandosi che le grossezze dei diversi tubi variano poco da un piano all'altro, conviene assumere per tutti la grossezza maggiore, o tutto al più progettare tubi con due, tre o quattro grossezze differenti.

Il solido costituito dai quattro puntoni di una stessa pila, sotto l'azione delle pressioni che riceve dalle travi longitudinali del viadotto e delle spinte del vento, subisce un accorciamento nel senso del suo asse ed un'inflessione nel senso normale alla lunghezza del viadotto. Questi fatti iuducono una deformazione secondo l'asse ed una deformazione normale all'asse in ciascuno dei pezzi del traliccio. Ritenendo che tali deformazioni siano quelle corrispondenti allo spostamento relativo dei due punti d'attacco delle estremità del pezzo considerato coi puntoni, quando si supponga che questi si deformino come se il traliccio non esistesse, si possono determinare lo sforzo longitudinale e lo sforzo trasversale relativi alle indicate deformazioni, porre l'equazione di stabilità pel pezzo di traliccio considerato, e trovare una dimensione della sua sezione retta, oppure accertarsi se esso presenta la necessaria stabilità. Quest'operazione, diretta a dare convenienti dimensioni oppure a verificare la stabilità di ciascuno dei pezzi che uniscono i puntoni sulle facce laterali della pila, deve essere intrapresa nell'ipotesi del solo carico permanente e nell'ipotesi che contemporaneamente esistano carico permanente e sovraccarico.

I pezzi che uniscono i puntoni sulle facce di fronte della pila, si possono prendere, per ogni piano, colle stesse dimensioni di

quelli corrispondenti situati sulle facce laterali.

Una circostanza, la quale ha qualche influenza sulla stabilità delle pile metalliche, si ha nelle variazioni di lunghezza del viadotto pei cangiamenti di temperatura. La resistenza d'attrito, che ha luogo fra le travate ed i rulli, può opporsi agli allungamenti ed agli accorciamenti causati dai cangiamenti di temperatura, ed allora ciascuna pila, trovandosi nelle condizioni di un solido incastrato al suo estremo inferiore e sollecitato alla sua estremità superiore dalla pressione che riceve dal viadotto, diretta secondo il proprio asse, e da una forza Q normale all'asse medesimo, di necessità deve inflettersi nel senso della lunghezza del viadotto. Per ottenere questa forza, si può ritenere: che comunemente si valuta a metri 0,0005 per metro la dilatazione totale di un ponte a travate rettilinee nel passare dalla temperatura più bassa alla temperatura più alta; che, ponendosi in opera il viadotto in epoche di media temperatura, la semi-ampiezza dell'oscillazione di un punto qualunque del viadotto sarà di metri 0,00025 per ogni metro di distanza del punto considerato dall'appoggio fisso; e che, trovata l'espressione della saetta massima pel solido costituito dai quattro puntoni, supposto incastrato per un suo estremo e sollecitato all'altro estremo dalla forza Q, riesce facile determinare questa, col porre che detta saetta deve essere eguale al massimo spostamento, che, per causa delle variazioni di temperatura, può subire la sezione corrispondente al mezzo di ciascuna pila per rapporto a quella corrispondente all'appoggio fisso.

Trovata la Q, tanto nell'ipotesi del solo carico permanente, quanto nell'ipotesi dell'esistenza del carico permanente e del sovraccarico, nuovamente si può verificare se le dimensioni già dedotte nelle ipotesi della pressione del vento, sono o non sono sufficienti. Trovandosi che alcuna di queste dimensioni è insufficiente, conviene adottare quella che risulta dalla conveniente equazione di stabilità, nelle ipotesi che la pila si deformi nel senso dell'asse del viadotto a motivo degli allungamenti o degli accorciamenti causati nelle travate dalle variazioni di temperatura.

251. Cenno sul collocamento in opera dei grandi viadotti con pile metalliche. - L'ultimo dei metodi che vennero indicati nel numero 238, pel collocamento dei ponti in ferro a travate rettilinee sui loro appoggi, è quello che generalmente viene seguito nella costruzione dei grandi viadotti con pile metalliche; giacchè esso conduce ad un mezzo facile ed economico per l'erezione delle pile. Ultimata una spalla e costrutto il viadotto sul prolungamento del suo asse, si fa esso scorrere sopra rotelle, sopra rulli o sopra carrelli scorrevoli lungo guide di ferro, finchè la sua estremità si trovi prossima all'asse della prima pila, di cui è costrutta la sola base in muratura. Dopo di ciò, fissata una grù alla estremità della travata, tutte le parti che devono comporre la prima pila successivamente vengono discese per porle al loro sito, e così gradatamente la pila si eleva, facendo servire come ponte di servizio la stessa travata del viadotto. Quando la prima pila è ultimata, sovr'essa si fa appoggiare il viadotto; nuovamente lo si spinge avanti per la distanza che separa la prima pila già costrutta dalla seconda pila da costruirsi, e si compie questa col metodo tenuto per l'erezione di quella. Facendo appoggiare il viadotto sulla seconda pila, spingendolo nuovamente innanzi e ripetendo le indicate manovre, si costruiscono le pile successive, e così con un metodo relativamente facile e spedito si arriva al compimento dell'opera.

Conviene osservare che, tanto le travate rettilinee del viadotto, quanto le pile, durante la costruzione dell'opera, saranno per trovarsi in condizioni d'equilibrio differenti da quelle che si verificheranno al compimento d'ogni lavoro. Segue da ciò che, una volta determinate le dimensioni delle diverse parti dell'edifizio in vista delle condizioni in cui sarà per trovarsi dopo la completa sua

ultimazione, converrà accertarsi se in esso non sarà per mancare la necessaria stabilità nel periodo del suo collocamento in opera. Questa verificazione poi deve essere fatta per le travate e per le pile.

Per le travate, generalmente si procede come segue :

1º Si considera successivamente il viadotto nelle posizioni che deve avere per servire alla costruzione di ciascuna pila, e per diverse sezioni della parte di viadotto che sporge dall'ultima pila costrutta (principalmente per quelle più deboli), si calcolano i momenti inflettenti e gli sforzi di taglio, tenendo conto del peso proprio del viadotto e di un peso applicato alla sua estremità, il quale consta del peso della grù e di tutti gli attrezzi che sopporta;

2º Si tiene conto su ogni travata delle due sezioni, per cui la curva inviluppo utile dei momenti inflettenti (num. 221, 225 e 224), dà i minimi valori assoluti di questi momenti; successivamente si considerano le posizioni del viadotto in cui queste sezioni si trovano in corrispondenza dei mezzi degli appoggi e degl'intervalli fra essi esistenti, e si calcolano i momenti ad esse relativi;

5° Si tiene conto su ogni travata della sezione, per cui la linea inviluppo utile degli sforzi di taglio (num. 230, 232 e 233), dà il minimo valore di tali sforzi, successivamente si considerano le posizioni del viadotto, in cui queste sezioni si trovano in corrispondenza dei mezzi degli appoggi, e si calcolano gli sforzi di taglio ad esse relativi.

Queste ipotesi conducono a trovare i valori assoluti dei massimi momenti inflettenti e dei massimi sforzi di taglio che, nel periodo del collocamento delle travate, possono aver luogo nelle loro sezioni più deboli. Si deve poi conchiudere che le travate saranno per presentare la necessaria stabilità durante il loro collocamento in opera, quando i valori assoluti dei momenti inflettenti e degli sforzi di taglio, ottenuti nelle accennate ipotesi, siano minori od eguali a quelli risultanti per le stesse sezioni in vista dalla stabilità definitiva. Riconoscendosi insufficienza di stabilità, conviene aumentare le sezioni riconosciute deboli e, trattandosi di ottenere una stabilità non permanente, può bastare che siavi il coefficiente di stabilità 1/4. Gli aumenti che corrispondono ad accrescimenti di momenti inflettenti, devono essere fatti sulle tavole delle travi longitudinali, e gli aumenti che corrispondono ad accrescimenti degli sforzi di taglio, devono essere fatti sui pezzi componenti le pareti, generalmente reticolate, delle indicate travi.

Per rapporto alle pile, si calcola per ciascuna di esse la pres-

sione verticale, diretta secondo l'asse, che può aver luogo quando trovasi essa l'ultima costrutta, e che si sta costruendo la successiva. Si verifica se questa pressione non è capace di compromettere la stabilità della pila, e se il relativo coefficiente di stabilità è minore di 1/4.

Dono di ciò, si considera la pila siccome sottoposta all'azione combinata della detta pressione verticale e della spinta orizzontale del vento. Questa spinta poi si considera siccome operante sulla pila, sulla mezza travata compresa fra questa e l'appoggio già ultimato che la precede, e sulla travata sporgente. La risultante delle pressioni del vento sulle indicate parti di travata non incontra generalmente l'asse della pila, per cui in questa potrebbe venir provocata la resistenza alla torsione. Affinchè però questo succeda, è necessario che il viadotto, sotto l'azione del vento, s'infletta nel senso orizzontale; e. siccome non avviene questa inflessione od almeno è così debole da potersi assolutamente trascurare, risulta: non essere il caso di occuparsi della torsione; bastare che si studii lo stato d'equilibrio della pila, nell'ipotesi che la pressione esercitata del vento completamente si eserciti nel piano verticale passante per l'asse della pila e normale all'asse del viadotto. Quando si trova che i coefficienti di stabilità relativi ai diversi pezzi della pila sono minori di 1/4, è segno che la pila, quale venne progettata, presenta sufficienti garanzie di stabilità durante la costruzione del viadotto. Trovandosi poi deficienza di stabilità, non si modifica generalmente il progetto della pila fatto in vista della stabilità definitiva, come si accennò nel precedente numero; ma sibbene, mediante gomene disposte in modo da impedire l'inflessione nel piano verticale normale alla lunghezza del viadotto e passante per l'asse della pila, si procura di mantenere la perfetta verticalità di quest'ultima durante la costruzione del viadotto.

Finalmente conviene osservare che, nel mentre si pone in opera il viadotto, trovasi alla sommità di ognuna delle pile già costrutte una resistenza d'attrito, la quale si oppone all'avanzamento delle travate, la qual resistenza, essendo proporzionale alla pressione prodotta dal viadotto sulla pila, ammette per valore massimo quello che corrisponde alla pressione massima. Questa resistenza d'attrito, per ogni pila, si può ritenere siccome eguale ai 0,05 della massima pressione che su essa produce il viadotto nel periodo in cui si colloca in opera; e riesce facile determinare il grado di stabilità che presentano le diverse parti della pila, supponendo questa sollecitata dalla massima pressione verticale che le viene trasmessa dal via-

dotto in corso di esecuzione e da una forza orizzontale applicata alla sua sommità ed eguale alla detta resistenza d'attrito. Generalmente si trova che le pile progettate come si disse nel precedente numero, si trovano in buone condizioni di stabilità durante la costruzione dell'opera, e che non è il caso di molto preoccuparsi delle loro inflessioni nel senso dell'asse del viadotto. Ad ogni modo però, onde ovviare ai casi fortuiti che possono succedere, è prudente consiglio di collegare fra loro le varie pile con gomene, le quali riuniscano la sommità di ogni pila colla base di quella che la precede.

Si può far senza le ultime indicate gomene, col prendere sulle varie pile i punti d'appoggio per l'applicazione degli sforzi di trazione necessari a far muovere l'intiero viadotto. Perciò, si può adottare la semplicissima disposizione di attaccare una fune F (fig. 276) alla sommità di ogni pila già ultimata, di farla passare sopra una puleggia B fissata al sistema delle travate da porsi in movimento, e di caricare il piatto P, finchè l'estremità della pila sia in procinto di prendere un movimento da A verso B. Il peso contenuto nel piatto P sarà allora eguale alla resistenza d'attrito sviluppata sui rulli, e si potrà porre in movimento il viadotto con una forza esteriore qualunque, operante alla sua estremità situata dalla parte della spalla sulla quale venne esso costrutto. Così procedendo, nulla si ha da temere per rapporto all'inflessione delle pile nel senso della lunghezza del viadotto, finchè la pressione che su esse si verifica non ha sensibilmente variato; e, verificandosi una tale variazione, altro non si deve fare che arrestare l'operazione di avanzamento e regolare nuovamente i pesi posti nei piatti. Quando, in seguito all'avanzamento del viadotto, i piatti P coi loro pesi saranno arrivati presso il suolo, sarà necessario sollevarli e porli nuovamente in azione collo spostare le puleggie B. Invece di un piatto solo per ogni pila, sembra conveniente di averne due, disposti a dritta ed a sinistra del viadotto, giacchè allora, mediante una grù mobile stabilita sulle travate, si possono essi sollevare coi loro pesi e portare dove lo richiede l'avanzamento del lavoro. D'altronde poi, mediante convenienti combinazioni di puleggie, riesce facile regolare la discesa dei piatti P di maniera che, a seconda delle circostanze locali, la loro velocità risulti inferiore, eguale o superiore a quella del complesso delle travate in movimento.

PARTE TERZA

-(nin attait alleng at describes in temperatural during and

COSTRUZIONI IDRAULICHE.

CAPITOLO I.

Nozioni generali sui canali manufatti.

252. Canali manufatti e loro distinzione. — I canali manufatti consistono in quelle escavazioni, fatte per opera dell'uomo, le quali hanno per iscopo: o di esportare acque nocive od incomode; o di condurre acque utili all'agricoltura; o di somministrare forza motrice per l'industria; o finalmente di servire alla navigazione. Segue da ciò, che i canali manufatti si possono distinguere, in canali di scolo, in canali irrigatori, in canali per forza motrice ed in canali navigabili. Sovente si costruiscono canali con scopo misto, e sono frequenti quelli che si fanno per contemporaneamente servire a benefizio dell'agricoltura e delle industrie, come pure a benefizio della navigazione e delle industrie o dell'agricoltura.

I canali per la massima parte della loro lunghezza trovansi scavati entro terra. In quei tronchi in cui la velocità del corso d'acqua è troppo grande in confronto della coesione delle terre, ed in cui possono avvenire corrosioni, importa di convenientemente rivestire le pareti e talvolta anche il fondo del canale, affinchè non venga danneggiato. Dove le sponde in terra non bastano ad impedire i trapelamenti e le filtrazioni, è necessario avere ricorso alle sponde di struttura murale, e talvolta si rende indispensabile una robusta platea di muratura sul fondo. Ne deriva, che uno stesso canale può presentare diverse strutture nel suo percorso, e che conviene

distinguere i tronchi entro terra, i tronchi rivestiti, ed i tronchi di muratura.

255. Limiti di pendenza dei canali. - Nell'intento di diminuire per quanto è possibile i lavori di sterro, la pendenza del fondo dei canali di scolo non deve guari discostarsi da quelle delle campagne che attraversano. Un'accurata livellazione della superficie del terreno, nel quale si vuol stabilire un sistema di canali di scolo, farà conoscere le pendenze che in ogni caso sono da riputarsi siccome le più convenienti. Ai grandi canali di derivazione, per irrigare e per somministrare forza motrice, si può dare una pendenza longitudinale compresa fra metri 0.15 per 1000 e 0.9 per 1000. La Muzza dal suo incile al suo termine ha la pendenza media, dedotte le levate, del 0,888 per 1000, ed il suo corso rassomiglia piuttosto a quello di un fiume, che non a quello di un canale. - Il Canale Cavour, per la massima parte della sua lunghezza, ha la pendenza del 0,25 per 4000; nel primo chilometro, a partire dall'edifizio di derivazione, s'incontra la pendenza massima del 0,5 per 1000; e nei due chilometri successivi quella del 0,3 per 1000. Sui ponti-canali e nei tronchi murati, da cui generalmente sono questi preceduti e seguiti, si trova la pendenza del 0,36 per 1000. Pei 900 metri, che immediatamente seguono la tomba sotto il torrente Elvo, si ha la pendenza del 0,4 per 1000, la quale decresce e si riduce al 0.35 per 1000 nel chilometro successivo ed al 0.30 per 1000 nei 1500 metri che immediatamente seguono. Nei 1090, 1500 e 1000 metri che tengono dietro alla tomba sotto il fiume Sesia, s'incontrano rispettivamente le tre pendenze del 0,34, del 0,30 e del 0,27 per 1000. Nei 1400 metri che tengono dietro alla tomba sotto il torrente Agogna, si ha la pendenza del 0,27 pes 1000; e la minima pendenza, che è quella del 0,2 per 1000, si trova negli ultimi 4230 metri prima del fiume Ticino. - Il Canale sussidiario Cavour, presso Saluggia, ha la pendenza del 0,317 per 1000.

Ai piccoli canali di irrigazione, detti volgarmente roggie, si possono dare pendenze comprese fra 0,5 e 0,9 per 1000.

Al canali destinati alla navigazione, che hanno poca acqua, si può dare una pendenza affatto nulla. A quelli che conducono molta acqua, si dà persino la pendenza del 0,53 per 1000. Questa pendenza però è troppo forte se non vuolsi rendere troppo difficile la navigazione ascendente.

254. Norme per la distribuzione delle pendenze. — Occorrendo di adottare variazioni di pendenza longitudinale nel fondo di un canale, conviene fare in modo che le pendenze maggiori abbiano luogo dove occorre un facile e pronto deflusso dell'acqua, dove le sponde ed il fondo sono di tale natura da non soffrire corrosioni a motivo dell'aumento di velocità causato dall'accrescimento di pendenza, dove conviene accrescere la velocità dell'acqua per diminuire le filtrazioni, e dove il terreno è di tale natura da favorire la vegetazione di erbe acquatiche. Le pendenze troppo forti in generale si devono evitare, e quindi, quando si presenta la circostanza di dover scavare un canale entro un terreno la cui pendenza naturale è assai grande, conviene stabilire delle cadute, le quali permettono di usare dell'acqua in vantaggio di qualche officina.

255. Considerazioni generali sulla determinazione della direzione di un canale. - Pei canali di scolo, una volta fissato il punto di scarico, si procurerà di condurre il canale smaltitore per la linea maggiormente depressa dell'estensione di terreno nel quale il sistema di scoli vuol essere stabilito, e ciò nell'intento di rendere il detto smaltitore atto a ricevere più facilmente le acque portate dai canali collettori. Ciascuno di questi, partendo dal sito in cui immette le sue acque nello smaltitore, deve essere condotto per la linea maggiormente depressa della zona di terreno per cui deve servire. I canali minori poi devono comportarsi, per rapporto ai collettori ed alla superficie della zona di terreno di cui raccolgono gli scoli, come i collettori per rapporto allo smaltitore. Quando la porzione di superficie terrestre, le cui acque sono raccolte da uno stesso collettore, si può considerare siccome costituita da due facce sensibilmente piane, incontrantisi in una linea d'impluvio, il detto collettore segue l'andamento di questa, ed i canali minori, posti dalla stessa parte del collettore, sono sensibilmente paralleli fra di loro e diretti secondo le linee di maggior pendio della superficie del terreno. L'imbocco dei canali minori nei loro collettori, e dei cellettori nelle smaltitore non mai deve aver luogo con un angolo ottuso, il meno che si può con un angolo retto, e per quanto è possibile con un angolo acuto in a monte. Che se naturalmente si presenta l'angolo ottuso o l'angolo retto, si può togliere quest'inconveniente, facendo terminare il canale minore con una conveniente risvolta.

Per quanto spetta alle linee che devono percorrere i canali d'irrigazione, conviene ritenere che queste in gran parte dipendono dalla conformazione dei terreni da irrigarsi. Si può però stabilire, che in generale bisogna tracciarle in modo che seguano, per quanto è possibile, le parti più alte del terreno da attraversarsi, nell'intento di avere i massimi benefizii a pro dell'agricoltura.

In quanto ai canali per forza motrice, conviene tracciarli in modo che si venga a perdere il minimo possibile della totale caduta fra la loro origine e la loro fine; che percorrano località salubri ed atte all'impianto di opifizii; e che preferibilmente presentino i salti per lo stabilimento di motori idraulici, dove l'esercizio di quella o di quest'altra industria è per risultare più comodo e più vantaggioso.

La direzione di un canale navigabile è determinata dalla posizione dei due punti estremi fra cui la navigazione vuol essere fatta, dai punti principali per cui deve passare, dalla natura e dalle accidentalità del terreno che deve attraversare.

In generale poi i progetti dei canali d'irrigazione, dei canali per forza motrice e dei canali navigabili devono soddisfare alle condizioni: che siano schivati i terreni attraverso ai quali possono verificarsi abbondanti filtrazioni; di non passare al piede di terreni facili a franare; di risultare della minor entità possibile le opere di sterro e d'interro; di riescire del minimo dispendio possibile le opere d'arte pel passaggio di corsi d'acqua, di strade, di vallate. Nelle molteplici circostanze della pratica può essere impossibile di contemporaneamente soddisfare alle enunciate condizioni, e spetta all'ingegnere di saper in ogni caso soddisfare al maggior numero di esse, procurando di ottenere un'opera che, senza mancare al suo scopo, risulti del minimo dispendio possibile.

256. Profili trasversali dei canali e dati relativi a questi profili-- Chiamasi asse di un canale quella linea la quale ne definisce la direzione, che quasi sempre consta di tratti rettilinei raccordati fra loro da risvolte, e che in ogni caso si deve determinare in conformità delle norme che vennero date nei precedenti numeri 253, 254 e 255, e che si può considerare siccome giacente nel mezzo di quella zona di terreno, convenientemente preparata, la quale costituisce il fondo del canale stesso. Il fondo di un tronco qualunque di canale si può immaginare siccome generato da una linea retta che, conservandosi orizzontale e mantenendosi col suo mezzo sull'asse, si muove normalmente all'asse medesimo. Le due estremità della retta generatrice del fondo di un tronco di canale descrivono le due linee d'intersezione delle pareti laterali col fondo stesso, le quali pareti, almeno per quei tronchi di canali praticati in terra della stessa natura o presentanti uguale struttura, sono generalmente superficie d'inclinazione costante all'orizzonte. Queste superficie, costituenti le pareti laterali, sono piane dove è rettilineo l'asse del canale, e sono coniche dove il detto asse è circolare.

Il fondo di un canale di scolo è generalmente determinato dal

suo sbocco e dalla naturale pendenza del terreno in cui deve essere scavato. L'altezza poi dell'acqua viene data dalla posizione del fondo e dall'altezza dello strato di terreno sul quale l'azione degli scoli deve esercitare i suoi benefici influssi. Nei terreni in cui vuolsi esercitare la coltivazione di suolo e di soprasuolo, l'ultima altezza deve essere di metri 0,60; e la stessa altezza può essere ridotta a metri 0,20 nei terreni coltivati a prato.

Nei grandi canali destinati a derivare acqua per l'irrigazione, o pel movimento di motori idraulici, la larghezza al fondo suol essere compresa fra tre e sei volte l'altezza dell'acqua. Da molti periti milanesi poi venne seguita la regola di dare metri 0,45 di larghezza al fondo dei canali per ogni oncia milanese d'acqua, che essi dovevano condurre, ossia per circa 42 litri di dispensa in ogni minuto secondo. La larghezza al fondo del canale Cavour va diminuendo da 40 metri a 20 metri pel tronco compreso fra la sua origine e la sezione distante da questa di 9 chilometri. A partire da questa sezione, fino all'incontro colla roggia Busca, nell'ipotesi che dovesse condurre 110 metri cubi d'acqua per ogni minuto secondo, si conservò costantemente al fondo la larghezza di metri 20 e si calcolò un'altezza di circa metri 3,50, di maniera che la larghezza sul fondo è quasi sei volte l'altezza dell'acqua. - Il canale sussidiario Cavour presso Saluggia ha una larghezza sul fondo di metri 32 ed un'altezza d'acqua di metri 1,80, e quindi in questo caso il rapporto fra la detta larghezza e la detta altezza notevolmente eccede i limiti stabiliti giacchè, invece di essere compreso fra 5 e 6, sta fra i numeri 17 e 18.

Alle piccole roggie assegnasi generalmente una larghezza media pressochè doppia dell'altezza.

La larghezza di canali navigabili è in generale determinata dalla condizione, che due barche, le quali navigano in direzioni opposte, possano incontrarsi, senza che per ciò debbano danneggiarsi o danneggiare le sponde. L'altezza dell'acqua poi deve essere tale, che il fondo delle barche cariche debba sempre distare da quello del canale di metri 0,50 o di metri 0,40 almeno. L'applicazione di queste regole esige che si conoscano le forme e le dimensioni delle barche che devono tragittare pel canale, e questi elementi sono generalmente noti, giacchè le barche che devono passare in un canale di navigazione sono quelle medesime che navigano sui due fiumi che il canale è destinato a congiungere, o su quello a cui il canale è laterale.

Fra la superficie dell'acqua in un canale ed il ciglio supremo delle

sue sponde, conviene lasciare una certa altezza o franco, che nei canali di qualche importanza deve essere di metri 0,50 od almeno di metri 0,40. Nei piccoli canali suolsi assumere questo franco assai minore, e basta che esso sia di metri 0,20.

Lungo le sponde dei grandi canali quasi sempre si lascia una strada sufficientemente larga, che facilmente si possa percorrere per le opportune visite e pel servizio del canale stesso, non che per apportarvi le necessarie riparazioni. La larghezza di 4 metri si ritiene come sufficiente anche per le strade da costrursi lateralmente ai canali di prima importanza. Talvolta quella scarpa della strada, che trovasi verso il canale, è in prosecuzione della sponda del canale stesso; tal'altra invece esiste una banchina tra quella e questa. L'ultima disposizione conviene quando la strada trovasi in rialzo sulla superficie naturale del terreno e quando è grande la differenza di livello fra il fondo del canale ed il suolo stradale.

In quanto all'inclinazione da assegnarsi alle sponde dei canali, quando esse non sono rivestite, possono valere le norme che vennero date nel numero 110, parlando delle scarpe convenienti per le strade in trincea. Quando però si dubita che il contatto dell'acqua possa danneggiare le sponde progettate colle indicate norme, conviene rivertirle con selciate, oppure applicarvi alcuna di quelle opere di consolidamento di cui si parlò nei numeri 52, 53, 54, 55, 57 e 59 del volume sui lavori generali d'architettura civile, stradale ed idraulica.

Talvolta si presentano delle circostanze locali, che esigono l'impiego di muri pel sostegno dei terreni sovrastanti ad un canale, oppure pel sostegno delle acque di un canale che deve passare in rialzo sulla superficie del suolo naturale. Nel primo caso possono convenire i muri di sostegno con riseghe o con contrafforti verso terra, e con parete verticale, oppure con scarpa dalla parte del canale. Nel secondo caso riescono utili i muri di sostegno con scarpa o con parete verticale verso il corso d'acqua, e con scarpa, con riseghe o con contrafforti dalla parte opposta. Nel secondo caso poi conviene addossare al muro di sostegno ed esternamente al canale un argine di terra, il quale contribuisce ad accrescere la resistenza del muro contro la spinta dell'acqua, e ad impedire le filtrazioni che diversamente potrebbero manifestarsi al piede del muro stesso.

257. Relazioni fra la portata di un canale, la sua pendenza e gli elementi determinanti la sua sezione retta. — Considerando

canali, in cui pel totale loro percorso sono costanti la portata, la pendenza e la sezione retta, e dicendo

I la pendenza del fondo,

Ω l'area, in metri quadrati, di quella parte dell'indicata sezione

per cui cammina l'acqua,

X la lunghezza, in metri, del perimetro bagnato, ossia di quella parte del perimetro della stessa sezione, la quale trovasi sotto il livello dell'acqua,

v la velocità media del corso d'acqua, espressa in metri,

Q la portata in metri cubi e riferita al minuto secondo,

 α e β due coefficienti variabili colle sostanze fra le quali l'acqua cammina,

secondo Darcy e Bazin si hanno le seguenti equazioni del moto uniforme

$$\frac{\Omega}{Z}I = \alpha \left(1 + \beta \frac{\chi}{\Omega}\right) v^{2}$$

$$Q = \Omega v$$
(1).

In quanto ai valori di α e di β , conviene assumerli come risulta dalla tabella che già venne data nel numero 157.

La sezione retta dei canali è generalmente costituita da una retta orizzontale BC (fig. 175) e da due rette, egualmente inclinate all'orizzonte, BA e CD. La parte di sezione retta, attraverso la quale passa l'acqua, è adunque un trapezio coi due lati non paralleli egualmente inclinati alle basi, di maniera che, chiamando

L la larghezza BC di fondo del canale ed

h l'altezza BG dell'acqua, espresse in metri,

γ l'angolo ABH misurante l'inclinazione delle sponde all'orizzonte, si ha

$$\Omega = (L + h \cot \gamma) h$$

$$\chi = L + 2 \frac{h}{\sin \gamma}$$
(2).

Ponendo i valori di Ω e di X nelle equazioni (1) risultano due equazioni contenenti le sei quantità L, h, γ , I, v e Q; cosicchè, essendo dato quattro di queste quantità, si possono determinare le altre due.

Pei canali di scolo, nei quali generalmente si verifica la massima

portata in tempi di generali e copiose pioggie, quasi sempre sono elementi noti: la massima altezza h che può avere l'acqua in essi scorrente, senza porre ostacolo al conseguimento dello scopo che si ha in mira di ottenere ; l'angolo γ misurante l'inclinazione delle loro sponde all'orizzonte; la pendenza I del loro fondo ; e la massima portata Q da dedursi, come al numero 437, dalle acque scaricate dalla proiezione orizzontale dell'estensione superficiale tributaria nelle più generali e copiose pioggie. I due elementi da determinarsi mediante le equazioni (4) sono la larghezza di fondo L e la velocità media v.

Pei canali d'irrigazione e pei canali di forza motrice, ben di frequente sono elementi cogniti od elementi facili a prestabilirsi: il rapporto m fra la larghezza L di fondo e l'altezza h dell'acqua; l'angolo γ determinante l'inclinazione delle sponde all'orizzonte; la pendenza L, e la portata L. Ponendo L mh, le incognite del problema, da determinarsi colle formole L, resteranno l'altezza L dell'acqua e la velocità media L.

Sovente, nel progettare canali d'irrigazione e per forza motrice, il costruttore s'impone la condizione che la massima velocità u sul fondo sia inferiore o tutto al più eguale a quella che è in procinto di produrre corrosioni sul fondo stesso. Le velocità limiti per le corrosioni già vennero riportate nella tabella del numero 138, e dalle formole stabilite da Bazin risulta che la velocità media v, corrispondente alla velocità u sul fondo, viene data dalla formola

$$vu = u + 6 \sqrt{\frac{\Omega}{\chi}} I$$
 (3),

dove le lettere Ω , X ed I hanno i significati che loro vennero dati nel principio di questo numero.

Pei canali di navigazione, sono in generale elementi noti: la loro portata Q, che non deve essere al di sotto di un certo limite, facile a determinarsi in seguito alla conoscenza del numero delle barche che giornalmente saranno per percorrere il canale in discesa ed in salita, tenendo anche conto della quantità d'acqua che va perduta per evaporazione e per infiltrazioni; la larghezza di fondo L; l'angolo 7, il quale misura l'inclinazione delle sponde all'orizzonte; e la velocità v, che deve essere tanto piccola da non rendere difficile la navigazione ascendente. Gli elementi incogniti restano la pendenza I e l'altezza d'acqua h.

Il costruttore può anche imporsi la condizione che nei canali navigabili la velocità V al filone sia al di sotto di un certo limite, metri 0.50 circa per minuto secondo, ed allora, come risulta dalle esperienze di Darcy e Bazin, fra le dette velocità, la pendenza I, la superficie Ω ed il perimetro bagnato χ , si ha la relazione

$$v = V - 14 \sqrt{\frac{\Omega}{\overline{\chi}}I}$$
 (4).

L'applicazione delle formole (1) relative al moto uniforme dell'acqua nei canali, conduce sovente ad equazioni di grado superiore al secondo, e quindi di lunga e difficile risoluzione. Per semplificare i calcoli, servono quattro tavole state calcolate da Bazin, (Recherches hydrauliques entreprises par M. H. Darcy, continuées par M. H. Bazin, Premiere partie) le quali, indicando con R il rapporto $\frac{\Omega}{\chi}$ chiamato raggio medio, danno: la prima e la seconda i

valori di $\alpha + \frac{\beta}{R}$ e di $\sqrt{\alpha + \frac{\beta}{R}}$ per tutti i valori del raggio medio R che si possono incontrare nella pratica; la terza e la quarta i valori del rapporto $\frac{v}{V}$ dalla velocità media v alla velocità massima V pei diversi valori del raggio medio R e del coefficiente $\alpha + \frac{\beta}{R}$. Anche le tavole grafiche del signor ingegnere Domenico Regis, fatte sulle formolé di Darcy e Bazin, e pubblicate nel terzo volume degli atti della Società degli ingegneri e degli industriali di Torino, possono tornare vantaggiose per la speditezza con cui permettono di arrivare alla risoluzione di alcuni problemi relativi al moto uniforme dell'acqua nei canali. In alcuni casi le equazioni (1) si prestano ad una facile e spedita determinazione delle incognite, in alcuni altri riesce comodo un procedimento per tentativi, analogo a quello che venne indicato nel numero 138, per la determinazione dell'altezza dell'acqua, conoscendosi la portata, la pendenza, l'inclinazione delle sponde e la larghezza sul fondo.

Nei canali manufatti vi ha sempre pendenza di fondo; ma non sempre, per tutto il loro percorso, si conservano costanti la portata, la pendenza e la sezione retta. Questo però ha generalmente luogo per tronchi molto lunghi, nei quali il moto dell'acqua si può ritenere uniforme; imperocchè, anche avvenendo variazioni di altezza nelle sezioni estreme dei diversi tronchi di un canale, queste variazioni non sono sentite dall'acqua scorrente pel canale stesso che per una certa estensione, oltre la quale il moto diventa così regolare, come se le dette variazioni non esistessero. Le equazioni (1) sono adunque quelle che generalmente possono servire nella pratica per determinare le dimensioni dei canali manufatti e dei varii tronchi in cui conviene immaginarli decomposti a motivo di qualche cangiamento di portata, di pendenza e di sezione retta.

Quando in un canale non ha luogo, almeno per tronchi molto lunghi, l'indicata costanza di portata, di pendenza e di sezione retta, invece delle equazioni (1) si devono adottare quelle del moto permanente e, pei casi rari della pratica in cui può occorrere l'applicazione di tali equazioni, conviene consultare appositi trattati d'idraulica, fra i quali meritano particolare menzione i Sunti delle lezioni di meccanica applicata alle macchine e d'Idraulica pratica del professore Prospero Richelmy, ed il Trattato di idrometria o di idraulica pratica del professore Domenico Turazza.

258. Norme per lo studio del progetto di un canale. - La prima quistione che si presenta nello studio del progetto di un canale per irrigazione, per forza motrice, per navigazione od anche per soddisfare ad uno scopo misto, è quella di vedere in qual modo e con quale misura il canale potrà essere alimentato nelle diverse stagioni dell'anno. I canali d'irrigazione e quelli per forza motrice vengono generalmente alimentati con acque ricavate da fontanili, da canali di maggior portata, da laghi, da fiumi; talvolta anche coll'acqua raccolta entro appositi serbatoi. Sono alimentati colle acque ricavate da laghi e da fiumi i canali di navigazione ad una sola pendenza, come quelli che, partendo dal punto più elevato nel quale deve avvenire l'alimentazione, vanno progredendo, sempre discendendo in un solo senso, per dare la comunicazione di varii luoghi fra di loro e con qualche fiume navigabile, od anche fra due tronchi di un medesimo fiume, nei quali può aver luogo la navigazione, ma che sono interrotti da altri tronchi non navigabili. Finalmente, pei canali navigabili a punto culminante, ossia per quelli che, discendendo dall'una e dall'altra parte di un altipiano, costituiscono due canali con opposta pendenza e comunicanti fra di loro per porre in comunicazione due fiumi separati dall'altipiano che divide i loro bacini, generalmente si trae la provigione dell'acqua da corsi d'acqua scorrenti sui due versanti attraversati dal canale, ed anche da opportuni serbatoi convenientemente stabiliti sui versanti stessi.

L'idrometria, ossia la scienza che tratta della misura delle acque, dà le norme colle quali, almeno approssimativamente, si può determinare la quantità d'acqua di cui in ogni caso si può disporre per l'alimentazione di un canale qualunque, norme che qui non vengono riportate, perchè eccedono il còmpito di questo lavoro e che trovansi esposte in tutti i libri d'idraulica pratica, fra i quali meritano speciale menzione quelli già citati dei professori Richelmy e Turazza ed il Manuale pratico di idrodinamica del Colombani.

Una volta conosciuto il modo di alimentare un canale e la portata di cui deve essere capace, viene la questione del suo tracciamento. Questa quistione si risolve tenendo ben presente lo scopo pel quale il canale vuol essere costrutto, procurando di osservare le prescrizioni che vennero date nei numeri 253, 254 e 255, e seguendo in gran parte i metodi che vennero dati nel numero 111, dove sono indicate le norme per lo studio del progetto di una strada.

259. Principali opere d'arte necessarie al compimento di un canale. — Nel dare il progetto di un canale per irrigazione, di un canale per forza motrice e di un canale di navigazione, importa innanzi tutto pensare a quelle opere che in ogni caso potranno assicurargli la giusta quantità d'acqua, ed a quelle altre che varranno a mantenerlo spurgato, e quindi alle dighe, ai derivatori ed agli scaricatori.

Dovendo un canale attraversare corsi d'acqua e passare al di sopra di strade e di naturali bassure, si rende necessaria la costruzione di opere d'arte, affatto analoghe ai ponti ed ai viadotti, conosciute coi nomi di ponti-canali ed acquedotti.

Presentandosi il caso in cui le acque di un canale siano talmente basse, per rapporto a quelle di un altro corso d'acqua che deve attraversare, o per rapporto al livello di una strada di posizione invariabile, da essere impossibile farle passare sopra, è imperiosa necessità ricorrere ad appositi sotto-passaggi, comunemente chiamati col nome di tombe e di sifoni.

Si devono costrurre ponti in tutte quelle località in cui una strada deve passare al di sopra di un canale con una sufficiente differenza di livello; e possono convenire le gallerie in quelle circostanze in cui, dovendo un canale passare in un terreno colla sua superficie molto elevata su quella del canale stesso, il passaggio in galleria riesce più conveniente del passaggio in trincea.

Nei canali di navigazione per mantenere la velocità al di sotto di un certo limite e per economizzare l'acqua, principalmente quando sono a punto culminante, conviene la divisione in tronchi di differente livello, e per porre in comunicazione due tronchi successivi in modo che sia possibile e facile la navigazione, si ha ricorso a quelle opere d'arte comunemente chiamate sostegni o conche.

CAPITOLO II.

Dighe.

- 260. Dighe e loro uffizi. Sotto la denominazione di diga s'intende generalmente un edifizio fatto attraverso l'alveo, ovvero allo sbocco di un fiume o di un canale, allo scopo di soprattenere il corso dell'acqua, costringendolo ad un regolato sistema, corrispondente a qualche divisato effetto: per ottenere la bonificazione e l'irrigazione di terreni; per animare opifizi; per vantaggio della navigazione; per correggere la soverchia pendenza di fondo di un corso d'acqua e preservare le ripe dai dirupamenti; per liberare qualche canale dal rigurgito delle piene del suo recipiente.
- 264. Dighe per l'alimentazione di canali. Le dighe di maggiore importanza sono quelle che si fanno attraverso l'alveo di un fiume alimentatore di un canale immediatamente a valle della località destinata alla bocca d'introduzione, nell'intento di ottenere che le acque di magra s'innalzino nel tronco superiore e che raggiungano l'altezza necessaria a ciò che entri nel canale la quantità d'acqua prescritta. Queste dighe sono anche conosciute sotto il nome di cateratte, stramazzi o pescaie, e, qualunque possa essere la materiale loro struttura, il Cavalieri dà le seguenti norme onde provedere alla loro stabilità:
- 1° Devono essere poste dove l'alveo del fiume è bene stabilito, dove le sponde sono solide e non minacciate dalla corrente;
- 2° Devono presentare alla corrente una faccia inclinata detta petto, che ne riceve obliquamente l'urto;
- 3° Dalla parte opposta alla corrente devono presentare una faccia, che molto si protenda nel fiume, detta scarpa, affinchè l'acqua che sormonta la chiusa, cadendo troppo violentemente, non abbia da formare nell'alveo sotto lo stramazzo un profondo gorgo, che ponga in compromesso la stabilità dell'edifizio;
- 4° La loro larghezza in sommità non deve essere minore di quanto si richiede per resistere alla pressione ed all'urto della corrente;
 - 5° Le estremità delle chiuse siano tenute da robuste testate

internate nelle sponde laterali, in modo da essere sicuri che la corrente, anche facendosi strada di fianco, non possa rendere inutile l'edifizio.

Per ottenere poi che una diga possa produrre il pieno e durevole conseguimento del ricercato effetto della diversione dell'acqua, conviene:

4° Che l'altezza sia opportunamente determinata, affinchè la diga possa trattenere le acque di magra del fiume ed inviarle entro il canale, che esso deve alimentare, nella quantità voluta, lasciando trascorrere nell'alveo inferiore le acque soprabbondanti;

2° Che la sommità o soglia superiore della diga non sia orizzontale, ma leggermente inclinata verso la bocca, ossia verso l'incile del canale, affinchè il corso dell'acqua si mantenga da questa parte ed il fondo del fiume si conservi più basso della diga.

Talvolta le dighe si stabiliscono obliquamente alla corrente, in modo da fare, dalla parte del canale derivatore ed a monte, un angolo acuto colla sponda. Questa disposizione contribuisce ad invitare il corso del fiume verso la bocca d'introduzione nel canale derivatore, e quindi a rendere più difficile l'alzamento del fondo di quello presso l'indicata bocca.

Non sempre l'andamento planimetrico di una diga è rettilineo; qualche volta esso è curvilineo, circolare o parabolico, colla concavità a valle; la corda, corrispondente all'arco che definisce il detto andamento planimetrico, talora è normale alla corrente e talora è inclinata in modo da fare, dalla parte del canale derivatore ed a monte, un angolo acuto colla sponda.

Le dighe con andamento rettilineo e normale alla direzione del corso d'acqua, che attraversano, sono quelle che risultano di minore lunghezza, e quindi quelle che presentano la maggior economia di costruzione. Le dighe con andamento planimetrico curvilineo vengono principalmente impiegate in quelle circostanze, nelle quali vuolsi che l'acqua, passante sopra di esse, si riversi nel sottostante tronco di fiume, con direzioni convergenti verso il suo mezzo.

Nei fiumi navigabili, una diga continua dall'una all'altra sponda impedirebbe la libera navigazione, se non si lasciasse una parte libera al passaggio delle barche, la qual parte generalmente si trova presso la sponda opposta a quella sulla quale ha luogo la derivazione.

Conviene ancora osservare, che lo stabilimento di una diga sopra un corso d'acqua produce un rigurgito a monte, rigurgito di cui, almeno approssimativamente, bisogna tener conto, onde prevenire i danni che potrebbe cagionare. 262. Dighe di struttura murale. — Le dighe di struttura murale si fanno generalmente con calcestruzzo e con pietra da taglio; a monte ed a valle si difendono mediante grosse gettate di pietre; e sovente, per ottenere le incassature in cui si deve porre in opera il calcestruzzo e mantenere ferme le pietre delle gettate, si fa uso di paratie formate con pali e con tavoloni, e di palafitte formate da soli pali uniti da filagne. Nella figura 277 si ha la sezione trasversale ed una porzione della proiezione orizzontale di una di tali dighe.

Il petto, che presenta alla corrente due facce verticali a b e de, è preceduto da una gettata G di grossi massi. Due paratie P e P' comprendono il masso di calcestruzzo M, il quale è coperto da un rivestimento di pietra, la cui superficie superiore costituisce la soglia s e la scarpa s'. Le paratie P' e P'' comprendono un secondo masso M' di calcestruzzo, pure coperto con pietre, la cui superficie superiore, quasi orizzontale, costituisce la controscarpa c. Tra la paratia P" e la palafitta P" trovasi una gettata G' di grosse pietre, la cui superficie superiore è leggiermente inclinata, in modo da raccordarsi col fondo del fiume; ed un'altra gettata G" trovasi dopo la detta palafitta. Il rivestimento sulla scarpa e sulla controscarpa, in parte è di pietre tagliate a guisa di lastroni ed in parte di pietrame. Le dette pietre tagliate, disposte per file secondo la lunghezza e secondo la larghezza della diga, determinano parecchi scompartimenti parallelepipedi, e questi scompartimenti sono pieni di pietrame, posti in opera con malta idraulica. Conviene che nei blocchi di pietra della soglia siavi una fila di fori posti a distanze eguali, atti a ricevere dei ritti, per addossarvi dei fascinoni quando in tempi di magre vogliasi provvisoriamente elevare la diga.

La differenza di livello fra il fondo del corso d'acqua attraversato da una diga, e la soglia della diga stessa, costituisce la sua altezza, e fin d'ora si può stabilire: che l'inclinazione all'orizzonte del petto o quella della superficie superiore della gettata che gli sta innanzi, deve essere compresa fra 45° e 60° ; che la larghezza della soglia si può assumere variabile fra i $\frac{5}{4}$ ed i $\frac{4}{5}$ dell'altezza della diga; che la scarpa deve avere tale inclinazione da corrispondere a due, a tre ed infino a cinque di base per uno d'altezza; che la controscarpa, con un'inclinazione pressochè insensibile e con una lunghezza che sia poco inferiore al doppio della lunghezza orizzontale della scarpa, deve raccordarsi col fondo del corso d'acqua in cui la diga trovasi stabilita; e finalmente

che la gettata posta all'estremità più bassa della contro scarpa deve avere una tale lunghezza, da essere circa i $\frac{2}{3}$ della lunghezza della controscarpa.

263. Dighe di legname. — Le dighe di legname, come in sezione trasversale lo dimostra la figura 278, constano di più file di pali, le cui teste trovansi superiormente unite con travi, disposte nel senso trasversale e nel senso longitudinale. L'interno della diga è costituito da un'imbottitura di fascine, e tutto il sistema

è generalmente coperto di tavoloni.

Sotto la soglia della diga stanno due file di pali P' e P". Queste file di pali distano fra di loro di 1 metro, o tutto al più di metri 1,30; ed i pali di una stessa fila, aventi diametro variabile fra metri 0,35 e metri 0,40, devono trovarsi spaziati di metri 0,50 a metri 0,60 da asse ad asse. Sotto il petto della diga vi sono le due file di pali P, non che la terza fila P', che corrisponde all'intersezione del petto colla soglia; sotto la scarpa si trovano le due file di pali P", e le altre due P" e P", le quali corrispondono rispettivamente alle intersezioni della soglia colla scarpa e della scarpa colla controscarpa; finalmente sotto la controscarpa esistono le due file di pali P', e l'altra P" situata in corrispondenza dell'intersezione della scarpa colla controscarpa. La distanza fra le file dei pali sottostanti al petto, alla scarpa ed alla controscarpa suol essere di 1 metro o tutto al più di metri 1,50; i pali, che trovansi in una stessa di queste file, distano da asse ad asse di circa 1 metro; ed il loro diametro varia generalmente fra metri 0,35 e metri 0,40. A seconda della maggiore o minore altezza della diga, possono essere necessarie tre o due file di pali per la costruzione del petto; cinque, quattro o soltanto tre file di pali per la formazione della scarpa; quattro, tre o solo due file di pali per la costruzione della controscarpa. I pali di una diga, siccome destinati a vincere l'azione di una spinta laterale anzichè una pressione verticale, devono penetrare nel fondo almeno di quando sporgono dal medesimo, ed in ogni caso la lunghezza della parte affondata nella terra non deve essere minore di 1 metro. Le travi longitudinali l e le travi trasversali t, mediante lunghe caviglie di ferro, sono assicurate alle teste dei pali.

Le fascine destinate a formare l'interna imbottitura si dispongono per strati alternativamente trasversali e longitudinali, ognuno di essi dell'altezza di circa metri 0,50, ben calcati ed assicurati per mezzo di robuste traverse di legno, poste orizzontalmente per lungo e per largo, e chiodate ai pali. Di tali traverse si formano tanti ordini, quanti ne occorrono, affinchè ne cada uno ad ogni tre strati di fascine. In quelle circostanze, assai frequenti nella pratica, in cui devesi costrurre una diga di legname senza deviare l'acqua dal suo corso naturale, riesce impossibile il collocamento delle indicate traverse per tenere a posto le fascine; ed allora le fascine si mantengono serrate le une alle altre mediante grosse pietre, od anche si pongono in opera appositi fascinoni, aventi l'involucro esteriore fatto con ramaglie ed il nucleo interno costituito da materiali molto pesanti, come pietre, ciottoli e ghiaie.

I tavoloni costituenti le coperte delle dighe di legname devono avere grossezza compresa fra metri 0,07 e metri 0,09; importa che questi tavoloni siano bene uniti costa a costa, e congiunti l'uno all'estremità dell'altro sulle travi trasversali t, alle quali sono assicurati con chiodi. Per maggiore robustezza del sistema, conviene ancora che le giunture dei tavoloni sulle dette travi t non siano in continuazione l'una dell'altra, ma che si trovino alternate.

Per rapporto all'inclinazione del petto, della scarpa e della contro scarpa, valgono norme analoghe a quelle che già vennero indicate nel precedente numero, parlando delle dighe di struttura murale. Affinche poi l'acqua, cadendo dalla diga, non abbia da formare nell'alveo e sotto lo stramazzo un profondo gorgo e così minacciare la stabilità della controscarpa e quindi quella dell'intiero edifizio, è prudente consiglio quello di porre una robusta gettata in prosecuzione della controscarpa, la quale gettata, per le dighe di qualche importanza, può comporsi di due parti G' e G", come chiaramente risulta dalla figura 277.

Si trovano molti esempli di dighe di legname, nelle quali non esiste la coperta di tavoloni. Le travi t ed l (fig. 278), di eguale grossezza e tagliate a metà legno dove s'intersecano, non presentano alcun risalto sulle diverse facce della diga, di cui fanno parte; l'imbottitura è di fascine o di grosse pietre; e superiormente i diversi spazii esistenti fra le travi t ed l sono riempiti mediante pietre diligentemente aggiustate, e rese immobili sotto l'azione della corrente che vi passa sopra.

264. Altezza delle dighe. — Allorquando vuolsi costrurre una diga, la prima quistione che si presenta è quella di determinare la sua altezza, ossia la differenza di livello fra la sua soglia ed il fondo del fiume in cui deve essere stabilita.

Considerando una diga normale alla corrente, supponendo che la sua soglia sia orizzontale, e chiamando Q la portata del fiume in magra,

Q' la portata del canale derivatore, espresse in metri cubi e riferite al minuto secondo,

l la lunghezza della diga ed

y la differenza di livello \overline{AB} (fig. 279) fra la soglia o cresta della diga ed il pelo dell'acqua, dove non è sensibile la depressione che in questo si verifica presso la diga, espresse queste lunghezze in metri,

la quantità d'acqua che deve ancora stramazzare dalla diga è $\mathbf{Q}-\mathbf{Q}'$, e, come suggerisce il Colombani nel suo manuale pratico d'idrodinamica, si può determinare y mediante la semplicissima equazione

$$Q-Q'=1,80 ly \sqrt{y}$$
.

Indicando ora con

b l'altezza GH = FI dell'acqua nella sezione in cui vuolsi costrurre la diga o in una sezione di poco a monte di questa, con

a l'elevazione nota $\overline{\text{HD}} = \overline{\text{IB}}$ che la diga deve produrre nella corrente per raggiungere lo scopo per cui essa vuolsi costruire e con

x l'altezza FA da darsi alla diga, espresse tutte queste altezze in metri, si ha

$$x = b + a - y$$
.

Per le dighe rettilinee e colla soglia orizzontale, ma oblique alla corrente, si può assumere per formola determinatrice di y la

$$Q - Q' = 1.80 m ly \sqrt{y}$$

nella quale l rappresenta sempre la lunghezza della diga a cui questa formola vuolsi applicare ed m un coefficiente di riduzione, variabile coll'obbliquità della diga alla corrente. Nel caso in cui la direzione della diga fa colla normale alla direzione del corso d'acqua un angolo di 45° , secondo P. Boilleau (Traité de la mesure des eaux courantes), si può assumere m=0.942; nel caso poi in cui il detto angolo sia di 65° , si può prendere m=0.911. Gli indicati valori del coefficiente m sono anche applicabili ad obbliquità che poco differiscono dalle due indicate, e la loro media si può nella pratica

ritenere siccome conveniente per l'obbliquità media delle due accennate. Il Professore Francesco Brioschi, in un suo lavoro inserto nel Politecnico dell'anno 1866, venne a dedurre che conviene assumere m=0,979 nel caso dell'obbliquità di 45°, ed m=0,868 nel caso di obbliquità prossima a 65°.

Per le dighe che seguono un andamento planimetrico curvilineo, nelle ordinarie circostanze della pratica si può immaginare inscritto un andamento poligonale al dato andamento curvilineo; fare l'espressione della quantità d'acqua che defluisce da ciascuno degli stramazzi corrispondenti a diversi lati dell'accennato andamento poligonale, la qual espressione sarà della forma del secondo membro dell'ultima equazione; ed eguagliare la somma di tutte queste espreszioni, la qual somma conterrà il fattore comune $y\sqrt{y}$, alla differenza Q-Q'. L'equazione risultante può servire per la determi-

nazione approssimata dell'altezza y.

L'altezza delle dighe deve essere la minima compatibile collo scopo a cui mira il loro collocamento. Le dighe troppo alte sono di ostacolo allo smaltimento delle piene; impediscono l'esportazione delle ghiaie lungo il letto dei fiumi, producono rigurgiti troppo sensibili, i quali possono talvolta essere causa di gravi inconvenienti, e difficilmente si possono conservare sotto le azioni distruttive delle acque su esse scorrenti, trascinanti grossi e pesanti massi in tempi di piene. L'esperienza ha dimostrato che non conviene sorpassare il limite di 2 metri nell'altezza delle dighe.

CAPITOLO III.

Derivatori e scaricatori.

265. Derivatori. — Nell'architettura idraulica si dà il nome di derivatori a quegli edifizii, i quali generalmente si stabiliscono all'origine dei canali d'irrigazione e di quelli per forza motrice, nell'intento di regolare l'introduzione dell'acqua da cui devono essere alimentati. Questi edifizii talvolta trovansi sulle sponde dei corsi d'acqua o dei recipienti dai quali viene fatta la derivazione; tal'altra fra essi e le dette sponde vi ha un tronco di canale, che si può chiamare canale moderatore. Questo tronco di canale è destinato a favorire il deflusso delle acque verso l'edifizio derivatore, ed a promuovere i depositi delle ghiaie e delle torbide prima che le acque giungano nel canale

di derivazione. La prima disposizione senza gravi inconvenienti può esser adottata per le derivazioni da laghi e da corsi d'acqua, i quali non trascinano ghiaie ed in cui non avvengono torbide; la seconda disposizione invece è generalmente necessaria per le derivazioni da fiumi soggetti ad alternative di magre e di piene e trascinanti materie atte a produrre interrimenti.

Un derivatore consiste essenzialmente in una soglia; in due spalle accompagnate non di rado da muri d'ala; in una o più luci coperte da lastroni e talvolta disposte a guisa delle arcate di un ponte, e quindi alternate, quando sono più d'una, con pile o pilastri intermedii. Nei fianchi delle spalle e dei pilastri sono incavati gli incastri o gargami verticali destinati a ricevere le paratoie o saracinesche, per mezzo delle quali si possono aprire o chiudere le luci dell'edifizio derivatore. I lastroni e le vôlte od arcate, costrutte sulle diverse luci del derivatore, servono a rendere praticabile la sommità dell'edifizio, affinchè facilmente si possano eseguire le manovre necessarie per chiudere e per aprire le luci stesse. Generalmente la soglia dell'edifizio si tiene di alcun poco elevata sul fondo del corso d'acqua o del recipiente, da cui immediatamente riceve le acque, e questa pratica è favorevole ad impedire l'introduzione di materiali pesanti nell'edifizio derivatore.

Le dimensioni delle varie parti di un derivatore si determinano in conformità dei varii ufficii cui sono destinate, e non è il caso di parlare della determinazione di queste dimensioni, giacchè, trattandosi di spalle, di muri d'ala, di pile e di arcate, valgono le norme che già vennero date parlando dei muri di sostegno, dei ponti e degli archi. Le luci, onde evitare che la larghezza delle paratoie non risulti troppo grande e che il loro peso renda difficile le manovre per innalzarle, devono aver una larghezza limitata, e pare che non convenga eccedere il limite superiore di metri 1,60. — Gli incastri in cui scorrono le paratoie, sono generalmente praticati in ritti di pietra hen resistente, e, siccome pel continuo fregamento questi ritti sono soggetti a logorarsi, è lodevole la pratica di porli in opera in modo che all'occorenza si possano levare per sostituirne dei nuovi a quelli già troppo usati, senza apportare gravi sconcerti alle altre parti dell'edifizio.

Le paratoie si fanno con tavoloni di legno forte. Questi tavoloni, disposti colla loro lunghezza nel senso orrizzontale, sono quasi sempre uniti a scanalatura e linguetta, e, mediante un sufficiente numero di chiodi, sono tenuti assieme da traversoni t (fig. 181). Un capello c, fortemente unito mediante piastre di ferro ai traversoni t,

forma il loro coronamento; e tutto il sistema trovasi generalmente consolidato da ferri piatti r, i quali si corrispondono sull'una e sull'altra delle facce della paratoia. Le due facce laterali che devono scorrere negli incastri, non che la faccia inferiore, quasi sempre portano una guernitura di ferro, affinchè non vengano troppo repentinamente danneggiate. I meccanismi per innalzare ed abbassare le paratoie possono essere varii e sono molto usate le leve e le viti. In ogni caso questi meccanismi devono essere semplici, di facile maneggio, duraturi, e di più talmente disposti che non possano essere toccati e manovrati da persone estranee al servizio dell'acqua. — Le paratoie di legno non sono le sole che si possano applicare per aprire e chiudere le luci dei derivatori, ed evidentemente, soprattutto per le grandi luci, possono riuscire convenienti le paratoie di lamiera di ferro.

266. Derivatori per grandi canali. — Gli edifizii di derivazione per piccoli canali constano delle spalle, dei muri d'ala, dei pilastri intermedii alle spalle, quando vi sono più luci, di lastre orizzontali o di vôlte che coprono le diverse luci e che hanno per precipuo scopo di servire alla manovra necessaria per l'innalzamento e per l'abbassamento delle paratoie. Questi semplici edifizii, modesti per forma e per dimensioni, non hanno copertura, sorgono a poca elevatezza e sono insufficienti pei grandi canali. Gli edifizii derivatori sono, pei canali, ciò che sono i portoni, gli androni e gli atri i nelle fabbriche civili. Nello stesso modo che questi devono rivelare l'esitenza di fabbricati d'importanza proporzionata alle loro forme ed alle loro dimensioni, quelli devono essere costrutti con forme e dimenzioni modeste quando sono seguiti da un canale di poca importanza, ed invece devono presentarsi con forme appariscenti e con dimensioni grandiose, allorquando sono destinati all'introduzione dell'acqua in un grande canale.

Due luminosi esempli di edifizii derivatori per grandi canali si hanno nel Piemonte: uno presso Chivasso, per la derivazione del Canale Cavour dal fiume Po; l'altro presso Saluggia, per la derivazione del Canale sussidiario Cavour dalla Dora Baltea. Questi edifizii si possono assumere siccome rappresentanti il tipo dei grandi derivatori, nei quali conviene distinguere tre piani: quello del passaggio dell'acqua contenente le paratoie abbassate; quello corrispondente alle paratoie affatto sollevate, e quello della manovra delle paratoie. Essi presentano due fronti, una a monte e l'altra a valle; e conviene che vi siano due ordini di paratoie, ossia uno dalla parte della prima fronte e l'altro dalla parte della seconda

fronte. Nel prospetto a monte non si devono trovare aperture corrispondenti al secondo piano, e questo nell'intento di prevenire l'accidente che qualche straordinaria piena possa riversarsi nel canale che fa seguito all'edifizio, sormontando il pavimento del detto secondo piano. Il piano della manovra deve essere coperto da apposito tetto. La figura 280, in elevazione ed in sezione trasversale, fa vedere una parte del citato derivatore presso Saluggia, e, parlando di quest'edifizio, ecco in quali termini si esprime il signor Ingegnere Enrico Bernazzo in una sua commendevole memoria sul Canale sussidiario Cavour, inserta negli Atti della Società degli Ingegneri e degli Industriali (anno IV — 1870, fascicolo I) e pubblicata dell'Editore Augusto Federico Negro di Torino:

"Il piano del passaggio dell'acqua è diviso in nove scompartimenti mediante muricciuoli di granito su cui s'impostano nove vôlte a botte di metri 5,215 di corda per metri 0,31 di monta e metri 0,50 di spessore alla chiave.

« Dai prospetti a monte ed a valle dell'edifizio gli scompartimenti appariscono in doppio numero dei citati; perocchè a restringere l'ampiezza delle porte, che non divisa riescirebbe soverchia, si fissarono (oltre gli stipiti corrispondenti ai muricciuoli), stipiti intermedii in numero di nove per parte.

« Le dette vôlte sono formate di mattoni scelti e ricoperte all'intradosso e sulle facce viste di uno strato di cemento; per altro francamente diremo che a questo genere di copertura avremmo preferito una copertura di robusti lastroni, alleggerita se volevasi da archi interni di scarico formati di laterizi; avrebbesi così avuto a contatto delle acque un materiale ben più robusto e più lungamente durevole.

« Gli stipiti sono di due pezzi; l'inferiore della lungezza di metri 2,90; il superiore di metri 5, non comprese le immarsature.......

« Il piano immediatamente superiore a quello di passaggio delle acque è destinato a magazzino.

« Al piano della manovra gli appositi stipiti cadenti sui muricciuoli inferiori sono legati da chiavi di ferro, aventi scopo eziandio di opporsi alle spinte degli archi intermedii. Gli stipiti isolati sono assicurati da grappe sotto il lastrone.

« Il tetto è costituito da diciannove capriate, su cui posano correnti, ai quali sono fissate le lastre della copertura.

« Nulla diremo dell'annesso casotto del custode, chè poco havvi in esso di notevole......

« Le paratoie hanno tutte le istesse dimensioni e particolarità

di costruzione, ad eccezione di quelle dell'ordine a monte, le quali sono in due pezzi, di cui l'inferiore in tempo di decrescenza delle acque della Dora, dopo una piena, deve rimanere abbassato sulla soglia dell'edifizio e così evitare una troppo facile introduzione nel canale dei materiali dalla corrente trascinati.»

Nella figura 281 trovasi rappresentato « il modo di unione dei dne pezzi nello scendere del più elevato; quanto al distacco basti dire che esso si determina mediante due funicelle recanti alla loro estremità uno o più uncini, aventi per iscopo di sollevare, nel primo movimento d'alzata della paratoia, il braccio dell'apparecchio. »

Le paratoie (fig. 282) si sollevano mediante una leva, la quale « ha ciò di particolare, che mentre nelle altre chiaviche la distanza dell'ipomoclio al punto d'applicazione della resistenza è fino a metri 0,20, quivi è di metri 0,08, il che permette una minore lunghezza della leva stessa. »

Due uncini « portati dalla leva medesima hanno per iscopo di surrogarsi alternativamente e raddoppiare i punti d'attacco o di presa, diminuendo così della metà l'arco descritto dall'estremità della leva a maggior comodo del custode.

« I nottolini, col contrappeso che hanno vicino, servono a sorreggere, ad ogni colpo di leva, la paratoia e, volendosi, a lasciare questa chiudere d'un tratto. »

Le dimensioni delle parti fisse dei grandi derivatori, ossia delle spalle, dei piedritti intermedii, delle arcate, delle vôlte, delle incavallature del tetto, non che quelle delle travi e spranghe sopportanti le paratoie, sono facili a determinarsi colle norme che vennero date nelle prime due parti di questo volume e nel volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni.

Le spinte poi che l'acqua esercita sulle paratoie abbassate o su parti di esse comprese fra due piani orizzontali, non che i punti d'applicazione di queste spinte, sono elementi facili a determinarsi colle norme che vennero date nel numero 221 del volume il quale tratta della resistenza dei materiali e della stabilità delle costruzioni. Queste spinte tendono ad inflettere le paratoie, e quindi le teorie sulla flessione facilmente condurranno alla determinazione delle grossezze che ad esse conviene assegnare. Le paratoie del canale di Saluggia hanno l'altezza di metri 2,82, la lunghezza di metri 1,565; la grossezza dei tavoloni orizzontali di cui sono formate è di metri 0,06, quella dei traversoni t è di metri 0,08 ed è

di metri 0,01 la grossezza delle guerniture e della maggior parte dei ferri piatti di consolidamento.

267. Luce libera dei derivatori. — Sia FL (fig. 283) la fronte anteriore d'un derivatore, e l'acqua che arriva ad esso, per essere immessa nel canale da alimentarsi, raggiunga il livello AB. Le luci del derivatore siano rettangolari con due lati orizzontali; i loro lati verticali abbiano la lunghezza EC; ed i lati orizzontali siano disposti, il più alto, di una quantità BC sotto il livello del liquido, ed il più basso si trovi elevato, sul fondo del recipiente a monte, sul fondo del canale a valle del derivatore. Assumendo il metro per unità di lunghezza ed indicando con

b il battente BC, con

a la differenza di livello BD fra il livello dell'acqua a monte ed il livello dell'acqua a valle del derivatore, con

c la differenza di livello DE fra l'orlo inferiore della luce ed il livello dell'acqua a valle del derivatore, con

l la larghezza libera del derivatore, ossia la somma delle larghezze delle sue luci, con

g la gravità, che in Torino si può assumere eguale a metri 9,8051, con

m un coefficiente di contrazione, con

Q la quantità d'acqua, espressa in metri cubi, che in un minuto secondo deve attraversare il derivatore, e ponendo

$$a-b=a'$$

si può approssimativamente ritenere: che la portata della parte libera della luce alta \overline{CD} , è data da

$$mla' \sqrt{2g(b+\frac{1}{2}a')};$$

e che la portata della parte rigurgitata della luce, alta DE, vale

$$mlc \sqrt{2ga}$$
.

Sommando queste ultime due espressioni, si deve avere la totale portata Q, cosicchè, ponendo per a' il suo valore a-b, risulta

$$Q = m l \left[(a-b) \sqrt{\frac{1}{2}(a+b)} + c \sqrt{a} \right] \sqrt{2g}$$
 (1).

Quando l'altezza FE è eguale o maggiore di FD, si verifica il caso della luce libera, non esiste erogazione d'acqua sotto il livello HM, l'altezza a si riduce alla differenza di livello BE (fig. 284) fra il pelo dell'acqua a monte del derivatore e l'orlo inferiore della luce, e, indicando con a, questa differenza di livello BE, invece dell'equazione (1) si ha

$$Q = m l(a_i - b) \sqrt{g(a_i + b)}$$
 (2).

Nel caso in cui non vi è battente (fig. 285), si ha b=0; e, ritenendo le lettere a e c per indicare le altezze \overline{BD} e \overline{DE} del livello dell'acqua a monte del derivatore sul livello dell'acqua a valle e del livello di questa sulla soglia E, risulta l'equazione

$$Q = ml\left(a\sqrt{\frac{1}{2}} + c\right)\sqrt{2ga},$$

alla quale conviene generalmente sostituire l'altra più semplice

$$Q = ml\left(\frac{2}{3}a + c\right)\sqrt{2ga}$$
 (3).

Se l'altezza \overline{FE} è eguale o maggiore di \overline{FD} , ha luogo il caso della luce libera a stramazzo, non esiste erogazione d'acqua sotto il livello HM, l'altezza a si riduce alla differenza di livello \overline{BE} (fig. 286) fra il pelo dell'acqua a monte del derivatore e la soglia dello stramazzo, e, indicando con a_2 questa differenza di livello, si ha l'equazione

$$Q = \frac{2}{3} m l a_2 \sqrt{2g a_2} \tag{4},$$

la quale, assumendo 1,80 per valore del prodotto $\frac{2}{3}m\sqrt{2g}$, nelle ordinarie circostanze della pratica può essere ridotta a

$$Q=1,80 la_2 \sqrt{a_2}$$

Le equazioni (1), (2), (5) e (4) sono quelle che possono servire per determinare la larghezza libera l di un derivatore, ossia la

somma della larghezza delle luci, per cui deve passare la portata Q. Aggiungendo ad l la somma della larghezza di tutti i piedritti da porsi fra le luci, non che le due larghezze delle spalle, si ottiene la lunghezza totale dell'edifizio. — Talvolta il valore di l è fissato, ed allora quella delle citate equazioni, la quale conviene al caso particolare, può servire alla determinazione di un altro elemento relativo alla luce dispensatrice. Le quantità b, a, a, a, a devono riferirsi alle epoche di magre; per le epoche di acque abbondanti si provvede all'introduzione della portata voluta nel canale, o coll'abbassamento parziale delle paratoie, o coll'abbassamento totale di alcune di esse.

Le citate formole, quando in esse si faccia m=0.60, giovano allorchè la luce o bocca è aperta in parete sottile, cioè tale che l'acqua non vi scorra a dilungo, ma ne spicchi quasi dal solo perimetro posto a monte, e che la grossezza della parete in cui la bocca è scolpita non abbia sensibile influenza sulla contrazione della vena. Che se la parete è tanto grossa da fare ufficio di breve tubo, le formole (1), (2), (3) e (4) esistono ancora, ma al coefficiente m conviene assegnare valori maggiori di 0,60. Alcune esperienze di Bidone pel caso di luci rettangolari, piane, verticali, con un lato orizzontale e con forte battente, portarono a conchiudere: che, quando la contrazione della vena ha luogo sui due lati verticali e sul lato orizzontale superiore, si ha m=0,6389; che, quando la contrazione si verifica sui due lati verticali, risulta m=0.6515; che, quando la contrazione ha luogo su un lato verticale e sul lato orizzontale superiore, conviene assumere m = 0.6621; e finalmente che, quando la contrazione ha luogo sul solo lato orizzontale superiore, si ha m = 0.6943.

Conviene ancora osservare: che le formule (1), (2), (5) e (4), in quanto si ritenne che l'altezza media sia eguale all'altezza di carico e che lo stesso coefficiente di contrazione valga per le parti libere e per le parti rigurgitate delle luci, non possono condurre che a risultati di mediocre approssimazione; che bisogna ricorrere ad appositi trattati d'idraulica, allorquando vogliasi raggiungere il massimo grado d'esattezza attendibile dalla teorica degli efflussi.

268. Scaricatori. — Il nome di scaricatori si dà a quegli edifizii, i quali generalmente si stabiliscono in prossimità dei grandi derivatori, e che servono a dare sfogo alle acque che in tempi di piene si portano con troppa abbondanza alle luci di questi. Chiudendo in parte le aperture di un derivatore ed aprendo quelle del corri-

spondente scaricatore, si ottiene che le acque passino nel canale colla quantità voluta; e che quelle eccessive, attraversando lo scaricatore, vengano esportate da un breve canale di scarico o nello stesso fiume, da cui ha luogo la derivazione, o nell'alveo di un altro corso d'acqua, cui non sia per apportare danno il conseguente aumento di portata. Gli scaricatori devono anche funzionare allorquando trovansi chiuse tutte le luci dei derivatori, affinchè non si introduca acqua nei canali che a questi fanno seguito; e devono pure servire allo sgombro del davanti dei derivatori dalle ghiaie e sabbie che in grosse acque vengono a formar depositi.

Uno scaricatore sovente ha la stessa forma del derivatore, cui trovasi unito; ma le dimensioni del primo sono generalmente minori di quelle del secondo.

Nei grandi canali, oltre lo scaricatore che trovasi presso il derivatore, altri se ne costruiscono lungo il loro percorso. Questi si stabiliscono di preferenza a monte delle opere d'arte più importanti, e riescono vantaggiosi nelle epoche di spurgo e di riparazioni.

269. Scaricatori con porte marinières. - Principale requisito degli scaricatori è quello di potere a volontà del custode e colla massima prontezza dar sfogo alla più grande quantità d'acqua possibile, compatibilmente colle dimensioni dell'opera. A raggiungere lo scopo meravigliosamente servono gli scaricatori con porte dette marinières, di cui si hanno due esempli in Italia, uno a Strà sul fiume Brenta, e l'altro a Saluggia per la già citata derivazione del Canale sussidiario Cavour dalla Dora Baltea. Quest'ultimo scaricatore, rappresentato in elevazione ed in sezione trasversale nella figura 289, presenta due luci, una grande coll'apertura di metri 17,70, l'altra piccola coll'apertura di metri 6,80. Sotto l'arcata della grande luce vi sono le porte marinières, e questa luce trovasi divisa in due da una pila sommergibile alta metri 2,40, col diametro della parte semi-cilindrica di metri 2,20, e colla grossessa di metri 1,50 nella parte parallelepipeda. La piccola luce è divisa in quattro minori della larghezza di metri 1,40, e ciascuna di queste è munita di una paratoia ordinaria.

Le paratoie che trovansi d'innanzi alla piccola luce, servono a regolare i piccoli movimenti di livello a cui può essere necessario mantenere le acque che si portano innanzi al derivatore. Le porte marinières si aprono solamente in tempo di piena e quando vuolsi operare uno scarico generale. Il signor ingegnere Enrico Benazzo, descrivendo ed accennando al modo di funzionare delle porte marinières, così si esprime nella memoria di cui già si è fatto cenno:

« Una traversa orizzontale, infissa in un ritto verticale operante qual perno e soretta da un saettone inclinato, costituisce a così dire la intelaiatura di ciascuna delle due porte.

« Sessanta panconcelli, appoggiati inferiormente contro la soglia dell'edifizio e superiormente contro la menzionata traversa, com-

piono l'ufficio della porta propriamente detta.

« Entrambe le porte marinières hanno movimento di apertura da monte a valle. »

Supponendo queste porte aperte e volendole chiudere, ecco come si procede:

« Incominciasi con barche a chiudere la traversa di sinistra; tal cosa non riesce difficile, sia perchè i ritti (che sono pure gli assi dei movimenti) trovansi inclinati in guisa da giovare alla chiusura, sia perchè l'appoggio dei ritti medesimi si fa da un albero di acciaio su ralla di bronzo perfettamente lavorati al tornio.

« Chiusa la traversa di sinistra secondo corrente, che trovasi a tal uopo comandata dalla chiave XYZ, chiudesi similmente quella di destra che viene fissata all'apparecchio », rappresentato nella figura 290, la quale è la proiezione orizzontale della faccia superiore della pila P (fig. 289) e degli estremi delle due traverse delle porte marinières.

- « Utilizzando poi l'apposita scala e le traverse delle porte (aventi entrambe un apposito pancone per il passaggio del manovratore), si recano e dispongono i panconcelli ben adagiati l'uno presso l'altro, e, con funicelle di lunghezza non maggiore di metri 1,50, legansi dieci o dodici insieme.
- « Una lunga fune di diametro non minore di metri 0,035 ed avente un capo fisso invariabilmente ad un anello in C lega tutte le accennate funicelle dei panconcelli di destra; sovrapassa indi la pila isolata, e serve ancora al rilegamento delle funicelle dei panconcelli di sinistra; coll'altro capo, terminante in un anello, va ad infilzare un uncino comandato dalla già menzionata chiave XYZ. »

L'apertura delle porte in tempi di piena deve essere fatta come segue:

- « Si apre la chiave XYZ in guisa da lasciare libera la traversa di sinistra, la quale, spinta dalla massa d'acqua, si apre, ed essa aprendosi, mediante l'apparecchio della figura 290, lascia libera la traversa di destra.
- « Ma nell'aprire le traverse, detta chiave scioglie anche il capo della fune tenuto a sito dall'uncino accennato; la fune così sciolta

ed i panconcelli galleggianti ma rattenuti dalla fune stessa, sono poi raccolti ad acque magre dal custode in C (fig. 289). »

Calcolando la spinta dell'acqua contro la parete costituita dal complesso dei panconcelli e determinando il suo punto d'applicazione, riesce agevole la ricerca della grossezza che ad essi si deve assegnare, non che la determinazione delle dimensioni dei pezzi componenti l'intelaiatura delle porte marinières.

270. Posizione rispettiva di uno scaricatore e di un derivatore: fondazioni di questi edifizii. - Per quanto si riferisce alla posizione di uno scaricatore, relativamente al corrispondente derivatore, nulla si può dire d'assoluto, giacchè essa dipende dalle circostanze locali; e solo si può ritenere, che questi edifizii devono essere costrutti l'uno presso l'altro. Essendo AB e CD (fig. 287) le due sponde d'un fiume scorrente nel senso della freccia f e volendosi fare una derivazione lungo la sua sponda sinistra, si può stabilire una diga in FG, scavare un canale moderatore EFIH, porre in HI il derivatore destinato ad immettere le acque nel canale di derivazione A, far partire il canale di scarico dalla sponda destra FI del canale moderatore presso l'edifizio di derivazione, e costrurre in OP l'edifizio scaricatore. - Qualora credasi di elevare gli edifizii di derivazione e di scarico quasi in fregio alla sponda del fiume da cui vuolsi fare la derivazione, si può stabilire una diga in AB (fig. 288), arginare le due sponde del fiume per due tratti AC e ED, costrurre l'edifizio derivatore in FG alla testa del canale di derivazione A, ed elevare l'edifizio scaricatore BH all'origine del canale di scarico Σ. — In ogni caso particolare, fissata la località conveniente alla derivazione, non sarà difficile assegnare la posizione planimetrica che meglio conviene allo scaricatore relativamente alle altre opere di derivazione.

Conviene generalmente che la soglia di uno scaricatore sia più bassa della soglia del corrispondente derivatore, e che a valle del primo si prendano disposizioni opportune al facile deflusso dell'acqua. È poi commendevole la pratica di lasciare sul fondo del canale moderatore un risalto, secondo un andamento curvilineo NMK (fig. 237) tangente in N e K alle due direzioni EH e KQ. Questo risalto serve a promuovere i depositi ed a mantenerli lontani dalle luci del derivatore; e quando, coll'abbassamento di tutte le paratoie di quest'ultimo e coll'innalzamento di quelle dello scaricatore, s'immettono le acque nel canale di scarico, gratuitamente si ottiene uno spurgo parziale del canale moderatore. Talvolta non esiste l'indicato

risalto, ma la curva NMK è l'intersezione di due superficie, una discendente verso lo scaricatore e l'altra elevantesi verso il derivatore.

Le fondazioni, che generalmente si adottano nel costrurre edifizii derivatori ed edifizii scaricatori, sono quelle con platea generale di calcestruzzo con coperta di pietra da taglio, o di pietrame lavorato, o di mattoni riconosciuti resitenti nei lavori subacquei. Presentandosi il caso di un terreno compressibile, sovrastante ad un terreno incompressibile posto a discreta profondità, può convenire la platea generale su palificate; ed in quelle circostanze nelle quali il terreno compressibile si estende a profondità che non si può o che si crede di non dover raggiungere, conviene, prima dello stabilimento della platea, costipare il terreno con uno dei metodi che vennero indicati nei numeri 172, 173 e 174 del volume sui lavori generali d'architettura civile, stradale ed idraulica. Il bisogno poi di assicurare le fondazioni degli scaricatori contro la violenza delle acque di scarico in piena, consiglia di estendere le loro platee di fondo a monte ed a valle, e di difenderle contro le corrosioni mediante paratie di cinta e coll'accrescere la grossezza della platea all'estremità, come risulta dalla figura 289.

271. Cenno sulla determinazione della luce libera degli scaricatori. — Questa determinazione richiede che si conoscano: la portata del fiume, da cui vuolsi effettuare la derivazione, in tempi di piena; la larghezza e l'altezza della diga; la differenza di livello fra la cresta della diga e la soglia dello scaricatore; e finalmente la differenza di livello fra il pelo delle acque in piena a valle della diga e la detta cresta. Quest'ultima differenza di livello si può avere ritenendo che l'altezza dell'acqua a valle della diga sarà quella che si verifica prima della sua esistenza, di maniera che, togliendo da quest'altezza nota quella pure nota della diga (num. 264), si ha nel residuo l'indicata differenza di livello. Osservando ora che la diga si può considerare come uno stramazzo in parte rigurgitato (fig. 285), e che lo scaricatore si può ritenere siccome una bocca od un complesso di più bocche del tipo di quelle rappresentate nelle figure 283, 284, 285, 286, riesce facile trovare, in funzione dell'altezza dell'acqua sulla cresta della diga e della luce libera dello scaricatore, l'espressione della quantità d'acqua a cui in un minuto secondo danno sfogo la diga e lo scaricatore quando il derivatore si suppone, chiuso. Quest'espressione, eguagliata alla portata nota del fiume, somministra un'equazione, la quale può servire a determinare: la luce libera dello scaricatore, quando viene fissata l'altezza dell'acqua sulla cresta della diga; quest'ultima altezza, quando viene prestabilita la luce libera dello scaricatore.

Aggiungendo all'altezza della diga quella del livello delle acque massime sulla sua cresta è togliendo da questa somma l'altezza delle acque massime prima dell'esistenza delle opere di derivazione, si ha nella differenza la sopra-elevazione di pelo da esse causata in tempi di piena. Questa sopra-elevazione divisa per la pendenza del fiume prima dell'esistenza delle citate opere, dà nel quoziente l'ampiezza idrostatica; e si può ritenere che una volta e mezzo questa ampiezza idrostatica rappresenti l'estensione del rigurgito, la quale sempre deve essere determinata, onde antivedere ed evitare le dannose conseguenze di una grande piena.

Per quanto spetta alla determinazione delle dimensioni delle diverse parti degli scaricatori, affinchè si trovino essi in buone condizioni di stabilità, basta osservare: che questi edifizii constano di piedritti, di archi, di paratoie e talvolta di coperture; che, a convenientemente regolare le dimensioni di tutte queste parti, valgono le norme che già vennero date in questo volume ed in quello sulla resistenza dei materiali e sulla stabilità delle costruzioni.

CAPITOLO IV.

Ponti-canali ed acquedotti.

272. Ponti-canali. — Chiamansi ponti-canali quegli edifizii, affatto analoghi ai ponti, consistenti in un alveo artificiale, sostenuto da piedritti e da un sistema di arcate o di travate, per cui s'incanala una corrente d'acqua, onde farla attraversare una corrente più bassa, dalla quale vogliasi tenere disunita. — I ponti-canali, precisamente come i ponti, possono essere di struttura murale, di legno od anche di metallo.

La struttura dei ponti-canali in muratura è, per quanto si riferisce ai piedritti, ai muri d'ala o di risvolto, alle arcate ed ai timpani, come quella dei ponti. Con ogni cura però bisogna cercare che il loro fondo sia impermeabile, ed invece dei parapetti occorrono due muri laterali, alti e grossi in proporzione del corpo d'acqua che devono contenere e di cui devono sopportare la pressione. — Per ottenere l'impermeabilità del fondo del canale, può convenire di porre uno strato di buon calcestruzzo grasso, avente la minima altezza di circa metri 0,20 e stabilito sulle arcate e sui loro timpani. Questo

strato di calcestruzzo serve da cappa, e permette che su esso si pongano in opera i materiali che devono costituire il fondo del canale, i quali materiali possono essere mattoni di buona qualità, lastre di pietra od anche pietre di piccole dimensioni. Le commessure dei mattoni e delle lastre di pietra accuratamente devono essere stuccate, se pure non credesi miglior partito un intonaco generale con cemento di buona qualità. Impiegandosi materiali di piccola grossezza nella formazione del fondo, conviene dividere questo in varii scompartimenti, i cui contorni siano costituiti da cordonate che si affondano nel calcestruzzo più della grossezza dei materiali che fra esse si devono porre in opera.

I muri laterali devono pure riuscire impermeabili; per ottenere lo scopo conviene farli con buoni materiali e con eccellente malta idraulica; e le commessure delle pareti interne accuratamente si devono stuccare, oppure coprire con un intonaco generale di buon cemento. — Lungo il canale Cavour esistono forse i ponti-canali in muratura di maggior importanza finora stati costrutti, e per la sua grandiosità si fa rimarcare quello sulla Dora Baltea, numerante nove arcate colla corda di 16 metri e colla monta di metri 1,60, avente la lunghezza di metri 167,20, e la larghezza di metri 23,60. Vengono dopo i ponti-canali sui torrenti Cervo, Roasenda e Marchiazza.

I ponti-canali di legno, precisamente come i ponti formati con questo materiale, possono essere ad incavallature rette, a travate rettilinee, oppure ad archi. L'acqua deve scorrere entro una specie di cassa costituita di tavole, accuratamente congiunte, affinchè non abbiano luogo trapelamenti, ed il fondo di questa cassa deve trovarsi nel sito in cui si porrebbe la coperta nel caso di un ponte. Nei ponti-canali ad incavallature rette ed in quelli con archi, le pareti laterali o sponde della cassa corrispondono ai parapetti dei ponti delle ora indicate strutture; mentre nei ponti-canali a travate rettilinee, le dette sponde si trovano contro le travi longitudinali principali. La spinta dell'acqua tende a rovesciare all'infuori le sponde, e per opporsi a questo fatto, è necessario che le tavole, di cui si compongono, siano fissate a robusti ritti verticali, fortemente incastrati al loro piede nelle travi trasversali sopportanti la coperta, riuniti superiormente da una trave orizzontale, e rinforzati, se occorre, da pezzi inclinati, disposti a croce fra due ritti successivi ed aventi i loro assi nei piani verticali degli assi dei ritti stessi. Le due sponde della cassa costituente il canale si devono riunire, alla loro sommità, con travi orizzontali, dirette normalmente alla lunghezza dell'edifizio e, quando lo si ravvisi necessario, anche con travi orizzontali disposte a crece fra due successive delle prime. Tanto il fondo quanto le sponde si possono formare con due ordini di tavole: le une più robuste, disposte nel senso della lunghezza dell'edifizio; le altre, di minore spessezza, disposte perpendicolarmente alle prime. Qualora alle travi trasversali, direttamente sopportanti la coperta, siasi assegnata tale distanza da reputarsi troppo grande per convenientemente sostenere il fondo del canale, fra due travi trasversali successive si possono stabilire due travi disposte in croce; ed una tale disposizione è da ritenersi piuttosto vantaggiosa nei ponti-canali a travate rettilinee, a motivo del robusto concatenamento che serve a stabilire nel basso delle travi longitudinali principali.

I ponti-canali metallici possono essere a travate rettilinee, oppure con archi metallici. - Quelli a travate rettilinee si fanno generalmente in ferro, presentano la struttura dei ponti colle travi longitudinali principali a parete verticale piena e col suolo stradale nel basso delle stesse travi longitudinali. Il fondo di questi ponti-canali può essere di tavole o di lamiera, e servono di sponda le stesse travi longitudinali. Oltre il collegamento inferiore somministrato dalle travi trasversali e da ferri disposti in croce, come pei ponti, importa che le travi longitudinali principali vengano opportunamente collegate in alto, sia mediante ferri disposti perpendicolarmente alla loro lunghezza, sia mediante un conveniente sistema di ferri in croce. Per sostenere il fondo del canale passante sul ponte, conviene generalmente un sistema di travi longitudinali secondarie, sopportate dalle travi trasversali e poste a distanze eguali. — I ponticanali con archi metallici possono essere di ferro o di ghisa; la loro struttura è affatto analoga a quella dei ponti; il fondo del canale, posto generalmente sulle travi trasversali, può essere di tavole o di lastre metalliche; e generalmente conviene che le loro sponde siano di lamiera di ferro o di ghisa. - Queste sponde fortemente devono trovarsi fissate alla parte resistente del ponte, e, quando sono molto alte, importa che trovinsi superiormente collegate da tiranti normali all'asse del ponte-canale e da un conveniente sistema di ferri due a due disposti a croce.

Nei lunghi ponti-canali metallici ed a travate rettilinee, importa pensare alle variazioni di lunghezza causate dai cangiamenti di temperatura. Per rendere possibili queste variazioni, può tornare utile di fissare su ciascuno dei piedritti corrispondenti agli estremi liberi delle travate uno scorritoio di ghisa con una faccia orizzontale e con due facce verticali ben levigate e di altezza non minore di quella che può prendere l'acqua, e di guernire le estremità delle travate di piastre di ghisa atte a somministrare, assieme allo scorritoio, un apparecchio di dilatazione a tenuta d'acqua.

273. Acquedotti. — Gli acquedotti sono quegli edifizii che si fanno per portare le acque di un canale al di là di una naturale bassura, sostenendo l'alveo del canale stesso mediante piedritti e mediante un sistema di arcate o di travate. Gli acquedotti si fanno nelle circostanze stesse in cui avviene di costrurre i viadotti quando, invece di dar passaggio ad un corso d'acqua al di sopra di una bassura, devesi ottenere il transito di una strada; e quelli, precisamente come questi, possono essere di struttura murale o di ferro.

Gli acquedotti di struttura murale, a seconda della loro altezza, si fanno con un solo e con più ordini di arcate. Per quanto concerne alla forma e disposizione dei piedritti e delle arcate, valgono le norme che vennero date parlando dei viadotti; e, per quanto si riferisce alle disposizioni da adottarsi onde ottenere che risultino impermeabili il fondo e le sponde del canale passante sull'edifizio, si può ritenere quanto venne detto nel precedente numero, parlando dei ponti-canali.

Le travate rettilinee di ferro costituiscono gli acquedotti metallici, che sembrano i più convenienti. Le pile di questi acquedotti possono essere di muratura oppure di metallo. In quanto alle travate, conviene che abbiano le loro travi longitudinali principali con parete verticale piena e che il fondo dell'acquedotto si trovi verso il basso di questi stessi travi. Del resto, le norme che già vennero date pei ponti-canali metallici a travate rettilinee, convengono pure per gli acquedotti.

274. Norme per convenientemente regolare le dimensioni delle diverse parti dei ponti-canali e degli acquedotti. — Questi edifizii devono sopportare il peso proprio e quello dell'acqua che su essi passa. Il primo degli indicati due pesi tiene il luogo del carico permanente, il secondo del carico accidentale nei ponti; e quest'ultimo, facile a calcolarsi in seguito alla conoscenza dell'altezza dell'acqua, è uniformemente distribuito sulla proiezione orrizzontale del fondo del canale, il qual fondo sostituisce il suolo stradale dei ponti. I ponti-canali e gli acquedotti si trovano adunque, per rapporto ai carichi da cui sono gravati, nelle stesse condizioni dei ponti e dei viadotti, e quindi quanto si è detto sulle dimensioni delle diverse parti di questi, siano essi di struttura murale, di legno o di metallo, conviene pure per le dimensioni delle diverse parti di quelli. Di più, conviene osservare che pei ponti-canali e per gli acquedotti a tra-

vate rettilinee non si devono fare le ipotesi sulle diverse posizioni del sovraccarico; e che unicamente conviene considerarli siccome caricati d'un peso uniformemente distribuito sulla loro lunghezza, eguale alla somma del peso proprio delle travate e del peso dell'acqua che su esse deve passare.

Per quanto spetta alle sponde dei canali passanti su ponti-canali e su acquedotti di struttura murale, si determinerà la loro grossezza cercando, come venne detto nel numero 221 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, la spinta che l'acqua, supposta stagnante, esercita contro di esse; o ponendo le condizioni che non debbano rompersi, nè per scorrimento, nè per rovesciamento, e finalmente accertandosi che non esiste possibilità di rottura per schiacciamento. Queste operazioni poi si faranno colle stesse norme che vennero date in questo volume, nel capitolo II della seconda parte, dove trattasi dei muri di sostegno. Le teorie sulla resistenza alla flessione, lungamente esposte nel citato volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, assai facilmente conducono alla determinazione delle dimensioni da asseguarsi ai pezzi componenti le sponde dei ponticanali di legno e di metallo.

CAPITOLO V.

Sifoni e tombe.

275. Sifoni, tombe e loro uffizii. — Nell'architettura idraulica si dà il nome di sifoni e di tombe ad edifizii, la cui costruzione si rende indispensabile, allorquando avviene d'incontrare dei canali che, per la bassezza del loro livello relativamente a quello di una strada o di un corso d'acqua, al di là dei quali devono passare senza sensibile perdita di caduta, non possono essere condotti sopra ponti-canali, ma sibbene entro botti o tubi sotterranei. — La denominazione di sifoni si attribuisce a quegli edifizii che l'acqua attraversa passando per un condotto discendente, generalmente seguito da un condotto orizzontale, e quindi per un altro ascendente; e questa denominazione viene giustificata dal fatto che l'acqua, la quale arriva dal condotto discendente nel condotto orizzontale, sale nel condotto ascendente per la legge che governa l'equilibrio dei liquidi nei sifoni. — La denominazione di tombe si dà ad edifizii analoghi

ai sifoni, i quali constano di un condotto coperto orizzontale, o quasi orizzontale, il cui fondo per una certa tratta a monte ed a valle si raccorda con quello del canale, convenientemente abbassato. Questi edifizii sono sifoni in cui i condotti discendenti ed ascendenti, o solamente il primo di essi, si ricavano nel canale stesso, abbassandone il fondo verso la bocca d'ingresso e quindi elevandolo convenientemente dopo la bocca di sortita. Nella pratica viene riservato il nome di tombe a quelli degli edifizii, di cui si discorre, che presentano grandi dimensioni e che servono a dar passaggio a grandi corpi d'acqua; ed il nome di sifoni viene adottato per quelli di piccole dimensioni destinati al passaggio di piccole roggie.

Le tombe ed i sifoni possono essere di struttura murale od anche di struttura metallica. La prima struttura però è quella che sinora maggiormente venne usata per questo genere di lavori, e sono rimarchevoli le grandiose tombe per dar passaggio al canale Cavour sotto il torrente Elvo ed il fiume Sesia, le altre minori sotto i torrenti Agogna e Terdoppio, ed i sifoni che vennero costrutti sotto l'indicato canale per le numerose roggie e gore da esso attraversate.

276. Sifoni e tombe di struttura murale. - La figura 291 rappresenta, mediante una sezione longitudinale mediana ed una sezione trasversale, secondo il piano di traccia XY, un sifone in muratura pel passaggio dell'acqua di un canale al di sotto di una via ferrata ad un sol binario, e l'edifizio essenzialmente consta: del pozzo P con sezione rettangolare, nel quale si versano le acque portate dal tronco di canale C posto a monte: della tromba T comunicante col detto pozzo ed avente per sezione trasversale un rettangolo sormontato da un segmento circolare: e finalmente del pozzo P', pure di sezione rettangolare, comunicante colla tromba e nel quale salgono le acque onde portarsi a defluire pel tronco di canale C' posto a valle. I tronchi di canale C e C' corrono per piccola tratta fra sponde in muratura, le quali fanno parte del sifone stesso. I pozzi P e P' sono circondati da robusti muri sui quattro lati; quei due di questi muri che trovansi opposti alle luci per cui i pozzi comunicano colla tromba, si elevano al livello del fondo del canale, le cui acque devono passare nel sifone; e tutti gli altri salgono ad un livello talmente alto, da essere impossibile che vengano a riversarsi lateralmente e sulla strada le acque, le quali, portate dal tronco di canale C, vengano a defluire pel tronco di canale C' appena oltrepassato il sifone. Finalmente la tromba consiste in un condotto orizzontale, stabilito su una platea di calcestruzzo fra due piedritti e coperto da una vôlta a botte. - Sovente a monte del sifone, ossia prima del pozzo P, si pratica nel fondo del canale, dove le sponde sono in muratura, un fossetto trasversale I, il quale ha per iscopo di trattenere i materiali pesanti trascinati dall'acqua, affinche non vengano ad ingombrare e ad ostruire la tromba del sifone. Alcune volte si tralascia l'indicato fossetto I e si affonda il pozzo P, in modo che il suo fondo raggiunga un livello inferiore a quello del pavimento della tromba. Quando si adotta questa disposizione, le materie pesanti trascinate dall'acqua che arriva al sisone ed i depositi che essa lascia, si accumulano sul fondo di detto pozzo, dal quale assai facilmente si possono in seguito estrarre.

Una forma di sifone, la quale riesce forse più conveniente di quella di cui si è parlato, trovasi rappresentata nella figura 292, che rappresenta una porzione di sezione longitudinale mediana, nel caso in cui l'edifizio debba passare sotto un corso d'acqua. Al pozzo P fa seguito un imbuto I coperto da una vôlta a botte inclinata; il fondo del pozzo e dell'imbuto si trovano in uno stesso piano orizzontale; e questo piano è più depresso del pavimento della tromba. Dopo l'imbuto comincia la tromba T, alla quale tien dietro la tromba ascendente S e quindi il pozzo P'. Le materie trascinate dalle acque che arrivano al sifone, non che i depositi che esse lasciano, si accumulano sul fondo depresso del pozzo P e dell'imbuto I, e così resta tolto il pericolo che vadano ad ingombrare la tromba.

La sezione rettangolare con un segmento di circolo non è la sola adottata nelle trombe dei sifoni. Si hanno esempli di sifoni con sezioni circolari, con sezioni ellittiche e con sezioni ovali; che anzi queste sezioni talvolta vennero adottate anchepei pozzi. Facendo un sifone con due o più trombe, separate da piedritti, come lo sono le arcate dei ponti di struttura murale dalle pile, riesce possibile di dare per esse sfogo ad un considerevole corso d'acqua. La tomba stata costrutta per dar passaggio al canale Cavour sotto il torrente Elvo, presenta cinque luci con sezione ovale ed aventi la larghezza di metri 5. All'imbocco di questo edifizio, ogni tromba è preceduta da una specie d'imbuto, ed allo sbocco è seguita pure da un allargamento. Insomma si hanno presso a poco le disposizioni che presenta il sifone, rappresentato nella figura 292, quando il fondo del canale di arrivo sia portato al livello ab, ed il fondo del canale che segue la tomba al livello dc. Il fondo poi della tomba dell'Elvo non segue un andamento orizzontale, ma è inclinato verso l'imbocco. Il motivo di questa inclinazione in senso opposto alla corrente si deve ricercare nella posizione che venne data ad uno scaricatore che precede l'edifizio; e si deve ritenere una tale disposizione come eminentemente commendevole, giacchè in caso di riparazioni non si avranno mai acque nelle trombe, e le acque sorgive e d'infiltrazione avranno facile sfogo, colando per lo scaricatore.

277. Determinazione della sezione retta della tromba e della minima sezione orizzontale dei pozzi dei sifoni. — La figura 295 rappresenti la sezione longitudinale mediana e la sezione trasversale di un sifone; A B sia il fondo del canale d'arrivo, C D quello del canale di fuga, P e P' i due pozzi, T la tromba. Dopo la costruzione del sifone, il livello dell'acqua a monte sarà di qualche poco più elevato del livello dell'acqua a valle; la parete M N del pozzo P sarà incontrata in K del pelo dell'acqua contenuta nel canale d'arrivo; e la parete Q R del pozzo P' sarà incontrata in L dal pelo dell'acqua defluente nel canale di fuga. Se poi, prendendo il metro per unità di lunghezza ed il metro quadrato per unità di superficie, si chiamano

Q la portata del corso d'acqua che deve passare nel sifone, espressa questa portata in metri cubi e riferita al minuto secondo,

d la distanza orizzontale fra il punto K ed il punto L,

a la differenza di livello fra gli stessi punti,

Ω la superficie della sezione retta della tromba,

v la velocità media dell'acqua per essa passante, ossia il quoziente della portata Q divisa per la superficie Ω ,

g la gravità eguale a 9,8051,

si può ritenere che l'acqua per essa passante abbia la velocità v data da

$$v=\sqrt{2ga}$$
;

e che la superficie Ω risulti dalla formola

$$\Omega = \frac{Q}{\sqrt{2ga}} \tag{1}$$

La differenza di livello a fra i punti K ed L è una lunghezza che il costruttore può preventivamente stabilirsi. Determinata l'altezza \overline{ab} dell'acqua nel canale di fuga, colla parallela IL al suo fondo

 \overline{C} \overline{D} , si può fissare il punto \overline{L} ; la differenza di livello a, portata in \overline{L} \overline{D} , permette di determinare il punto \overline{K} nell'intersezione della \overline{M} \overline{N} colla orizzontale \overline{D} \overline{D} . Calcolata l'altezza \overline{C} \overline{C} dell'acqua nel canale d'arrivo, si può condurre la retta \overline{Y} \overline{Z} parallela al suo fondo \overline{A} \overline{B} ; la distanza fra il punto \overline{K} e l'intersezione \overline{H} dell'orrizzontale condotta per questo punto con \overline{Y} \overline{Z} dà l'ampiezza idrostatica corrispondente alla sopra-elevazione del pelo dell'acqua a monta del sifone, ed una volta e mezzo quest'ampiezza idrostatica si può ritenere siccome rappresentante l'estensione del rigurgito causato dall'esistenza di quest'edifizio.

Il minimo valore dell'altezza a è rappresentato dalla differenza di livello fra il punto Z ed il punto L. Nell'ipotesi che il fondo C D del canale di fuga sia in prosecuzione del fondo AB del canale d'arrivo e che questi canali presentino eguali dimensioni, si deve ritenere essere la retta L I in continuazione della Y Z, essere la pendenza p della retta ZL eguale alla pendenza del fondo dei due canali, e quindi essere pd il valore più piccolo che si può dare alla differenza di livello a. Conviene però osservare, che nella pratica non conviene assumere per valore di a l'indicato limite inferiore pd, giacchè la superficie Ω della sezione retta della tromba risulterebbe troppo grande.

Nel dedurre la superficie Ω da assegnarsi alla sezione retta della tromba di un sifone, converrebbe tener conto delle contrazioni che hanno luogo nel passaggio dell'acqua dall'una all'altra parte del sifone stesso, nonchè delle resistenze dovute all'attrito che l'acqua prova contro le pareti della tromba e dei pozzi. La teoria del moto dell'acqua nei vasi discontinui condurrebbe allo scopo, ma con formole contenenti coefficienti cui difficilmente si potrebbero assegnare valori convenienti alle circostanze, e da cui non si potrebbero avere risultati degni di fiducia. Nella pratica basta determinare la sezione retta delle trombe dei sifoni colla formola (1), e non obbliare che il risultato che si ottiene è un po' deficiente. Questa deficienza si manifesta con una piccola sopra-elevazione del pelo dell'acqua nel canale d'arrivo, la quale è di qualche poco più grande a quella prevista. Aumentando però di una piccola quantità la superficie della sezione retta della tromba, quale risulta dalla formola (1), facendo in modo che l'acqua arrivi nel sifone passando per una specie d'imbuto e togliendo tutti i cangiamenti bruschi di direzione, col raccordare convenientemente le diverse parti dell'edifizio, si può arrivare a togliere del tutto od almeno a notevolmente diminuire l'inconveniente dell'ora indicata sopra-elevazione di pelo. In quanto alla superficie della più piccola sezione retta dei pozzi di un sifone, esso non deve essere minore della superficie della sezione retta della sua tromba.

278. Determinazione pratica della colonna premente, cui corrisponde la massima pressione sulle pareti della tromba. Allorquando pel tronco di canale, posto a monte di un sifone, si fa arrivare tutto il corso d'acqua a cui il sifone stesso deve dare passaggio, incomincia a riempirsi il pozzo P (fig. 293); tosto il liquido viene ad occupare la tromba T per l'intiera sua lunghezza, ed in breve trovasi esso in procinto di urtare contro la parete a C del muro opposto alla luce O B, per cui la tromba comunica col pozzo P'. In questo momento la pressione che si verifica in una sezione trasversale qualunque del liquido contenuto nella tromba è semplicemente la pressione idrodinamica corrispondente all'altezza della colonna premente ed alla velocità dell'acqua; ma, avvenendo l'urto del liquido contro la parete a C, per un brevissimo istante vien bruscamente arrestato il suo corso, succede una specie di colpo d'ariete, e sovente all'accennata pressione idrodinamica se ne sostituisce un'altra assai maggiore, la quale, mettendo in giuoco la più grande resistenza che deve poter sviluppare il sifone o lo pone solamente nelle più sfavorevoli condizioni di stabilità, o ne produce la rottura. Il saper valutare la pressione che ha luogo nel liquido contenuto nella tromba all'istante in cui succede l'indicato colpo, è adunque quistione del massimo interesse pratico per l'ingegnere costruttore. Siccome però, dopo l'urto contro la parete aC, l'acqua conserva sempre un po' di velocità ed immediatamente sale nel pozzo P', l'indicata pressione non si può determinare come al numero 228 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni; non si prevede in qual modo il problema possa esser risoluto: ma si può dire che conducono a risultamenti suscettivi di pratica applicazione le ipotesi: che, appena l'acqua esce dalla tromba e batte contro la parete z C, si verifichi un fenomeno analogo a quello che succede nell'urto di una vena liquida contro una lastra piana; che in una la stessa sezione qualunque EF della tromba, nell'istante dell'urto, avvenga pressione che ha luogo in a C.

Ora, chiamando

P la pressione esercitata da una vena liquida contro una lastra piana nella direzione dell'asse della vena urtante,

Ω' la superficie della sezione contratta della vena stessa, v la velocità dell'acqua in questa sezione,

φ l'angolo che la direzione dell'asse della vena urtante fa colla direzione secondo cui i fili fluidi si staccano dalla lastra,

q'il peso dell'unità di volume di liquido e

g il noto valore della gravità,

si ha la formola

$$P = 2q \Omega' \frac{v^2}{2g} \left(1 - \cos \varphi \right).$$

Essendo h la profondità KG dell'asse della tromba, supposto orizzontale, sotto il livello dell'acqua a monte del sifone, la citata formola diventa

$$P=2q\Omega'h(1-\cos\varphi),$$

e, siccome nel caso in quistione i fili fluidi accompagnano il piano α C', si può dire che ϕ è l'angolo C α della retta C α coll'orizzonte.

La pressione riferita all'unità di superficie in una sezione retta qualunque della tromba, per essere Ω' pochissimo differente dall'area Ω dell'indicata sezione retta, viene data dall'espressione

$$2qh(1-\cos\varphi),$$

e quindi l'altezza b della colonna premente, capace di produrre l'indicata pressione riferita all'unità di superficie, risulta dalla semplicissima formola

$$b=2h(1-\cos\varphi)$$
.

Per $\varphi=90^\circ$ il valore di b diventa 2h, e per $\varphi=60^\circ$ si ha b=h. Per valori di φ compresi fra 90° e 60° , il valore di b trovasi compreso fra 2h ed h. Quando adunque l'angolo $G \alpha \partial$ della parete αG coll'orizzonte sia compreso fra 60° e 90° , si supporrà che il livello del liquido si elevi a monte del sifone, non fino al livello effettivo determinato dal punto K, ma fino al livello fittizio corrispondente al punto N fissato col portare da G in N la lunghezza b data dall'ultima formola. Quando φ è minore di 60° , osservasi che il sifone può trovarsi pieno d'acqua in riposo, che sulle pareti della tromba ha allora luogo la pressione idrostatica corrispondente a questo stato del sifone e che non serve il valore di b dato dall'ultima formola, giacchè in questo caso conviene supporre che il livello del-

l'acqua a monte del sifone sia quello effettivo corrispondente al punto K. — Anche nel caso in cui l'angolo φ è maggiore di 60°, si può assumere $b \equiv h$, purchè, dovendosi introdurre l'acqua nel sifone vuoto, abbiasi l'avvertenza di fare questa introduzione non repentinamente, ma a poco a poco.

Nel caso in cui la parete α C sia raccordata al fondo del sifone con una superficie cilindrica, rappresentata nella sua curva direttrice $\beta \gamma$, per valore dell'angolo ϕ si assumerà quello dell'angolo che la tangente alla detta curva, nel punto di contatto γ con α C, fa colla $\alpha \delta$ posta nella direzione dell'asse del fondo della tromba.

- 279. Determinazione delle pressioni che tendono a produrre la rottura delle trombe dei sifoni e delle tombe. Sia $S_4 U_4 V_4 F_4 X_4$ (fig. 295) la sezione trasversale nel vano della tromba di un sifone , ed $N_2 N_3$ rappresenti quel livello fittizio determinato col portare, a partire dal centro di superficie G_4 della sezione stessa, l'altezza $\overline{G_4 N_4}$ eguale alla lunghezza b da trovarsi , come si disse nel precedente numero, e che in ogni caso non deve mai essere minore dell'altezza $\overline{G_4 K_4} = \overline{G K} = h$. Si riferisca la curva , rappresentante la sezione retta della superficie d'intrados della vôlta che copre il sifone , la qual curva è sempre simmetrica rispetto all'asse verticale $F_4 y$, a due assi coordinati ortogonali; si assuma per origine il punto F_4 , per asse delle ascisse la tangente $F_4 x$ nello stesso punto , per asse delle ordinate la verticale $F_4 y$, e, prendendo il metro per unità di lunghezza , si chiamino :
 - q il peso, espresso in chilogrammi, del metro cubo d'acqua;
- c la differenza di livello $\overline{F_4N_4}$ fra la retta N_2N_3 ed il punto culminante F_4 della direttrice della superficie d'intrados della vôlta della tromba:
 - L la lunghezza della tromba;
- x_i ed y_i le duc coordinate di un punto qualunque n_i dell'accennata curva direttrice;
 - x_2 ed y_2 quelle di un altro punto n_2 ;
 - x ed y quelle di un punto qualunque n posto fra n, ed ng.

La pressione sulla superficie elementare rappresentata nell'arco differenziale $nn' \equiv ds$, la qual superficie non è altro che una strettissima lista lunga L e larga ds, vale

$$qL(c+y)ds$$
.

La componente orizzontale di questa pressione è

$$qL(c+y)dy$$
;

la componente verticale risulta

$$qL(c+y)dx;$$

e finalmente le componenti, orizzontale e verticale, della pressione che ha luogo sulla superficie rappresentata dall'arco $n_1 n_2$, ammettono rispettivamente i valori X ed Y dati da

$$X = q L \int_{y_4}^{y_2} (c+y) dy$$

$$Y = qL \int_{x_4}^{x_2} (c+y) dx,$$

ossia, integrando e riducendo, dà

$$X = qL \left[c + \frac{1}{2} (y_2 + y_4) \right] (y_2 - y_4)$$
 (1)

$$Y = q L \left[c(x_2 - x_4) + \int_{x_4}^{x_2} y \, dx \right]$$
 (2).

Conoscendosi l'equazione della curva $V_4F_4X_4$ rispetto ai due assi coordinati F_4x ed F_4y , si ha il valore di y in funzione di x; o

esattamente o per approssimazione può essere effettuato $\int_{x_4}^{x_2} y \, dx$,

il quale evidentemente rappresenta l'area $n_1 n_2 m_2 m_4$; e così si possono dire determinate le due componenti orizzontale e verticale della pressione che si verifica su una parte qualunque $n_1 n_2$ della superficie d'intrados della vôlta della tromba.

Chiamando m la saetta $\overline{F_4o}$, si ottiene la componente orizzontale X_4 della pressione che ha luogo sul mezzo vôlto F_4V_4 ponendo nella formola (1) $y_4 = 0$ ed $y_2 = m$, e risulta

$$X_i = q L \left(c + \frac{1}{2} m \right) m \tag{3}.$$

Essendo d la massima altezza $\overline{\mathbb{E}_4}\overline{\mathbb{F}_4}$ della tromba, si calcola la pressione orizzontale X_2 sulla parete verticale $\mathbb{U}_4\mathbb{V}_4$ ponendo rispettivamente m e d in luogo di y_4 e di y_2 nella già citata equazione (1), per cui

$$X_{i} = q L \left[c + \frac{1}{2} (d + m) \right] (d - m)$$
 (4).

Finalmente, essendo 2e la corda V_4X_4 , si trova la componente verticale Y_4 della pressione che si verifica sul mezzo vôlto V_4F_4 colla formola (2), mettendo rispettivamente in essa 0 ed e in luogo di x_4 e di x_2 , di maniera che risulta

$$Y_{i} = qL\left(ce + \int_{0}^{e} y \, dx\right) \tag{5},$$

nella quale $\int_0^e y \, dx$ evidentemente rappresenta l'area del triangolo

mistilineo V, v F,.

Le distanze dei punti d'applicazione delle forze X ed Y dagli assi coordinati F_4x e F_4y sono elementi di facile determinazione. Si osservi perciò che i momenti elementari rispetto agli assi F_4x ed F_4y delle pressioni orizzontale e verticale, che hanno luogo sull'elemento di superficie rappresentato nell'arco nn', sono rispettivamente

$$qL(c+y)ydy$$

$$qL(c+y)xdx;$$

e che, dovendo i momenti delle forze X ed Y rispetto agli assi F_4x ed F_4y essere eguali alle somme dei detti momenti elementari prese fra i limiti y_2 ed y_4 , x_2 ed x_4 , risultano le seguenti equazioni determinatrici delle distanze y' ed x' delle forze X ed Y dai detti assi coordinati

$$y'X = q L \int_{y_4}^{y_2} (c + y) y dy$$

$$x' Y = q L \int_{x_i}^{x_2} (c+y) x dx,$$

dalle quali, integrando e riducendo, si deduce

$$y' = q L \frac{\left[3 c (y_2 + y_4) + 2 (y_2^2 + y_2 y_4 + y_4^2)\right] (y_2 - y_4)}{6 X}$$
 (6)

$$c(x_{2}^{2}-x_{1}^{2})+2\int_{x_{1}}^{x_{2}}xy\,dx$$

$$x'=qL\frac{2Y}{(7)}.$$

Essendo data l'equazione della curva $V_4F_4X_4$ rispetto ai due assi coordinati F_4x ed F_4y , si ha il valore di y in funzione di x: o esattamente o per approssimazione si può ottenere la somma

espressa da $\int_{x_4}^{x_2} xy dx$, la quale rappresenta il momento dell'a-

rea $n_1 n_2 m_2 m_1$ rispetto all'asse $F_1 y$; e così si può dire che trovansi determinate le distanze y' ed x' a cui le forze X ed Y, parallele agli assi coordinati, passano rispettivamente dall'asse delle x e delle y.

Qualora vogliasi avere la distanza y'_4 della pressione X_4 che ha luogo sulla mezza vôlta F_4V_4 dall'asse F_4x , si faccia $y_4 = 0$, $y_2 = m$ ed $X = X_4$ nell'equazione (6), e si ottiene

$$y_{4}' = q L \frac{(3c + 2m)m^{2}}{6X_{4}}$$
 (8).

Ponendo $y_4 = m$, $y_2 = d$ ed $X = X_2$ nella stessa equazione (6), si ha la formola determinatrice della distanza y_2' del punto d'applicazione della pressione X_2 dal piano orizzontale determinato dalla retta $F_4 x$, e risulta

$$y_2' = q L \frac{[3c(d+m) + 2(m^2 + dm + d^2)](d-m)}{6X_2}$$
 (9).

Finalmente, col fare $x_4 = 0$, $x_2 = e$ ed $Y = Y_4$ nell'equazione (7), si trova la distanza x_4 ' della pressione Y_4 , che verticalmente opera sulla mezza vôlta F_4 V_4 , del piano verticale determinato dalla retta F_4 y. Questa distanza viene data da

$$x_{i}' = q L \frac{c e^{2} + 2 \int_{0}^{e} x y dx}{2Y_{i}}$$
 (10).

Le formole (1), (2), (3), (4), (5), (6), (7), (8), (9) e (10) servono alla determinazione delle pressioni massime, che possono aver luogo sulle diverse parti delle pareti interne delle trombe dei sifoni non che dei punti d'applicazione di tali pressioni, allorquando questi edifizii presentano la struttura che appare dalle figure 291 e 292. Nei casi di trombe con sezioni circolari, ellittiche od ovali, riescono anche facilissime le indicate determinazioni, e per raggiungere lo scopo bisogna procedere con norme in tutto analoghe a quelle che vennero seguite in questo numero per dedurre i valori di X, Y, X_4 , X_2 , Y_4 , y', x', y_4' , y_2' ed x_4' .

280. Norme per la determinazione delle dimensioni delle varie parti di un sifone o di una tomba. — Quanto si è detto nel numero 277 può condurre ad una conveniente determinazione dei condotti per cui deve passare l'acqua in un sifone o in una tomba, e resta ora a vedere con quali norme si debbano determinare le dimensioni delle parti principali di questi edifizii, affinchè siano essi in condizioni da poter stabilmente sopportare le azioni che tendono a produrre la loro rottura.

S'incomincia dall'osservare che i sifoni e le tombe per qualche tempo possono trovarsi senz'acqua, e che allora le loro trombe si trovano nelle condizioni dei ponti o dei ponti canali. Segue da ciò, che si può incominciare dal determinare le dimensioni dei vôlti delle trombe e dei loro piedritti colle norme che vennero indicate parlando dei ponti di struttura murale, nell'ipotesi che su esse esista il massimo carico possibile.

Dopo questa prima determinazione, bisogna supporre che nel sifone o nella tomba, per cui voglionsi determinare in modo definitivo le dimensioni delle principali parti della tromba, venga introdotta l'acqua. Allora può aver luogo contro il vôlto e dal basso all'alto la pressione verticale 2 Y₄, ricavabile dalla formola (5) del numero precedente, e conviene determinare la grossezza del vôlto stesso in

modo che questa forza applicata nel suo mezzo sia al disotto di quella capace di produrre la rottura per sollevamento (Resistenza dei materiali e stabilità delle costruzioni, Capitolo VII). Ora, le forze che si oppongono al sollevamento sono: la coesione delle malte sui giunti d'imposta AE e BF (fig. 294), e quella sui corrispondenti giunti verticali EG ed FH, supposti questi ultimi due giunti praticati nei timpani; il peso della muratura rappresentata in AEG KHFB; ed il peso di quanto vi può essere sopra, quando sulla vôlta del sifone esiste il carico minimo. La condizione esprimente che la forza 2Y4, diminuita della somma degli accennati pesi, vale il coefficiente di stabilità relativo alla coesione, moltiplicato per la resistenza dovuta alla coesione sugli indicati giunti, è quella che serve a determinare la grossezza della vôlta, oppure a verificare se la grossezza preventivamente assegnata è o non è sufficiente.

Per rapporto ai piedritti, si deve ritenere che le massime pressioni che possono aver luogo sulle pareti interne della tromba tendono a produrre la loro rottura per scorrimento sul piano orizzontale CL e per rovesciamento attorno allo spigolo proiettato nel punto L. Le forze che tendono a produrre lo scorrimento, sono quelle che nel numero precedente vennero indicate colle lettere X, ed X, unitamente alla spinta orizzontale dell'arco AIBFNE nello stato in cui sopporta il massimo peso. Quando vogliasi tener conto della coesione delle malte, le forze che si oppongono allo scorrimento sono, la coesione sul piano CL e la resistenza al distacco sul piano IK. Ponendo l'equazione di stabilità coll'eguagliare la somma delle forze che tendono a produrre lo scorrimento al prodotto del coefficiente di stabilità, relativo alla coesione, per la forza che si oppone allo scorrimento, si può determinare la grossezza CL dei piedritti, oppure verificare se è sufficiente la grossezza che loro venne assegnata. - Le forze le quali tendono a produrre il rovesciamento del masso CLMKIB, attorno alla orizzontale rappresentata nel punto L, sono le indicate pressioni orizzontali X, ed X2, la pressione verticale Y, e la spinta orizzontale Q della vôlta, quando si supponga caricata dal massimo peso di cui può essere gravata. I bracci delle forze X, X, ed Y, per rapporto all'asse L, si possono dire noti dal momento che si conoscono la lunghezze y,' ed yo', ossia le distanze delle due prime forze dalla orizzontale condotta pel punto di mezzo I della curva AIB, e la lunghezza x_i , ossia la distanza della forza Y_i dalla verticale passante per lo stesso punto. La forza Q si può supporre applicata ai due terzi della grossezza IN dell'arco alla chiave, a partire dal punto I. Le forze da considerarsi siccome opponentisi al rovesciamento sono il peso del masso murale CLMKIB, il massimo carico che su questo masso può gravitare, e la coesione o resistenza al distacco su CL e su IK. Conoscendo le forze che tendono a produrre il rovesciamento e quelle che si oppongono a questo fatto, non che i punti d'applicazione delle forze stesse, riesce facile porre l'equazione di stabilità relativa al rovesciamento e quindi determinare la grossezza del piedritto quando essa è incognita, o verificare se è stabile quando la sua grossezza siasi preventivamente stabilita. Delle due grossezze, una determinata colla condizione che siavi stabilità relativamente al rovesciamento, si adotterà la maggiore.

Considerando la tromba di un sifone o di una tomba siccome posta nelle condizioni di un ponte o di un ponte canale, si ottiene un primo valore delle dimensioni del vôlto e dei piedritti: considerandola poi quando in essa viene introdotta l'acqua, si ottiene un secondo valore delle stesse dimensioni: la più grande delle due dimensioni, ottenute pel vôlto e per ciascun piedritto, è quella che definitivamente conviene adottare.

Alcuni costruttori, non volendo affidare la stabilità della tromba di un sifone o di una tomba alla sola tenacità delle malte, ricorrono alle fasciature. Un sistema di fasciature, che venne riconosciuto conveniente, consiste: nello stabilire una trave orizzontale T nella fondazione di ciascun piedritto; nel porre appositi tiranti verticali t, a distanze eguali di circa 1 metro l'uno dall'altro, fermati alle dette travi orizzontali; nel collocare, al di sopra della tromba ed in corrispondenza di ciascuna coppia di tiranti t, una trave trasversale U; e nel mantenere ciascuna di queste ben serrate contro la superficie superiore della tromba stessa mediante le travi orizzontali V, le quali sono attraversate e tenute a posto dai tiranti t. Alcuni, in corrispondenza della chiave dell'arcata usano ancora stabilire una trave longitudinale in K. L'indicato sistema di fasciature, invece di essere in parte di legno ed in parte di ferro, può anche essere eseguito totalmente di legno, oppure totalmente di ferro. Esso poi è suscettivo di modificazioni facili ad immaginarsi.

Nel determinare le dimensioni delle varie parti della tromba di un sifone o di una tomba con fasciature, si trascura la coesione delle malte. Le forze che si oppongono al sollevamento sono: la tensione R di ciascuno dei tiranti t; il peso della muratura rappresentata in AEGKHFB; ed il peso di quanto vi può essere sopra quando sulla vôlta esiste il carico minimo. La forza che tende a produrre il sollevamento è la $2Y_4$. L'equazione esprimente che la

forza 2Y₄, diminuita della somma degli accennati pesi, vale la somma delle tensioni sopportate da tutti i tiranti, determina il valore di R, il quale serve poi alla conveniente determinazione della sezione retta di ciascuno dei tiranti t.

Per rapporto ai piedritti, bisogna considerare lo scorrimento sul piano CL, ed il rovesciamento attorno allo spigolo rappresentato nel punto L. - Le forze X, ed X, e la spinta orizzontale dell'arco coprente la tromba sono quelle che tendono a produrre lo scorrimento. Si possono poi ritenere come forze che si oppongono a questo movimento, la resistenza d'attrito sul piano orizzontale CL, e gli sforzi di taglio che permanentemente possono sopportare, nella sezioni a e b, i tiranti t posti in uno stesso piedritto. È poi bene instituire le equazioni di stabilità relative allo scorrimento, nelle due ipotesi che sul sifone esista il carico massimo ed il carico minimo, per accertarsi quale di queste ipotesi conduce alla maggiore grossezza di piedritto. - Le forze che tendono a far rotare il piedritto attorno allo spigolo rappresentato nel punto L sono: le pressioni orizzontali X, ed X,; la pressione verticale Y,; e la spinta orizzontale dell'arco nell'ipotesi del carico massimo. Si oppongono a questo movimento: il peso del masso murale CLMKIB; il peso del massimo carico che su esso si può trovare; e l'azione delle fasciature, la quale, in modo sufficiente per la pratica, si può ritenere eguale alla somma degli sforzi di taglio che, al livello della sezione b, stabilmente possono sopportare tutti i tiranti t posti in uno stesso piedritto. Potendosi ritenere siccome note le distanze di tutte le forze che operano per produrre e per opporsi al rovesciamento, riesce facile instituire la conveniente equazione di stabilità e dedurre la conseguente grossezza del piedritto, oppure verilicare se è sufficiente la grossezza che già preventivamente gli venne assegnata.

La trave U deve avere tale sezione retta da poter permanentemente sopportare: siccome sforzo di taglio, la pressione verticale \mathbf{Y}_4 diminuita del peso del masso murale rappresentato in AEGKI col minimo carico che su esso si può trovare; siccome sforzo di trazione, lo sforzo di taglio che si può far sopportare ad uno dei tiranti t.

Nel determinare le dimensioni dei muri dei pozzi dei sifoni, conviene distinguere quelli che sono contro terra e che servono di sostegno al fondo del canale d'arrivo e del canale di fuga, dagli altri, i quali servono di sostegno dell'acqua. I primi si considerano siccome muri di sostegno delle terre, e si determinano le loro dimensioni nell'ipotesi che non siavi acqua nel sifone; i secondi si

considerano come muri di sostegno dell'acqua. Osservando poi che questi muri sono sempre assai brevi nel senso orizzontale, se non vuolsi giungere a grossezze tanto grandi che difficilmente potrebbero essere accettate nelle ordinarie circostanze della pratica, conviene che in qualche modo si tenga conto della coesione delle malte sulle facce orizzontali e verticali, secondo cui si ammette poter avvenire il distacco dai muri attigui.

281. Sifoni e tombe con tubi metallici. — Invece di fare le trombe dei sifoni in muratura, si possono esse eseguire con tubi metallici; e, ponendo più file di tubi l'una a fianco dell'altra, con uno stesso materiale assai speditamente si possono costrurre sifoni per svariatissime portate.

Un primo tipo di sisoni con tubi metallici è quello in cui vi sono i due pozzi P e P', come risulta dalla figura 291, i quali pozzi sono posti in comunicazione, non più mediante una tromba di struttura murale, ma sibbene mediante tubi. La figura 295 fa vedere una porzione della sezione longitudinale di uno di questi sisoni. Per non andare incontro all'inconveniente di dover danneggiare i pozzi, allorquando avvenga qualche guasto nei tubi, conviene che questi si uniscano ai pozzi in modo da potersi comodamente togliere e rinnovare senza menomamente intaccare la muratura.

Un secondo tipo di sisoni con tubi metallici è rappresentato, mediante una porzione di sezione longitudinale, nella figura 296. Le estremità dei canali d'arrivo e di suga sono in muratura; ed i condotti metallici, mediante tubi con asse curvilineo, si abbassano, a partire da queste estremità, per portarsi, con un andamento rettilineo orizzontale o quasi orizzontale, sotto il suolo stradale o sotto il corso d'acqua da attraversarsi.

L'operazione dello spurgo riesce assai difficile nei sifoni con tubi metallici, e pare essere questa una delle principali cause per cui il loro impiego è ancora assai limitato. Importa cercare ogni mezzo onde impedire che i tubi si ostruiscano, e servono a raggiungere in gran parte lo scopo, sia i fossetti trasversali stabiliti sul fondo dei canali d'arrivo in prossimità dei sifoni, sia gli affondamenti dei pozzi, a monte delle trombe, al di sotto dei punti più bassi delle luci per cui l'acqua viene ad introdursi nelle trombe stesse. Nel caso di un sifone con pozzi verticali, come risulta dalle figure 291 e 295, può essere facilitata l'operazione di spurgo quando, invece di disporre orizzontalmente la tromba, si dia ad essa una certa inclinazione verso uno dei due pozzi.

La disposizione di sifone rappresentata nella figura 292, è forse quella che maggiormente conviene, quando vuolsi fare la trombe con tubi metallici. La parte metallica verrà stabilita fra le due sezioni a g e a h, e si farà in modo che salga dalla prima alla seconda sezione. In questo sifone i materiali pesanti fanno deposito nel fondo del pozzo P e dell'imbuto I, dove, trovandosi la tromba in discesa da i verso a, assai facilmente si possono far venire le materie depositate per le torbide delle acque. Sovente, la parete contro terra del pezzo P è inclinata, di maniera che tiene dietro una scarpa fe al fondo del canale di arrivo.

Nelle tombe con tubi metallici la faccia ef fa generalmente un piccolo angolo coll'orizzonte; e, volendosi, si può anche tralasciare l'imbuto I. La retta rappresentata nel punto e, trovasi talvolta a distanza di più metri dalla fronte dell'edifizio.

Quanto si è detto nel numero 277 facilmente conduce a determinare, almeno approssimativamente, il diametro interno dei tubi, quando sia stabilito il numero dei condotti per cui l'acqua deve passare; a trovare il numero dei condotti necessarii a dar sfogo all'intiera portata, quando sia noto il diametro dei tubi che voglionsi adoperare. I tubi metallici delle tombe e dei sifoni costituiscono altrettante piccole condotte, e le norme che verranno date nel capitolo che tratta delle condotte con tubi, dove si parlerà della determinazione dei loro diametri interni, potranno anche servire per la determinazione dei diametri interni dei tubi delle tombe e dei sifoni.

Le considerazioni svolte nel numero 278 permettono di determinare qual è, in metri, l'altezza b della colonna d'acqua capace di produrre la massima pressione nell'interno delle trombe dei sifoni e delle tombe con tubi metallici. Moltiplicando quest'altezza pel peso del metro cubo d'acqua, ossia per 1000 chilogrammi, si ottiene la pressione p, riferita al metro quadrato, che ha luogo sulla superficie interna dei tubi stessi; e ricorrendo quindi alle formule che vennero date nel numero 25 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, riesce facile trovare la grossezza s da darsi alle loro pareti. Chiamando

D il diametro interno dei tubi di una tromba, espresso in metri, s' una grossezza, costante per tubi della stessa materia,

n'R' il prodotto del coefficiente di rottura per trazione (espresso in chilogrammi e riferito al metro quadrato) della materia di cui i tubi sono formati, pel relativo coefficiente di stabilità,

si ha la seguente formola determinatrice del valore di s, espresso in metri.

$$s = \frac{pD}{2n'R'} + s'$$
.

La grossezza s' suolsi assumere di metri 0,003 pei tubi di ferro, e di metri 0,0085 pei tubi di ghisa. Il valore del prodotto n' R' si può prendere di chilogrammi 6000000 pel ferro, e di chilogrammi 2200000 per la ghisa.

CAPITOLO VI.

Sostegni o conche.

282. Sostegni e loro ufficio. - I sostegni, conosciuti anche sotto il nome di conche, sono quegli edifizi i quali si costruiscono sui canali navigabili, onde moderare la pendenza del loro fondo, ad accrescere in essi l'altezza dell'acqua in modo conveniente al bisogno della navigazione, senza impedire il corso continuato delle barche, ad onta della separazione di questi canali in diversi tronchi e della differenza di livello a cui si mantengono le acque nei tronchi medesimi. Un sostegno è essenzialmente costituito da due chiuse o porte, le quali attraversano il canale, e ne rinserrano un breve tratto, capace di contenere una o tutto al più due barche. Le porte di ciascuna delle due chiuse sono disposte in modo da potersi aprire contro la direzione della corrente: quelle della chiusa superiore hanno il nome di portine, per distinguerle da quelle della chiusa inferiore, che chiamansi portoni. Il tratto di canale intercluso fra la chiusa superiore e l'inferiore, e che trovasi fra due sponde e sopra una platea di muratura, prende il nome di vasca, di cratere, ovvero di bacino del sostegno.

Per ottenere che la pressione dell'acqua non osti all'aprimento delle porte dei sostegni, è necessario che essa raggiunga lo stesso livello a monte ed a valle, ossia nella vasca del sostegno e nel tronco di canale adiacente alle porte che si vogliono aprire. Ora, affinchè possa l'acqua innalzarsi entro la vasca di quanto importa per mettersi a livello con quella del tronco superiore, ovvero con quella del tronco inferiore, vi sono degli sfoghi in ciascuna delle

due chiuse, ovvero dei condotti di comunicazione, che a piacimento possono essere aperti ed otturati, e pei quali l'acqua può passare dal tronco superiore nella vasca o da questa nel tronco inferiore, quantunque si mantengano serrate le porte dell'una e dell'altra chiusa. Quando poi l'acqua contenuta nella vasca trovasi al livello di quella dell'uno dei due vicini tronchi del canale, riesce facile aprire le porte dell'interposta chiusa, non avendosi più a vincere che la resistenza opposta dal fluido ambiente al movimento di ciascuna porta, cui si aggiunge l'altra, che proviene dall'attrito dei cardini. Per serrare le porte di una delle due chiuse, basta aprire le comunicazioni relative all'altra di esse; allora l'acqua, mettendosi necessariamente in corso fra le porte della prima, a poco a poco le sospinge a chiudersi. L'impulso dell'acqua non è sempre necessario per chiudere le porte, e riesce facile questa manovra quando il liquido trovasi allo stesso livello da una parte e dall'altra.

Premessi questi brevi cenni, riesce facile comprendere con quale artifizio le barche si fanno passare pel sostegno dall'uno all'altro dei contigui tronchi di canale. Si aprono da prima le comunicazioni fra il tronco, per cui la barca è arrivata al sostegno, e la vasca in cui essa si vuole introdurre; quando le acque sono giunte allo stesso livello nel detto tronco e nella vasca, si aprono le porte dell'interposta chiusa, e si fa entrare la barca nel cratere; si chiudono le porte e le comunicazioni della chiusa che fu spalancata e tragittata; si aprono le comunicazioni dell'altra chiusa, affinchè le acque si mettano allo stesso livello nella vasca e nell'altro tronco in cui la barca deve passare; si aprono le porte della stessa chiusa, e così la barca potrà entrare nel tronco di canale, per cui deve continuare il suo cammino.

285. Parti principali dei sostegni. — Un sostegno consta essenzialmente: della platea; dei muri di sponda, detti anche muri laterali; delle spalle d'accompagnamento; dei muri d'ala; del muro di caduta; delle porte; e delle disposizioni per lasciare entrare nella vasca l'acqua dell'uno o dell'altro dei due tronchi di canale fra cui il sostegno si trova. Dalla figura 297, la quale rappresenta la proiezione orizzontale e la sezione longitudinale secondo la retta XY di un sostegno, riesce facile comprendere come sono disposte le indicate parti essenziali.

La platea P è assolutamente indispensabile, qualunque sia l'indole del fondo sottoposto; e ciò nell'intento di ottenere la perfetta unione di tutti i muri alla base comune, e un robusto concatenamento di tutte le parti, affinchè l'edifizio presenti un tutto assieme ben stabile. Quando il fondo è di buona consistenza, può bastare di assegnare alla platea una grossezza compresa fra metri 0,60 e metri 0,80. Maggior grossezza è necessaria sui fondi cattivi, ove di più potrà occorrere una palificazione, un costipamento artificiale del terreno, o una vasta e robusta piattaforma di calcestruzzo.

I muri di sponda S sono quelli che formano le fiancate della vasca, e questi muri devono essere tanto alti che sopravanzino di metri 0,5 a metri 0,6 il livello, a cui possono salire le acque del canale nel tronco superiore. Le pareti interne di questi muri sono verticali, e conviene che esternamente presentino pareti a scarpa,

oppure riseghe od anche contrafforti di rinforzo.

I muri di sponda vengono alquanto protratti oltre le chiuse; e tali protrazioni costituiscono le spalle d'accompagnamento A. Quelle che stanno dove l'acqua sta per entrare nella conca diconsi spalle superiori, e si chiama camera delle portine il breve tratto di canale che comprendono. Le altre che si trovano all'uscita dell'acqua dalla vasca diconsi spalle inferiori. Le spalle superiori servono d'appoggio alle portine allorquando sono aperte, e a ritenere l'acqua, affinchè non s'insinui filtrando dietro le fiancate della vasca. Le snalle inferiori hanno per iscopo di opporre una valida resistenza alla spinta, che l'acqua esercita contro i portoni, e che, riportandosi contro le estremità inferiori dei muri di sponda, potrebbe strapparli, e rovesciare quindi tutta la chiusa inferiore, qualora le estremità minacciate non fossero sostenute dai detti muri di rinforzo. Sovente le spalle inferiori portano un'arcata, la quale serve pel comodo passaggio dall'una all'altra parte della conca. La lunghezza delle spalle superiori si suol fare eguale alla metà della lunghezza della chiusa, più metri 0,50, affinchè possano esse prestare un appoggio continuato alle portine quando sono aperte, e sovente si estendono molto di più per ottenere che presso le loro estremità rimanga posto sufficiente per stabilirvi gli incastri verticali di una paratoia da potersi porre nel canale innanzi al sostegno, onde impedire l'accesso all'acqua, nel caso di dover eseguire qualche ristauro intorno alla chiusa superiore. In ciascuna delle spalle superiori trovasi praticata un'incassatura parallelepipeda destinata a ricevere la corrispondente portina, affinchè, quando è aperta, non sia un ostacolo al libero passaggio delle barche. Analoghe incassature si lasciano presso le estremità inferiori dei muri di sponda per ricevere i portoni. Quella parte del cratere, in corrispondenza della quale si trovano queste ultime incassature, è la camera dei portoni. — Dove le spalle si congiungono ai muri di sponda, usasi stabilire dalla parte esterna robusti contrafforti, i quali giovano a dare robustezza agli stipiti della chiusa contro le spinte laterali delle porte, e riescono opportuni per la salda infissione di quei bracci di ferro, ovvero di quelle travi che compongono le armature dei cardini.

La larghezza delle conche è quasi sempre minore di quella del canale su cui sono stabilite. Per restringere gradatamente il canale presso la chiusa superiore e per allargarlo pure gradatamente oltre la chiusa inferiore, servono i muri d'ala B. Questi muri si stabiliscono ordinariamente con una direzione da fare un angolo inferiore a 50° coi prolungamenti delle spalle, e, quando il terreno delle sponde del canale è di sua natura proclive ed essere trapelato dall'acqua, torna conveniente di aggiungere ai muri d'ala, e principalmente ai superiori, dei muretti entro terra, con direzione perpendicolare a quella delle spalle.

Il fondo del canale superiore determina la soglia della chiusa superiore di un sostegno; il fondo del canale inferiore stabilisce il livello della soglia della chiusa inferiore e della platea. Per passare dalla soglia della chiusa superiore al fondo della vasca vi è un salto, e per avere questo salto trovasi il muro di caduta C, la cui fronte generalmente si eleva verticalmente. Nei sostegni in cui la caduta è molto grande, si trova conveniente di fare in modo che l'indicata fronte risulti inclinata, onde rendere minimo l'impulso dell'acqua scaricata dalla chiusa superiore sulla platea, tutte le volte che, dopo di aver tenuto a secco il canale per qualche tempo, vi si mette di nuovo l'acqua, e vi si lascia correre finchè i diversi tronchi si trovino colla quantità d'acqua necessaria alla navigazione. È poi commendevole la pratica di raccordare la superficie del muro di caduta colla superficie della platea della vasca, giacchè con tale espediente si rende nullo l'urto dell'acqua cadente sulla platea.

Ciascuna delle due chiuse consta di due porte, le quali, quando sostengono l'acqua, fanno fra loro un angolo di circa 90° col vertice verso monte. Queste porte, le quali sono girevoli su cardini, le cui armature trovansi solidamente fermate nelle spalle d'accompagnamento, devono presentare una solidissima struttura; ciascuna di esse consta d'una robusta intelaiatura di travi, alla quale è addossato un intavolato di tavoloni; e tutto il sistema trovasi consolidato da chiodature e da opportune fasciature di ferro. I lembi inferiori delle porte vengono a battere contro un risalto, il quale trovasi sulla soglia di ciascuna chiusa e che è conformato a seconda degli angoli abc e def, che devono fare le due portine ed i due portoni allorquando sono chiusi. Gl'indicati risalti devono resistere alla spinta dei lembi inferiori delle portine e dei portoni allorquando sono chiusi e premuti dall'acqua; e generalmente si fanno con robuste pietre da taglio, fortemente fermate nelle soglie delle chiuse.

— Le porte, che in quasi tutti i canali esistenti sono di legno, potrebbero anche essere di ghisa o di ferro.

Varii sono gli espedienti che possono servire per introdurre l'acqua nella vasca e per farla passare da questa nel tronco inferiore del canale. Tra questi espedienti, il più semplice è quello delle valvole a portelli, chiamati anche uscioli, inerenti alle portine ed ai portoni. Quest'espediente, che ha il merito della semplicità, presenta gli inconvenienti di promuovere una gagliarda agitazione dell'acqua nel cratere, con incomodo e con pericolo di danno delle barche che trovansi dentro il sostegno, e di produrre all'origine del tronco di canale che segue la conca un moto violento, irregolare e spesso anche vorticoso, per cui gravissimo è il tormento che ne risentono la platea, le spalle, i muri d'ala, e principalmente il fondo naturale del canale ove finisce la platea. - Un altro espediente, molto usato ed in pari tempo economico, quando abbiasi riguardo che pel buon regime di un canale di navigazione, si rende necessario un canale scaricatore per ogni conca, e quello delle trombe comunicanti con un canale scaricatore D, che trovasi su un lato del sostegno, per esempio, a dritta della vasca, in modo che la fiancata destra di questa serve di sponda sinistra dello scaricatore. La platea dello scaricatore è presso a poco al livello del fondo della camera delle portine per un tratto qh adiacente alla chiusa superiore; per un tratto successivo hi si abbassa formando un piccolo salto; in un terzo tratto ik vi sono alcuni scaglioni; e finalmente per un quarto tratto ha il suo fondo al livello del fondo della vasca. Sono liberi tanto l'imbocco quanto lo sbocco dello scaricatore, ma, dove esiste l'indicato piccolo salto, è stabilita una traversa tu armata di ventole o paratoie, per cui a piacimento può regolarsi lo scarico dell'acqua essendo quivi stabilito sullo scaricatore un ponticello dalla cui sommità riesce comodo maneggiare le ventole. L'acqua s'introduce nella vasca per le bocche caricanti m, praticate nel muro che separa la vasca stessa dallo scaricatore presso il fondo d'un pozzo profondo sino al livello della platea interna del sostegno. Per ottenere che l'acqua si metta nel cratere al livello di quella del tronco di canale che segue la conca, si aprono le bocche scaricanti n, e l'acqua, che per esse sorte, passa prima nello scaricatore al di sotto degli scaglioni e quindi nel tronco inferiore del canale. A ciascuna

delle bocche caricanti e scaricanti è applicata una ventola cilindrica, mobile intorno ad un asse verticale mediante il giuoco d'un'asta, comunemente chiamata tornello, presso la cui sommità è fissato un manubrio orizzontale. Il cilindro costituente la ventola ha un'apertura diametrale, di luce corrispondente a quella della bocca a cui è adattato; le pareti interne sono accomodate alla contrazione della vena fluida effluente; ed è disposto a lasciar libero e ad impedire il varco all'acqua, secondo che viene girato in modo da rivolgere verso la bocca, a cui trovasi applicato, o il detto pertugio o i suoi fianchi ripieni. Invece delle ventole cilindriche, si potrebbero anche adottare quelle a bilico, dette anche a palmette. Queste ultime però non sono convenienti come le prime: nel mezzo della luce rimane sempre l'impedimento del tornello, e di più sono soggette ad improvvisamente chiudersi, a motivo degli irregolari impulsi dell'acqua, la quale si affolla ad incanalarsi per l'orifizio.

È da notarsi il diaframma di legname o, che talvolta trovasi verticalmente stabilito nella vasca fino all'altezza della soglia della chiusa superiore. Questo diaframma ha per ufficio di sedare le agitazioni dell'acqua, affinchè non si estendano nella parte inferiore

della vasca, in cui prendono posto le barche.

284. Norme per determinare le principali dimensioni dei sostegni. — Tre sono le principali condizioni che concorrono a determinare la grandezza e la forma di un sostegno: il minimo consumo d'acqua nel passaggio delle barche; la sollecitudine e facilità del tragitto; l'economia della costruzione. Alla prima condizione si deve avere riguardo solamente in quei canali navigabili che hanno un limitato alimento d'acqua da povere sorgenti, ovvero da naturali od artificiali serbatoi, capaci di essere esauriti. La seconda e la terza condizione sono di generale importanza in tutti i canali navigabili.

Incominciando a parlare della larghezza delle chiuse, si può ritenere che si rende malagevole e pigro il giuoco delle porte allorquando la larghezza delle chiuse corrispondenti è maggiore di metri 5,90; e che quindi si può stabilire la massima di non assegnare alle chiuse dei sostegni una larghezza maggiore di metri 5,90, per quanto maggiore possa essere la larghezza del canale. Segue da ciò, che le barche, dalle quali potrà essere tragittato il canale, saranno al più dell'indicata larghezza, la quale, affinchè siavi un po' di giuoco fra esse e le spalle d'accompagnamento, deve essere ridotta a metri 5,80.

La lunghezza massima, che si può dare alle barche, è l'elemento

che serve a determinare la lunghezza della vasca. Ora, l'esperienza ha dimostrato che le barche destinate alla navigazione dei canali sono agili al moto quando la loro lunghezza è quintupla della larghezza, di maniera che si può stabilire che la massima lunghezza delle indicate barche debba essere di metri 29. Affinchè poi la vasca sia capace di contenere barche di tale lunghezza, egli è necessario che sia di 29 a 30 metri la sua estensione longitudinale fra il piede del muro di caduta, o fra il diaframma che talvolta trovasi dopo questo muro, e la sezione corrispondente a quella che separa la vasca dalla camera dei portoni.

La larghezza interna della vasca si deve determinare in conseguenza del numero delle barche, che il sostegno deve contemporaneamente contenere. Ora, nei sostegni capaci di contenere più barche, il tragitto di una barca sola richiede un consumo d'acqua e di tempo assai maggiore di quello che si richiederebbe quando il sostegno fosse capace di una sola barca; e, se non vi ha perdita d'acqua, vi ha però perdita di tempo quando le barche si fanno passare pel sostegno in numero conveniente alla sua capacità, giacchè le prime arrivate dovranno aspettare, finchè siasi raccolto un numero di barche corrispondente alla capacità della vasca. Queste osservazioni fanno vedere che in ogni modo i grandi sostegni atti a contenere più barche sono contrarii ed all'economia dell'acqua, ed alla speditezza della navigazione; e che quindi il buon sistema di un canale navigabile richiede che i suoi sostegni siano di grandezza non maggiore di quella che abbisogna, affinchè in ciascuno di essi possa capire una sola barca. In conseguenza di ciò la larghezza interna della vasca dovrà perfettamente corrispondere alla larghezza di ciascuna delle due chiuse, la quale può essere estesa fino al limite di metri 5,90.

Assegnando alla vasca di un sostegno larghezza costante fra l'una e l'altra chiusa, essa presenta sezione orizzontale rettangolare. Qualunque altra forma di sezione orizzontale è manifestamente contraria all'economia dell'acqua, alla speditezza della navigazione, alla facilità ed all'economia della costruzione.

Già si disse nel precedente numero quale sia la minima grossezza che devesi assegnare alla platea, e come le fondazioni di una conca devono essere adattate all'indole del fondo sottostante.

I muri di sponda S, la cui altezza è determinata per quanto si disse nel precedente numero, e la cui lunghezza dipende da quella della vasca (fig. 297), si trovano sotto l'azione della pres-

sione che contrò di essi esercita l'acqua contenuta nella vasca e della spinta delle terre che trovansi dalla parte opposta. Questi muri poi si trovano nelle più sfavorevoli condizioni quando, essendo vuota la vasca, vi ha la terra dietro di essi, e quando, essendo piena la vasca fino al livello del tronco di canale superiore, si suppone, per una causa qualunque, tolta la terra. Quest'ultima circostanza è generalmente la meno favorevole alla stabilità, cosicchè si può ritenere, che le dimensioni della sezione trasversale dei muri di sponda deve essere determinata considerandoli siccome muri di sostegno destinati a resistere alla spinta che contro di essi esercita l'acqua contenuta nella vasca, quando salga al livello di quella del tronco superiore. Se però le terre fossero di quelle il cui angolo di natural declivio coll'orizzonte è assai piccolo, e che sono quasi suscettive di colare come i liquidi, potrebbero riuscire insufficienti i muri di sponda determinati colla condizione che resistano alla spinta dell'acqua, e converrebbe determinarli in modo che resistano alla spinta delle terre.

Le spalle superiori sono nelle condizioni dei muri di sponda, solo che, essendo molto meno alte di questi, si trovano sotto l'azione di spinte molto minori. Le dimensioni della loro sezione trasversale, che si possono determinare come quelle dei muri di sponda, tenendo però conto della minore altezza di quelli per rapporto a questi, non risulterebbero molto grandi; tuttavia, siccome importa di assicurare che le dette spalle non vadano soggette a filtrazioni, usasi fare in modo che esse non siano altro che una continuazione dei muri di sponda.

Le spalle inferiori ben poco trovansi esposte alla pressione immediata dell'acqua. Questa non s'innalza a bagnare le fronti delle dette spalle, se non che per quanto se ne può elevare il livello nel canale inferiore; e quindi la loro sezione trasversale può essere determinata considerandole come muri di sostegno del terreno che posteriormente le preme. In quanto alla lunghezza delle spalle inferiori, vuol essere desunta dal principale loro scopo, che cioè siano capaci di resistere alla spinta che lateralmente esercitano contro di esse i portoni, premuti dalla massa liquida di cui si suppone pieno il cratere. Ora, cercando le pressioni che la detta massa liquida esercita sui due portoni e scomponendo queste due pressioni nelle sue componenti parallele e normali all'asse longitudinale della conca, le due componenti parallele danno nella loro somma la forza che tende a smuovere le spalle inferiori per scorrimento sulla loro base inferiore, e per rovesciamento attorno alla orizzontale determinata

dagli spigoli di questa base, che trovansi alle estremità delle spalle e diretti normalmente al detto asse della conca. L'intensità ed il punto d'applicazione dell'accennata forza, che tende a smuovere il complesso delle due spalle, sono facili a determinarsi in seguito a quanto si disse nel numero 221 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni. Ponendo le due equazioni di stabilità relative allo scorrimento ed al rovesciamento, riesce facile determinare due diverse lunghezze delle spalle inferiori, ed è la maggiore di queste lunghezze quella che devesi adottare nella pratica. Conviene osservare che, quando le spalle inferiori sorreggono un piccolo ponte per passare dall'una all'altra parte del sostegno, questo contribuisce a notevolmente aumentare il momento resistente delle spalle stesse, e che in generale riesce inutile instituire il calcolo per determinare la loro lunghezza, eccedendo quasi sempre il bisogno le dimensioni che di necessità alle medesime si devono assegnare, affinchè possano disimpegnare l'ufficio di piedritti del ponte.

Quando il sostegno ha muri d'ala, conviene determinare le dimensioni della loro sezione trasversale, considerando quelli superiori come destinati a sostenere l'acqua da cui sono premuti, e considerando quelli inferiori siccome aventi per iscopo di resistere alla spinta del terreno che contro essi appoggia. Nel caso in cui il terreno, che trovasi dietro i muri d'ala superiori, è di tal natura da essere assai piccolo il suo angolo di naturale declivio coll'orizzonte, e quasi suscettivo di colare come i liquidi, possono riuscire insufficienti le grossezze risultanti dal considerarli come sopportanti la spinta dell'acqua, e conviene determinarle in modo che resistano alla spinta delle terre.

Alla sezione trasversale del muro di caduta si possono assegnare quelle dimensioni che risultano dal considerarlo come un muro di sostegno, avente l'altezza della caduta, spinto dalle terre che contro esso si trovano, quando si supponga che sulle terre medesime, supposte terminate alla soglia della chiusa superiore, esista un sovraccarico eguale a quello prodotto dal massimo prisma d'acqua che può trovarsi sulla soglia stessa.

Le dimensioni dei diversi pezzi componenti le porte sono facili a determinarsi. In seguito a quanto venne detto nel numero 221 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni, si possono trovare le spinte esercitate dall'acqua sulle porte chiuse e su parti di esse comprese fra piani orizzontali, non che i punti d'applicazione di queste spinte. Osservando dopo che, sotto il

carico dell'acqua che sostengono, le porte e le loro parti sono soggette ad inflettersi, basta convenientemente applicare le teorie sulla resistenza alla flessione, per giungere alla determinazione delle dimensioni da assegnarsi alle diverse loro parti.

285. Altezza della caduta delle conche e sostegni accollati -Le cadute dei varii sostegni di un canale navigabile devono essere determinate in vista del buon andamento del canale e della facilità e speditezza della navigazione. Ritenendo che la massima pendenza da assegnarsi al fondo di un canale navigabile sia quella del 0,33 per 1000, quando la totale caduta di questo canale dalla sua origine allo sbocco è tale che ne risulta una pendenza maggiore dell'indicato limite, conviene sottrarre dalla caduta totale quel tanto, cni corrisponde sull'intiera lunghezza del canale una pendenza del 0.33 per 1000, la differenza che così si ottiene, fissa la somma delle cadute dei sostegni, da distribuirsi opportunamente lungo la linea. Ora, per quanto spetta all'edifizio del sostegno, è noto che si ha la maggior convenienza nell'assegnargli una caduta non maggiore di 3 metri. Dividendo adunque per 3 la differenza testè accennata, si ha nella parte intiera del quoziente il numero dei sostegni occorrenti per equiparare l'eccesso della caduta. Ma avviene alcune volte che il numero dei sostegni in tal guisa determinato esige che si trovino essi così vicini l'uno all'altro, da essere tanto piccola la lunghezza di alcuno dei tronchi del naviglio, da abbassarsi in esso di troppo il livello dell'acqua per la sottrazione della quantità necessaria a riempire la vasca del prossimo sostegno, ed in modo disdicevole al buon andamento della navigazione. Quando questo avviene, si può diminuire il numero dei sostegni aumentando la loro caduta, ma tenendola al disotto di 5 metri. Che se neppure quest'aumento di caduta vale a togliere il notato inconveniente, si può ricorrere all'espediente dei sostegni accollati.

Due sostegni si dicono accollati, quando si trovano l'uno di seguito all'altro e quando la chiusa inferiore dell'uno serve di chiusa superiore dell'altro, cosicchè vi sono due cadute, una immediatamente dopo l'altra, senza che fra esse si trovi un tronco di canale, come succede fra due sostegni isolati. È anche possibile disporre uno presso l'altro più di due sostegni accollati, e si ha persino l'esempio di sette sostegni accollati, ossia posti di maniera che le barche, per discendere dal tronco superiore al tronco inferiore del canale, debbono successivamente passare per sette conche. Nel canale di Pavia i sostegni hanno cadute diverse fra 2 e 5 metri; e vi sono due coppie di sostegni accollati, ciascuno

dei quali presenta un salto di metri 3,80; cosicchè risulta di metri 7,60 la caduta totale di ciascuna coppia di sostegni.

CAPITOLO VII.

Argini.

286. Argini e loro distinzione in argini longitudinali ed in argini trasversali. — Chiamansi argini quelle costruzioni, le quali sono destinate ad impedire l'espandersi delle acque sì stagnanti che correnti, e principalmente quelle dei siumi e dei torrenti nei tempi delle loro piene.

Gli argini, che si costruiscono per preservare le campagne, gli uomini e gli animali dalle invasioni delle acque correnti, si distinguono in argini longitudinali o laterali ed in argini trasversali od ortogonali. I primi sono quelli che hanno direzione parallela all'andamento del corso d'acqua, di cui vuolsi regolare lo sfrenato corso, i secondi sono quelli che hanno direzione perpendicolare o quasi perpendicolare all'accennato andamento.

287. Opportunità degli arginamenti. — Tuttavolta che si presenta il caso d'un arginamento e principalmente dell'arginamento. di un fiume, conviene innanzi tutto rendersi ragione se e quando l'opera debba essere intrapresa. Se il terreno soggetto alle inondazioni, che si ha in mira di impedire con un lavoro d'arginamento, non trovasi ancora bastantemente rialzato dai sedimenti delle torbide e non ha raggiunta un'altezza valevole a toglierlo dallo stato di palude e ad impedire che lo diventi in causa dell'arginamento stesso, si deve, o tralasciare affatto l'operazione, oppure non essere solleciti nel mandarla ad effetto. Quando però un piccolo spazio depresso trovasi unito ad uno più vasto a cui convengono le arginature ed in tale modo congiunto, che riesca impossibile intraprendere le opere d'arginamento per questo, senza estenderle anche a quello, si può fare una eccezione alla data regola di tralasciare o di rimandare i lavori ad epoca più lontana; e lo stesso dicasi allorquando, per correzioni o per rettificazione dell'andamento di un corso d'acqua, convenga interrompere ed aprire arginature di già esistenti, e non si possa quindi nuovamente serrarle che attraversando l'alveo abbandonato con argini e separandolo dal fiume. In questi casi l'innalzamento del terreno depresso mercè le alluvioni del fiume rimane impedito,

e si assicura ad esso un fondo acquitrinoso e paludoso. A tale inconveniente però facilmente si può mettere riparo, mediante una conveniente applicazione di paratoie agli argini, per mezzo delle quali sia possibile far scorrere a piacimento l'acqua del fiume, pregna di materie terrose, negli spazii che hanno bisogno di essere colmati, e precisamente fino a quel segno che si giudica opportuno, per alzarli a poco a poco, quand'anche ciò non possa aver luogo se non che lentamente.

Quando un arginamento è diretto a preservare gli uomini e gli abitati da innondazioni apportatrici di gravi ed irreparabili danni, non si deve differire l'esecuzione dell'opera, se pur è possibile; e conviene innanzi tutto pensare ai lavori di prima urgenza, ossia ad assicurare la vita ed i fabbricati degli abitanti delle località soggette a innondazione.

238. Scelta del sistema di arginamento. — Le opere, che costiluiscono un sistema di arginamento, si possono ridurre a due classi principali: le opere della prima classe sono quelle dette munienti, le quali, come gli argini longitudinali, hanno per ufficio di mantenere le acque nelle condizioni regolari in cui si trovano e di contenerle; le opere della seconda classe sono quelle altre chiamate respingenti, che, come gli argini trasversali, hanno per iscopo di modificare l'andamento di un corso d'acqua, correggendone i difetti.

Tutti i fiumi, tutti i torrenti hanno un carattere loro speciale, e sovente, lungo il loro corso, possono offrire condizioni disparatissime di indole e di circostanze. Segue da ciò, che la prima quistione, la quale si presenta nello studio di un arginamento, sta nella scelta del sistema dipendentemente dallo scopo che vuolsi ottenere, avuto riguardo alla spesa di costruzione e di manutenzione ed alle conseguenze probabili cui l'esecuzione del progetto può dar luogo, onde evitare inconvenienti forse maggiori del vantaggio che si desidera ottenere. È però da notarsi, che la considerazione della spesa può tornare inutile, allorchè il sistema di arginamento resta prefisso dal carattere speciale delle acque da arginarsi, o dallo scopo che si vuol ottenere; che anzi vi sono casi in cui si rende talmente necessario un dato sistema d'arginamento, che mal s'apportable colui che volesse cangiarlo in seguito ad illusorie considerazioni di economia.

Volendosi arginare un torrente che scorre sul proprio cono di deiezione all'uscita di una giogaia di montagne, è imperiosa necessità di ricorrere agli argini longitudinali. Questi torrenti, le cui acque discendono sopra il cono formato dalle proprie alluvioni, vanno soggetti a variazioni così risentite ed impreviste, che tornerebbe impossibile contenerli con argini trasversali, a meno che questi agiscano come un argine continuo, col porli molto vicini fra di loro; e se il corso dell'acqua, ripiegandosi improvvisamente, per una causa qualunque, riuscisse a cacciarsi fra due argini trasversali, il letto del torrente si alzerebbe e l'acqua tracimerebbe dagli argini, devastando quelle campagne che si volevano proteggere.

Trattandosi di un corso d'acqua soggetto ad alzamenti successivi di fondo, per l'eccessivo prolungarsi dello sbocco del medesimo nel recipiente, il sistema degli argini trasversali è quello che maggiormente può convenire. Questo sistema di arginamento permette alle acque di piena l'espandersi nelle campagne circostanti; e promuove i depositi delle torbide, i quali elevano il livello delle campagne stesse, bonificandole. Adottando invece un arginamento longitudinale, in breve avviene che il livello delle campagne adiacenti trovasi al di sotto del letto del fiume, il quale va ogni volta più alzandosi, perchè man mano deposita sul suo fondo le materie che trasporta, diminuendo la pendenza. I terreni circostanti vengono privati del facile scolo che prima loro presentava lo scavo naturale del fiume, e, in caso di rottura degli argini, le acque, rovesciandosi dall'alto in basso, produrrebbero indubitatamente dei gravissimi danni.

Quando vogliasi moderare l'arrivo di grandi piene in vallate inferiori, col trattenerle per un certo tempo nelle vallate superiori, ossia quando vogliasi diminuire la portata e prolungare la durata delle piene, conviene avere ricorso agli argini ortogonali. Con questi argini, disposti per coppie, si possono ottenere più serbatoi posti l'uno di seguito all'altro, i quali si scaricano poi a poco a poco dopo le piene.

Questo è quanto si può dire sul più conveniente sistema d'arginamento. In ogni caso l'ingegnere costruttore deve tenere presente che, quando vuolsi accingere a dirigere a proprio talento un corso d'acqua od a volerlo porre in tali condizioni da non apportare nocumento, si mette in conflitto con una potenza più facile a vincersi con artificiosi ripieghi che coll'opposizione di energiche resistenze. Il ripiego che generalmente serve a raggiungere l'intento, è quello di far servire la forza stessa che si vuol combattere come forza ausiliaria per raggiungere lo scopo che si ha in mira di ottenere.

289. Argini longitudinali. — Gli argini longitudinali talvolta si elevano immediatamente sulla ripa del corso d'acqua da arginarsi,

tal'altra si costruiscono a distanza dalla detta ripa, lasciando tra essa ed i piedi degli argini una zona più o meno larga di terreno. I primi si dicono argini in froldo, ed i secondi si chiamano argini con golena.

Questi argini presentano generalmente una sezione trasversale di figura quadrilatera trapeziale, di cui la base si confonde col profilo naturale del terreno sottoposto, di cui i due fianchi sono egualmente o disugualmente inclinati alla verticale, e di cui la sommità è o una retta leggiermente inclinata all'orizzonte, oppure una curva colla sua concavità volta in basso, colla corda orizzontale e colla saetta di circa $\frac{1}{200}$ della corda, onde facilitare lo

scolo delle acque piovane. Gli argini si fanno generalmente di terra, e l'indicata forma della loro sezione trasversale è necessaria per disporre le pareti laterali secondo l'inclinazione voluta per lo equilibrio dei solidi di terra.

È avviso dei pratici che la larghezza superiore di un argine longitudinale non debba essere inferiore a metri 2, e se una tale larghezza può riuscire eccessiva per la stabilità dell'opera, essa si deve ritenere siccome necessaria nei tempi di pericolo, onde far q:elle operazioni che possono essere urgenti per la sua conservazione.

Per quanto si riferisce all'inclinazione delle facce esterne ed interne degli argini longitudinali, è opinione di molti pratici che debbasi assegnare una scarpa interna, ossia verso corrente: di 2 di base per 1 di altezza per gli argini formati di terra argillosa; di 3 di base per 1 di altezza, quando nella terra da impiegarsi predomina la sabbia; di 4 di base per 1 di altezza per gli argini formati con terre di cattiva qualità. Alle facce esterne suolsi assegnare una scarpa assai minore, giacchè non sono esse in contatto dell'acqua corrente: conviene di assegnare loro quella scarpa che corrisponde al naturale declivio delle terre, e generalmente si reputa opportuna quella di 3 di base per 2 di altezza.

In quanto all'altezza degli argini longitudinali, si deve essa determinare in modo che la loro sommità riesca elevata almeno di metri 0,50 sul pelo delle massime piene, ossia devono presentare un franco di metri 0,30 almeno. Nell'assegnare poi l'altezza ad un nuovo argine, fa anche d'uopo non dimenticare il calo a cui va soggetto l'ammasso di terra costituente l'opera nello assodarsi e nel costiparsi. Questo calo può essere tale da produrre

nell'altezza dell'argine una tale diminuzione, che talvolta arriva persino ad $\frac{1}{7}$ dell'altezza totale. Segue da ciò che, chiamando

a l'altezza dell'acqua a monte dell'argine nelle epoche di piena, y l'altezza domandata da assegnarsi all'argine, espresse queste altezze in metri,

si ha la seguente formola determinatrice di y

$$y = \frac{8}{7} \left(a + 0^{\text{m}}, 50 \right) \tag{1}.$$

Verrà poi indicato nel numero che segue come si possa determinare il valore di a, tenendo anche conto della sopra-elevazione di pelo che generalmente produce il restringimento di sezione causato dalla costruzione degli argini longitudinali.

La distanza da assegnarsi a due opposti argini in froldo è un elemento che grandemente influisce sul buon regime del fiume o torrente in cui questi argini vengono stabiliti. Se gli argini sono ravvicinati più di quanto comporti l'indole e la portata del fiume o torrente, la corrente, ristretta entro limiti troppo angusti, può acquistare tanta velocità da rendere impossibile la navigazione nei fiumi navigabili, da corrodere e trasportare le materie costituenti il fondo e le sponde, producendo dannose escavazioni in alcuni siti, più dannosi interrimenti in alcuni altri. Gli argini stessi, minacciati e scalzati alle loro basi, non potrebbero sussistere, senza la costruzione di costose opere di difesa; e, nel caso di piena nel tronco superiore al restringimento causato dagli argini, non trovando le acque la necessaria ampiezza pel sollecito e libero sfogo, si sollevano, si spandono sulle adiacenti campagne e si portano ad inondare e a devastare le parti basse del territorio, rendendo così inutili le fatte arginazioni. Se invece gli argini sono più distanti del necessario, si ha diminuzione di velocità, e quindi succedono interrimenti ed alzamenti di fondo.

Quando si costruiscono argini con golena, si ha l'alveo corrispondente al passaggio delle acque medie; un alveo assai maggiore per le piene; e quindi, assegnando una soverchia distanza agli argini, non si va incontro ad altro inconveniente, fuorchè a quello di lasciare in balìa delle acque di piena un maggior tratto di terreno. Generalmente adunque, quando le circostanze locali lo permettono, convengono gli argini longitudinali con golena, giacchè, oltre di provvedere ad un ampliamento di sezione del fiume

su cui si stabiliscono, quando le acque sorpassino le sue ripe, non sono essi soggetti ad una minacciosa corrosione sulle loro facce verso corrente ed al loro piede. Aggiungasi ancora, che le golene poste fra le ripe ed i piedi di questi argini presentano un'opportuna località per trarre le terre necessarie alla loro costruzione ed al loro mantenimento.

Quegli argini i quali fiancheggiano tronchi regolari di fiumi e di torrenti, devono avere un andamento pressochè parallelo alle ripe; e dove la corrente presenta frequenti e risentite tortuosità, conviene costrurre gli argini secondo direzioni rettilinee. raccordate con curve circolari di raggio molto grande, per evitare i cambiamenti bruschi ed i risvolti assai stretti, sui quali molto può l'urto della corrente. Il progetto di un sistema di argini longitudinali in siti in cui vi sono molte irregolarità di corso, può essere fatto in modo che un tronco rettilineo di terreno arginato comprenda più insenature della corrente. Questo sistema di arginamento tende a condurre la direzione del corso d'acqua lungo un andamento che si accosta di più in più alla retta equidistante dai due argini opposti, e talvolta riesce conveniente a raddrizzare ed a dirigere il corso dei fiumi che hanno un andamento tortuoso ed irregolare, apportando un notevole risparmio di spesa. Tale raddrizzamento però, che generalmente riesce di grande vantaggio nei tronchi inferiori, in quanto favorisce lo smaltimento delle acque, l'esaurimento delle piene, l'aumento di velocità, l'affondamento del letto ed allontana i pericoli d'interrimenti e d'inondazioni, può riuscire di grave pregiudizio nei tronchi superiori e sassosi, dove sarebbe causa che vengano spinte sollecite e contemporanee alla valle le acque delle piene in un colle terre, colle sabbie, coi ciottoli, coi massi di rocce, producendo interrimenti e dannosi allungamenti di corso nelle parti basse.

Nei casi d'acqua, i quali contro le loro sponde conservano una velocità un po' grande, è indispensabile che le facce interne degli argini si trovino inerbate o protette da impellicciature e da incamiciate, di cui si parlò nei capitoli II e VI del volume sui lavori generali d'architettura civile, stradale ed idraulica. Incamiciate che molto convengono sono quelle il cui tipo è rappresentato in sezione trasversale nella figura 298. Trattandosi di assicurare il piede dell'argine contro gli scalzamenti che vi potrebbe apportare la corrente, può convenire la fondazione di calcestruzzo F con paratia. L'incamiciata poi può essere di pietrame in opera su uno strato di calcestruzzo, il quale talvolta si protende fino a circa

metà dell'altezza della scarpa e tal'altra fino alla sommità. Alcune volte si pone solamente il calcestruzzo destinato a formare la fondazione F dell'incamiciata, e questa consiste in un semplice rivestimento di pietrame o di grossi ciottoli disposti normalmente alla faccia che ricoprono, di maniera che su tutta l'estensione della scarpa si ha la struttura rappresentata nel tratto a b (fig. 299).

Quando le facce degli argini si difendono contro le corrosioni mediante incamiciate, usasi assegnare ad esse scarpe assai minori di quelle già indicate, e si può ritenere che, invece delle scarpe di 2, di 3 e di 4 di base per 1 di altezza, possano essere rispettivamente sufficienti quelle di 1 ed $\frac{1}{2}$, 2 ed $\frac{1}{2}$ e 3 ed $\frac{1}{2}$ di base per 1 di altezza, od anche solamente di 1, di 2 e di 3 di base per 1 di altezza.

290. Distanza ed altezza degli argini longitudinali. — Allorquando un tronco di fiume o di torrente viene rinserrato fra due argini longitudinali, si fa di questo tronco un canale di grande sezione e, con sufficiente approssimazione per la pratica, si può supporre che ad una certa distanza, a valle della sezione nella quale incominciano le opere d'arginamento, il moto dell'acqua diventi uniforme e che per conseguenza siano applicabili le equazioni

$$\frac{\Omega}{\overline{\chi}} I = \alpha \left(1 + \beta \frac{\chi}{\Omega} \right)^{v^2}$$

$$Q = \Omega v$$
(1),

nelle quali le lettere I, Ω , χ , v, Q, α e β hanno i significati che loro vennero dati nel numero 257. I valori poi di Ω e di χ si possono assumere quali vengono dati dalle formole (2) dell'or citato numero, e questi valori, sostituiti nelle equazioni (1), conducono a due relazioni fra le sei quantità L, h, γ , I, v e Q; cosicchè, essendo date quattro di queste quantità, si possono determinare le altre due. Generalmente è piccola l'altezza h dell'acqua, non che le lunghezze h cot γ e $2 \frac{h}{\text{sen } \gamma}$ in confronto della larghezza L, ossia della distanza fra i piedi dei due argini, quindi si può fare

$$\begin{array}{c}
\Omega = Lh \\
\chi = L
\end{array}$$

Questi valori di Ω e X, sostituiti nelle equazioni (1), danno le due relazioni

$$h I = \alpha \left(1 + \frac{\beta}{h}\right) v^{2}$$

$$Q = Lh v$$
(3),

contenenti le cinque quantità L, h, I, v e Q, e, essendo date tre di queste quantità, si possono determinare le altre due.

Nello studio di un progetto di argini longitudinali, il quale generalmente deve essere intrapreso nell'ipotesi delle acque massime, si possono ritenere siccome note le quantità γ , I e Q, cosicchè l'ingegnere deve solo prestabilirsi o il valore di L, o quello h, o quello di v, onde giungere alla deduzione di h e di v, oppur di L e di v, oppure di L e di h.

Sovente conviene soddisfare alla condizione che la massima velocità u sul fondo sia inferiore o tutto al più eguale a quella che è in procinto di produrre corrosioni sul fondo stesso. In questo caso (num. 257), assumendo i valori di Ω e di $\mathbb X$ dati dalle formole (2), si ha

$$v = u + 6\sqrt{hI} \tag{4},$$

dove il valore di u si deve ritenere come avente il valore noto, risultante dalla tabella del numero 138. Sostituendo i valori noti di I e di Q, non che il valore di v dato dall'equazione (4), nelle equazioni (3), esse contengono d'incognito le sole dimensioni L ed h ed è quindi possibile la loro determinazione.

Se fosse quistione di stabilire un sistema di argini longitudinali lungo un tronco di fiume navigabile, sarebbe necessario accertarsi se la velocità V al filone si mantiene al di sotto di un certo limite, di metri 0,50 o tutto al più di metri 0,60 per ogni minuto secondo, anche nelle epoche di acque medie. In questo caso, fatto il progetto dell'arginatura nell'ipotesi delle acque massime e col prestabilirsi o il valore di L o quello di h, o quello di v, oppure coll'assumere una velocità sul fondo non capace di produrre corrosioni, mediante le formole (3) si calcolano la velocità media v' e l'altezza dell'acqua h', corrispondenti alla portata Q' delle acque medie, e mediante la formola

$$V=v'+14\sqrt{h'1}$$
 (5),

si deduce la velocità V al filone. Se il valore di V è minore di metri 0,60, si può ritenere siccome buono il già fatto progetto, d'arginamento: diversamente bisogna modificare il progetto, in modo che la velocità media delle acque, in epoche di acque medie, sia eguale alla velocità v' che viene data dall'equazione (5), quando si assuma il valore di V eguale a metri 0,50 o tutto al più a metri 0,60.

Determinata la distanza L fra i piedi di due argini longitudinali e l'altezza h che fra essi conserva l'acqua nelle massime piene, viene la quistione di trovare quel tanto di cui sarà elevato il pelo dell'acqua prima di entrare in quella sezione della corrente che corrisponde all'origine dell'arginatura.

Questa determinazione non può essere fatta che con una grossolana approssimazione, e parmi che ad essa si possa arrivare, considerando la prima sezione per cui l'acqua entra nel tronco arginato, siccome uno stramazzo rigurgitato, come quello rappresentato nella figura 285, ma senza la traversa inferiore EF. Allora, ponendo rispettivamente nell'equazione (3) del numero (3)

$$z = \frac{9 \, Q^2}{2 g \, m^2 L^2 (2z + 3h)^2} \tag{6},$$

la quale può servire a determinare z, giacchè sono elementi noti la distanza L fra gli argini, l'altezza h e la portata Q in tempo di piene. La stabilita equazione è del terzo grado, ma nelle ordinarie circostanze della pratica, con molta approssimazione, si può trovare il valore di z col metodo delle sostituzioni successive, operando come già venne indicato per un'equazione analoga che venne data nel numero 139. In quanto al valore del coefficiente m, egli è evidente che la contrazione all'entrata delle acque nel tronco arginato non potrà essere molto grande, e che per conseguenza converrà assumerlo non minore di 0,70, e forse anche di 0,80.

Sommando i due valori di h e di z, si ottiene il valore di a da porsi nell'equazione (1) del numero precedente, onde trovare l'altezza massima da darsi agli argini alla loro origine. Osservando poi che, ad una certa distanza dall'indicata origine, l'acqua finisce per avere l'altezza h, ne risulta che l'altezza degli argini potrà decrescere dal suo limite superiore, che si ottiene ponendo h+z invece di a nella formola (1) del numero precedente, fino al suo limite inferiore, che risulta dal porre h invece di a nella stessa formola.

Se all'altezza h si aggiunge la sopra-elevazione z e se togliesi dalla somma l'altezza delle acque massime prima dell'esistenza degli argini, si ha nella differenza la sopra-elevazione di pelo che potrà derivare dalla costruzione degli argini stessi. Questa sopra-elevazione divisa per la pendenza del fiume o torrente, presa questa pendenza prima di fare l'or indicata costruzione, dà nel quoziente l'ampiezza idrostatica; e si può ritenere che una volta e mezzo questo quoziente rappresenti l'estensione del rigurgito che si verificherà in tempi di piene dopo lo stabilimento degli argini ed a monte della sezione in cui trovasi la loro origine.

291. Grossezza da assegnarsi agli argini longitudinali. — La pressione delle acque correnti contro le loro sponde non è guari diversa da quella delle acque stagnanti, e quindi si può ritenere che la pressione sopportata da un argine longitudinale sia quella che esercita la massima massa liquida che scorre contro di esso. Siccome poi torna in vantaggio della stabilità il supporre la spinta alcun poco maggiore del vero e la resistenza alcun poco minore, nel calcolare la grossezza di un argine longitudinale si può ritenere che l'acqua giunga fino alla sua sommità e trascurare la coesione delle terre. Questa grossezza poi dovrebbe essere determinata in modo che l'argine, sotto l'azione della spinta dell'acqua, sia stabile tanto per rapporto allo scorrimento quanto per rapporto al rovesciamento.

Nel numero 289 già vennero dati tali elementi per cui, una volta determinata l'altezza massima di un argine, risulta come una conseguenza la sua grossezza al piede e ad un'altezza qualunque al di sopra della base. Qui adunque è solamente il caso di verificare se le norme che vennero date nel citato numero 289, per stabilire la sezione trasversale di un argine longitudinale, sono sufficienti ad avere opere poste in buone condizioni di stabilità.

Considerando il caso di un argine con sezione triangolare isoscele, in modo che all'inclinazione di ciascuna faccia corrisponda la scarpa di 1 di base per 1 di altezza, e chiamando

q il peso dell'unità di volume d'acqua,

II il peso dell'unità di volume della terra costituente l'argine,

a l'altezza di quest'ultimo, ed

f il cofficiente d'attrito di terra sopra terra, si ha:

che la spinta esercitata dall'acqua normalmente alla faccia dell'argine, su una lunghezza di questa faccia eguale all'unità, è

$$\frac{1}{2}qa^2\sqrt{2}$$
;

che le componenti orizzontale e verticale di questa spinta, eguali fra di loro, sono date da

$$\frac{1}{2}q a^2 \tag{1}$$

che il peso della parte d'argine lunga l'unità è

$$\Pi a^2$$
;

che la forza la quale tende a produrre lo scorrimento è data dalla espressione (1); che la forza la quale si oppone allo scorrimento risulta

$$f\left(\frac{1}{2}q+\Pi\right)a^2$$
;

e che, essendo n_i^{IV} il coefficiente di stabilità relativo allo scorrimento, si deve avere l'equazione

$$\frac{1}{2}qa^2 = n_1^{\text{TV}} f\left(\frac{1}{2}q + \Pi\right)a^2,$$

dalla quale si ricava

$$n_{i}^{\text{TY}} = \frac{q}{f(q+2\Pi)}.$$

Ora, assumendo il metro cubo per unità di volume e prendendo i valori di II e di f che corrispondono rispettivamente alle terre più leggiere ed a quelle, ancora convenienti per la costruzione di argini, per cui il coefficiente d'attrito f ha il minore valore, si ha

$$q=1000^{c_g}$$
, $\Pi=1400^{c_g}$, $f=0.60$;

e, con queste ipotesi totalmente in favore della stabilità, risulta

$$n_4$$
" = $\frac{1}{2,28}$,

ossia un coefficiente di stabilità compreso fra 4/5 e 2/5 e quindi sufficiente ad assicurare la fermezza dell'argine per rapporto allo scorrimento.

Venendo al rovesciamento, si ha: che il punto d'applicazione della spinta trovasi al di sopra della base dell'argine di un'altezza eguale ad $\frac{1}{3}a$; che il momento rovesciante è magnificazione

$$\frac{1}{6}qa^3;$$

che il momento resistente al rovesciamento, derivante dalla componente verticale $\frac{1}{2}q\,a^2$ della spinta dell'acqua, vale

$$\frac{5}{6}q\,a^3;$$

che il momento resistente, derivante dal peso proprio dell'argine, è

$$\Pi a^{3}$$
;

e che il totale momento resistente al rovesciamento risulta

$$\left(\frac{5}{6}q + \Pi\right)a^{3}$$

Se ora si indica con n^{v1} il coefficiente di stabilità relativo al rovesciamento, deve essere verificata l'equazione

$$\frac{1}{6}q a^3 = n^{v_1} \left(\frac{5}{6}q + \Pi\right) a^3,$$

dalla quale si ricava

$$n'' = \frac{q}{5q + 6\Pi}$$

Ponendo in quest'ultima formola i già stabiliti valori di q e di Π , si trova

$$n^{v_1} = \frac{1}{13,4}$$

ossia un coefficiente che assicura le più ampie garanzie di stabilità per rapporto al rovesciamento.

Conchiudendo, si può dire: che, essendo stabile un argine longitudinale di sezione trasversale triangolare colle facce laterali presentanti la scarpa di 1 di base per 1 di altezza, deve presentare garanzie di stabilità assai maggiori un argine con sezione trasversale trapezia, colle facce laterali aventi una scarpa assai maggiore di quella or ora indicata e colle dimensioni che vennero indicate nel numero 289; che le regole date nel detto numero, per quanto concerne alla forma ed alle dimensioni delle sezioni trasversali degli argini longitudinali, si possono ritenere siccome convenienti in tutti i casi; e che non conviene costrurre argini con forme diverse e con dimensioni minori, sia perchè la terra non è mai talmente compatta ed assettata, da non permettere l'irregolare trapelamento delle acque; sia perchè il trapelamento di un velo, anche sottilissimo d'acqua, può essere fatale anche ad argini di grande spessezza.

292. Argini trasversali. — Gli argini trasversali, che si chiamano anche argini ortogonali, perchè la loro direzione è quasi sempre normale alla corrente, si stabiliscono per coppie. Ogni coppia produce un restringimento di sezione nell'alveo in cui è stabilita, costringe l'acqua a passare nella luce che rimane fra le due punte degli argini che la costituiscono, e mantiene il filone nel mezzo. Per l'arginamento di un tronco di fiume o di torrente, sono sempre necessarie più coppie di argini trasversali.

I due argini di una stessa coppia si dispongono in modo che la loro direzione esmune sia normale alla corrente, dove il corso d'acqua da arginarsi ha un andamento rettilineo. Che se quest'andamento è curvilineo, può convenire la seguente disposizione, risultante dalla figura 300, nella quale si suppone che siano AB ed A'B' due tratti corrispondenti e paralleli di sponde rettilinee; e che siano

BE e B'E' due tratti curvilinei delle stesse sponde; che questi siano immediatamente a valle di quelli; e che su essi debbano trovarsi le estremità degli argini da stabilirsi. Trovandosi i due estremi B e B' delle sponde rettilinee in una stessa sezione trasversale simultaneamente perpendicolare ad AB e ad A'B', s'incomincierà dal porre una coppia di argini nella direzione di questa sezione. Fissata la coppia Bb e B'b', la quale trovasi all'origine del tratto curvilineo, la coppia successiva verrà tracciata in modo che l'argine Cc incontrante la sponda BE, convessa verso la corrente, sia normale a questa sponda in C; che l'argine C' c' passi pel punto d'incontro C' di Cc colla sponda B' E', concava verso la corrente, e che abbia una direzione perpendicolare alla tangente B'T condotta nel punto B' alla curva B'E'. Analogamente, per la coppia successiva, si farà l'argine Dd con direzione normale a B E nel punto D, si determinerà l'incontro D' di Dd colla sponda concava, si condurrà la tangente C'U a questa sponda nel punto C', e si assumerà per argine compagno di Dd, quello la cui direzione è data dalla retta D'd' perpendicolare a C'U. Procedendo con questo metodo, riesce facile tracciare quante coppie si vogliono di argini trasversali su un tronco curvilineo di fiume o di torrente, gli argini posti sulla sponda convessa saranno sempre normali alla curva che definisce l'andamento di questa sponda, mentre quelli posti sulla sponda concava si disporranno normalmente alla tangente condotta alla curva fatta da questa sponda nel punto in cui l'argine della coppia precedente incontra la curva stessa. Questa disposizione è generalmente riputata conveniente, in quanto che, meglio di quella in cui anche gli argini della sponda concava sono normali alla curva su cui si trovano le loro punte, porta ad ottenere che normalmente vengano urtati dall'acqua.

Gli argini trasversali si protenderanno sempre nella stessa direzione fino al terreno insommergibile, ossia fin dove la superficie della campagna trovasi allo stesso livello della loro faccia superiore. Questa regola però non si deve ritenere come generale e, quando il terreno insommergibile si trova ad una grande distanza, basta che gli argini si conservino normali alla corrente fin dove le acque di massima piena possono ancora avere qualche effetto: dove le dette acque riescono sensibilmente stagnanti, si possono voltare gli argini in modo da raggiungere colla minore spesa possibile il terreno insommergibile.

La distanza fra le due punte di una stessa coppia di argini trasversali deve essere convenientemente determinata. Se questa distanza è troppo grande, l'acqua può portarsi tutta verso uno solo dei due argini, il quale, operando a guisa di repellente, la getterebbe a danneggiare la sponda opposta. Se invece l'indicata distanza è troppo piccola, l'acqua trattenuta può elevarsi oltre il bisogno, danneggiare le campagne adiacenti, causare un'eccessiva velocità in quella che ha deflusso fra le due punte degli argini, produrre pericolose escavazioni di fondo e compromettere l'esistenza degli argini stessi. Devesi adunque ritenere, che la distanza fra le due punte di una stessa coppia di argini trasversali debba esser tale, che non abbiansi a temere eccessive sopra-elevazioni nelle massime piene; che siano allontanati i pericoli di velocità atte a porre in pericolo l'esistenza degli argini; che la corrente senta l'azione simultanea dei due argini di una stessa coppia. In ogni caso poi è meglio che siavi escavazione di fondo, purchè sia in tali limiti da non compromettere l'esistenza degli argini, anzichè mancanza d'azione simultanea.

Si è detto che, per l'arginamento di un tronco di fiume o di torrente mediante argini trasversali, sono necessarie più coppie di questi argini: e quindi si presenta naturale la quistione di determinare la distanza da interporsi fra due coppie successive. Questa determinazione deve essere fatta in modo che le diverse coppie di argini abbiano una certa influenza sul corso da regolarizzare. Se l'indicata distanza è troppo piccola, il restringimento causato da una coppia qualunque non è ancora cessato quando l'acqua ha raggiunta la coppia immediatamente a valle, e quindi questa diventa quasi inutile. Importa adunque che la distanza fra due coppie successive di argini trasversali sia maggiore della distanza massima alla quale comincia ad essere insensibile il restringimento causato dalla coppia posta a monte. Se però questa distanza fosse troppo grande, la corrente potrebbe vagare fra una coppia e l'altra e prendere un corso irregolare. Varie sono le opinioni degli ingegneri sul valore dell'indicata distanza: alcuni vogliono che debba essere eguale alla luce libera che si lascia fra i due argini di una stessa coppia; altri che debba essere il doppio, ed altri che debba essere il triplo dell'indicata luce. La regola però di far dipendere la distanza fra le coppie successive degli argini trasversali dalla larghezza della luce libera lasciata fra i due argini di una stessa coppia, non pare fondata su una base certa, e sembra opportuno cercare di dedurre l'indicata distanza dai fenomeni stessi che gli argini trasversali producono nelle correnti di cui regolarizzano il corso. Considerando due coppie successive di argini trasversali, l'acqua che passa per la prima coppia subisce un restringimento e poi tende allargarsi a guisa di ventaglio; e, prima di passare per la seconda coppia, di necessità è costretta a convergere. Segue da ciò, che fra l'una e l'altra coppia si possono distinguere tre diversi tratti: quello della divergenza; quello del parallelismo; e quello della convergenza dei fili fluidi. Si può ritenere che nei fiumi sia di 200 metri il tratto della divergenza, di 450 metri quello della convergenza; e quindi, potendo essere piccoli quanto si vuole la lunghezza del tratto del parallelismo, si può fissare di 350 a 400 metri la distanza fra due coppie successive di argini trasversali. Nei torrenti a rapido corso, il tratto della divergenza e quello della convergenza sono rispettivamente inferiori a metri 200 ed a metri 450, e pare conveniente fissare di 200 a 250 metri la distanza da interporsi fra due coppie successive di argini trasversali.

Anche lo scopo che si ha in mira di ottenere con un sistema di argini trasversali, non deve essere estraneo alla determinazione della distanza fra le diverse coppie. Così, volendosi regolare un corso d'acqua per liberare da corrosioni le adiacenti campagne, opponendosi in pari tempo al rialzamento del fondo, ammesso un limite di corrosione nell'intervallo di due coppie successive, si potrà determinare la loro distanza, misurando lungo il corso dell'alveo nei tratti curvilinei ben regolati ed in analoga natura di fondo e di sponde, quale lunghezza di corda corrisponda ad una saetta eguale al limite di corrosione ammesso. Questa corda rappresenta la distanza che si può adottare fra due coppie successive di argini. — Volendosi bonificare vaste estensioni di terreno in vicinanza di fiumi mediante i depositi lasciati dalle piene, occorre elevare il pelo dell'acqua fra una coppia e l'altra, per ottenere tanti bacini artificiali d'acqua quasi stagnante, nei quali possano depositarsi le torbide bonificatrici.

Chiamando

mail F . La Company D

I la pendenza del fiume da arginarsi,

D la distanza orizzontale fra due coppie successive di argini trasversali ed

a la sopra-elevazione di pelo che vuolsi ottenere fra le due coppie che si considerano, ossia la differenza di livello fra la superficie dell'acqua a valle ed a a monte della coppia più bassa, dove sono insensibili i fenomeni prodotti dalla cascata e dalla chiamata allo sbocco,

la distanza D deve soddisfare all'ineguaglianza

perchè in tal caso vi sarà sicuramente sopra-elevazione di pelo fra due coppie successive di argini trasversali. - Il limite superiore del valore di D, risultante dal secondo membro dell'ineguaglianza testè stabilita, è pure quello che conviene come limite superiore della distanza fra due coppie successive, allorquando si mira ad ottenere simultaneamente i due effetti di regolarizzazione del corso del fiume e di bonificazione delle adiacenti campagne; quando si ha per iscopo di formare dei serbatoi nella parte superiore di una valle, per raccogliere e trattenere le acque delle grandi piene e per diminuire l'empito delle medesime nelle parti basse. In quest'ultimo caso però converrà il più delle volte determinare la formazione di laghi artificiali temporarii, traendo partito delle accidentalità più convenienti del terreno per la costruzione di coppie isolate.

Quanto si disse nel numero 239 sulla forma della sezione retta, sulla larghezza superiore, sull'inclinazione delle facce laterali e sull'altezza degli argini longitudinali, si applica pure agli argini trasversali; e, per quanto si riferisce a questi ultimi, conviene solo aggiungere qualche cosa sulla forma delle loro punte, le quali sono generalmente conosciute dai pratici col nome di pignoni. I pignoni conici, i pignoni conici con dente ed i pignoni del Foccacci sono quelli che maggiormente vengono impiegati.

Gli argini con pignone conico non sono altro che corpi di sezione trapeziale, conservanti larghezza costante alla sommità ed eguale inclinazione nelle facce laterali. Questi argini terminano con un mezzo tronco di cono retto a basi circolari, la cui superficie convessa è raccordata a quella delle facce laterali, come in proiezione orizzontale si vede indicato nella figura 301.

Gli argini trasversali con pignone conico presentano l'inconveniente che, una volta cessate le piene, permettono che l'acqua da essi trattenuta si porti verso il mezzo del fiume o torrente in cui gli argini sono stabiliti, lambendoli lungo la faccia laterale a monte, scorrendo contro questa faccia con una certa velocità e quindi corrodendoli. Per togliere questo inconveniente, si idearono gli argini terminati da pignone conico con dente, e la proiezione orizzontale di una porzione di argine di tale struttura è rappresentata nella figura 302. Il dente serve a trattenere un prisma d'acqua stagnante o quasi stagnante contro la detta faccia laterale, allorquando le acque di scendono al basso col cessare delle piene, e quindi contribuisce ad allontanare dalla faccia stessa i fili fluidi aventi una certa velocità.

L'ingegnere Foccacci, per evitare il risalto, ha proposto di terminare gli argini trasversali con un pignone presentante un andamento curvilineo colla concavità a monte, e disposto come in proiezione orizzontale appare dalla figura 503. Intorno alla natura della curva ab, raccordata in a colla direzione rettilinea ac dell'argine, nulla si può dire di assoluto, salvo che si devono accrescere corda e saetta col crescere della velocità dell'acqua, discendente contro la faccia laterale a monte, quando cessano le piene. Con questa disposizione si ottiene che l'acqua trattenuta dagli argini, portandosi verso il mezzo della corrente col camminare lungo la parte curvilinea, si riversa nel letto non occupato dall'arginatura, facendo un angolo acuto colla direzione del corso d'acqua; essendovi urti, vi sarà diminuzione di velocità e quindi interrimenti che varranno a difendere il pignone. Per quanto spetta all'estremità del pignone. si può ritenere che essa debba avere: per base inferiore una semielisse fed coll'asse minore df eguale alla larghezza inferiore dell'argine e col semi-asse maggiore o e eguale al semi-asse minore aumentato della larghezza dell'argine alla sommità; per base superiore un semi-circolo di diametro eguale alla larghezza superiore dell'argine; e per superficie laterale quella generata da una linea retta che si muove passando per un punto della definita semielisse per un punto della semi-circonferenza dell'accennato semicircolo e per un punto della verticale orizzontalmente proiettata nel punto o.

Le facce laterali degli argini trasversali devono essere coperte da convenienti incamiciate, dove la velocità dell'acqua potrebbe danneggiarle. I pignoni sono le parti maggiormente esposte all'urto della corrente, ed importa che essi siano difesi da una robustissima incamiciata, che può essere del tipo di quella rappresentata in sezione trasversale nella figura 304. Quest'incamiciata suolsi fare con calcestruzzo o di un'altra struttura murale. Il rivestimento del pignone deve protendersi di alcun poco oltre la parte conica, oltre il dente ed oltre la parte con andamento curvilineo; di più negli argini con pignone conico che negli altri; e di più sulla faccia a monte che in quella a valle. È indispensabile che le basi degli argini trasversali siano difese alle loro estremità da gettate di grossi macigni. Queste gettate si devono eseguire, non solo lungo le parti arrotondate dei pignoni, ma anche lungo la faccia laterale a monte. Negli argini con pignone conico, lungo i quali si stabiliscono delle forti correnti al cessare delle piene, importa che le accennate opere di difesa di molto si protendano lungo la detta faccia laterale; mentre negli argini con pignone a dente ed in quelli con pignone curvilineo, si possono limitare queste opere di difesa di ben poco oltre il dente e di ben poco oltre la parte la quale presenta andamento curvilineo. Siccome poi i pericoli di corrosione lungo le facce laterali, e principalmente lungo le facce poste a monte, diminuiscono coll'avvicinarsi al terreno insommergibile e crescono coll'avvicinarsi al pignone, conviene che i rivestimenti su queste facce diminuiscano di robustezza dal pignone al terreno insommergibile, e si raggiunge lo scopo: facendo, come già si disse, il rivestimento di maggior resistenza al pignone e protraendo questo rivestimento di qualche poco sulla faccia laterale a monte; facendo un rivestimento meno robusto, e che può consistere in una selciata con malta, per un tratto dell'argine che tiene dietro al primo; facendo un terzo rivestimento, che si può semplicemente ridarre ad una selciata a secco, per un terzo tratto; e finalmente tralasciando qualsiasi rivestimento alla rimanente parte. Quanto si fa per le facce laterali a monte, quasi sempre si fa anche per quelle a valle, salvo che le parti rivestite, appartenenti a queste, sono sempre notevolmente più corte delle parti rivestite appartenenti a quelle.

293. Relazioni fra gli elementi principali di un sistema di argini trasversali. — Siano AB e CD (fig. 305) le sezioni di un fiume o torrente, in corrispondenza delle quali si trovano due coppic successive di argini trasversali; EF rappresenti il fondo del corso d'acqua arginato; KI sia il livello dell'acqua nel bacino determinato dalle indicate due coppie di argini; ML e GH i livelli dell'acqua a monte ed a valle, quando non si tenga conto degli effetti delle chiamate allo sbocco e delle cascate. Chiamando:

Q la portata del fiume o torrente in epoche di massime piene,

h l'altezza CG dell'acqua appena a valle della sezione CD,

z la differenza di livello GI fra KI e GH

L la distanza fa le due punte degli argini corrispondenti alla sezione CD,

attribuendo alle lettere m e g i significati che loro vennero dati nel numero 267, e ritenendo che l'acqua passi fra la coppia di argini che si considera, come se sgorgasse da uno stramazzo rigurgitato del genere di quello rappresentato nella figura 285, ma senza la traversa inferiore, per la formola (3) del citato numero 267, si ha

$$Q = mL\left(\frac{2}{3}z + h\right)\sqrt{2gz}$$
 (1).

Quest'equazione costituisce una relazione fra la portata Q, la distanza L fra le due punte di una stessa coppia di argini trasversali, l'altezza h dell'acqua a valle della coppia stessa e la differenza di livello fra l'acqua a monte e quella a valle, quando si faccia astrazione degli effetti causati dalla chiamata allo sbocco e dalle cascate.

Se ora si indica con

I la pendenza del fondo AC del fiume o torrente, con

D la distanza orizzontale \overline{AN} fra le due coppie successive degli argini considerati,

si ha

NC=ID,

e quindi l'espressione

$$h+z-ID$$
 (2),

dà l'altezza \overline{AK} dell'acqua immediatamente a valle di una coppia qualunque di argini trasversali, quando sono note l'altezza h+z dell'acqua immediatamente a monte della più bassa delle due coppie successive considerate, la pendenza I del fiume o torrente fra le stesse coppie e la loro distanza D.

Se ora si considerano più coppie di argini trasversali costituenti l'arginamento di un tronco di fiume o torrente, se chiamasi prima coppia quella posta più a valle sul tronco arginato, seconda coppia quella immediatamente a monte di questa, terza coppia quella immediatamente a monte della seconda e così successivamente fino alla coppia più elevata, conoscendosi il valore dell'altezza h dell'acqua immediatamente a valle della prima coppia, la qual'altezza si può ritenere siccome eguale a quella che si verifica prima dell'arginamento, mediante la formola (1) si può calcolare il valore della differenza di livello z fra il pelo dell'acqua a monte ed il pelo dell'acqua a valle della detta prima coppia. Ponendo nell'espressione (2) i valori noti di h, di z, di I e di D, si può trovare il valore dell'altezza dell'acqua immediatamente a valle della seconda coppia. Fatto questo, applicando nuovamente la formola (1) e l'espressione (2), si possono ottenere il valore della differenza di livello z fra il pelo dell'acqua a monte ed il pelo dell'acqua a valle della seconda coppia, ed il valore dell'altezza dell'acqua immediatamente a valle della terza coppia. Continuando con questo metodo a risalire dalla prima all'ultima coppia di argini trasversali, per ciascuna di esse riesce facile avere l'altezza h dell'acqua a valle e la differenza di livello z fra il pelo

dell'acqua a monte ed il pelo dell'acqua a valle, quando però si faccia astrazione degli effetti causati dalla chiamata allo sbocco e dalle cascate. Sommando i diversi valori di h coi corrispondenti valori di z, si ottiene quell'altezza a, la quale, posta nell'equazione (1) del numero 239, permette di ottenere l'altezza y determinante a qual livello deve trovarsi la faccia superiore di ciascun argine.

Nel dedurre i valori delle differenze di livello z si può porre l'equazione (1) sotto la forma dell'equazione (6) del numero 290, onde poterla risolvere col metodo delle sostituzioni successive.

294. Argini contenitori. — Quando un sistema di argini trasversali ha per iscopo di regolarizzare il corso sfrenato e vago di un fiume o torrente, quando non si ha di mira la bonificazione di terreni, e quando il terreno insommergibile trovasi ad una grande distanza da essere necessaria un'eccessiva lunghezza negli argini trasversali, affinchè arrivino fino ad essi, convengono gli argini contenitori. Questi argini non sono altro che argini longitudinali, i quali ad una certa distanza dalle ripe del corso d'acqua di cui si vuol regolarizzare l'andamento, riuniscono le coppie successive degli argini trasversali, e che impediscono alle acque di espandersi sulle campagne adiacenti. Nella figura 306 trovasi rappresentata in proiezione orizzontale una porzione di arginatura cogli argini trasversali T uniti dagli argini contenitori A.

Gli argini contenitori sono bagnati dalle acque solamente nelle piene; l'acqua che essi sostengono si può ritenere siccome stagnante; generalmente non esigono opere di difesa, e non è necessario di coprire le loro facce verso corrente con apposite incamiciate. Le dimensioni di questi argini contenitori sono quelle stesse che convengono per gli argini longitudinali, e le loro altezze sono determinate da quelle degli argini trasversali che riuniscono.

295. Argini trasversali a difesa di un ponte. — Una coppia di argini trasversali può riuscire di grande vantaggio per la difesa di un ponte, obbligando la corrente a passare verso il mezzo della sua luce libera. I due argini si conservano per un certo tratto normali o quasi normali alla corrente, e dopo si riuniscono ai rilevati che trovansi da una parte e dall'altra del ponte, o protraendo ciascuno di essi secondo un andamento curvilineo, generalmente circolare, oppure sviluppandolo su due andamenti rettilinei facenti fra di loro un dato angolo. Queste disposizioni, in proiezione orizzontale, sono rispettivamente rappresentate nelle figure 307 e 508.

La distanza fra le due punte degli argini generalmente si prende

eguale alla distanza fra le superficie interne delle spalle del ponte. Alcune volte la prima si assume alcun poco maggiore della seconda, ed alcuni pratici hanno persino assunta quella eguale a questa, aumentata del suo decimo.

In quanto alla distanza delle estremità degli argini dalla fronte del ponte, essa deve essere tale che l'effetto degli argini sulla corrente si faccia ancora sentire al di là del ponte, ossia dev'essere tale che l'allargamento o divergenza dei fili fluidi raggiunga il suo massimo a valle del ponte stesso. Segue da ciò, che il tratto compreso fra la sezione corrispondente alle estremità degli argini e la fronte del ponte a valle, tutto al più può essere lungo 200 metri (numero 292) nei fiumi a corso non tanto rapido, e 150 metri nei torrenti con grande velocità. Gli indicati limiti superiori di 200 e di 450 metri sono però ritenuti siccome troppo grandi dalla maggior parte dei pratici, e in quasi tutti i ponti difesi a monte da una coppia di argini ortogonali, difficilmente trovasi ecceduto il limite di 100 metri nella distanza fra le estremità degli argini e le fronti dei ponti stessi. Il limite inferiore dell'indicata distanza, limite da adottarsi agli alvei ristretti e lungo i corsi d'acqua correnti su fondo resistente, può essere fissato nella lunghezza di 30 metri.

Il livello, al quale devono giungere le facce superiori di due argini traversali costituenti una coppia a difesa di un ponte, è facile determinarsi quando si conoscano, per le massime piene, l'altezza dell'acqua immediatamente a valle della coppia e la differenza di livello fra il pelo dell'acqua a monte ed il pelo dell'acqua a valle. Considerando il ponte come un ostacolo posto attraverso alla corrente ed operante su questa nella stessa maniera di una coppia di argini trasversali colle loro punte distanti fra di loro di una quantità eguale alla luce libera del ponte, si ha da considerare il caso di due coppie successive di argini trasversali, e quindi, avuta l'altezza dell'acqua appena a valle del ponte (la quale altezza si può prendere eguale a quella stessa che si verifica prima dell'esistenza del ponte medesimo), per quanto si disse nel precedente numero, riesce facile determinare, almeno con una grossolana approssimazione, la differenza di livello fra i peli dell'acqua a monte ed a valle del ponte, l'altezza dell'acqua immediatamente a valle della coppia di argini, e la differenza di livello fra i peli dell'acqua a monte ed a valle della coppia stessa. Sommando quest'ultima differenza di livello coll'altezza dell'acqua immediatamente a valle degli argini, ottiensi quell'altezza a la quale, posta nell'equazione (1) del numero 289, permette di determinare l'altezza y, alla quale devono trovarsi le facce superiori degli argini.

296. Argini longitudinali a difesa di un ponte. — Dovendosi costrurre un ponte sopra un fiume, il quale nelle piene allaga vaste estensioni di terreno, e poco importando che le acque di piena continuino ad allagare il terreno situato a monte dal ponte, purchè la corrente non venga ad aprirsi un cammino differente da quello assegnatole sotto il ponte, può convenire un sistema di argini, i quali, partendo dalle spalle del ponte con una direzione generalmente un po' divergente dalla corrente, servono a regolarizzare un tronco del fiume posto immediatamente a monte del ponte. La figura 309 rappresenta in proiezione orizzontale un argine di tal genere, con pignone conico di diametro assai maggiore della larghezza superiore dell'argine.

Questi argini non sono altro che argini longitudinali, destinati a permettere che le acque di piena, quasi allo stato di acque stagnanti, si portino alla parte posteriore, per poi riversarsi nella corrente principale a misura che le piene decrescono. Si devono essi difendere con potenti gettate verso la corrente, ed importa che le facce poste da questa parte siano coperte da robuste incamiciate. Il pignone deve presentare una robustezza a tutta prova, e le gettate di rinforzo, non che le incamiciate, devono essere continuate per una certa tratta a partire dal pignone anche dalla parte opposta alla corrente.

Alcune volte il pignone è disposto secondo un andamento curvilineo, avente la sua concavità verso la corrente, come in proiezione orizzontale appare dalla figura 310. Questo sistema di argini si riduce ad una coppia di argini trasversali, in cui la parte normale o quasi normale alla corrente è assai breve, ed in cui la parte destinata a raggiungere i rilevati posti dall'una e dall'altra parte del ponte fa colla direzione dell'asse stesso un angolo compreso fra 90° e 75°. Il pignone di questi argini potentemente si deve difendere con gettate di grossi macigni e con una robusta incamiciata. Queste opere di difesa si devono protendere su tutto il tratto con andamento curvilineo e verso la corrente, ed anche su una parte del tratto rettilineo dalla parte opposta.

Per quanto concerne alle principali dimensioni degli argini in quistione, esse si devono determinare considerando come argini longitudinali quelli di cui venne dato il tipo nella figura 509; e ritenendo come argini trasversali quelli il cui tipo si ha nella figura 510.

297. Materiale struttura degli argini. — Per la formazione degli argini conviene scegliere la migliore qualità di terra che venga somministrata dalle adiacenze, compatibilmente con le viste di una ragionata economia, avuto riguardo alle distanze del trasporto. Le terre vegetali e principalmente quelle dei prati asciutti sono le migliori. Le terre cretose sono anche buone. Le sabbie mal si confanno alla costruzione degli argini, e molto meno le terre pantanose, di cui si deve evitare l'uso. Quando un'assoluta necessità consigli l'impiego di tali terre, si supplirà al difetto della materia con le più abbondanti dimensioni e con la maggior protrazione della scarpa dell'argine.

Costruendo argini longitudinali, si procura di prendere la terra nella golena. Conviene che gli scavi per ricavare questa terra vengano fatti a scacchiera, affinchè non rimangano dei fossi, i quali nei tempi di piena possano dirigere le acque contro od anche parallelamente agli argini. Fra questi scavi e gli argini converrà lasciare una lista di terra intatta, della maggior larghezza compatibile colle altre circostanze. Analogamente, fra i detti scavi e la sponda dell'acqua corrente si lascierà un'altra lista di terra intatta, la quale faciliterà i depositi delle torbide, affinchè in breve si trovino otturati gl'indicati scavi. Per quanto spetta alle dimensioni degli scavi stessi, si deve dire che è una massima ragionevole e generalmente ricevuta quella di abbondare nelle loro dimensioni orizzontali anzichè nella profondità. Per gli argini ortogonali, le terre si prendono colle stesse precauzioni a monte degli argini da costruirsi.

Gli argini longitudinali generalmente si costruiscono incominciando a monte, giacchè, se per disavventura succedesse durante l'esecuzione qualche piena, le acque per un tratto si troverebbero già incanalate e la porzione d'argine in costruzione meno assodata, si troverebbe meno esposta al pericolo di essere smossa. Analogamente, nell'eseguimento di un sistema di argini trasversali, si incomincia dalle coppie a monte.

Il precipuo scopo che devesi procurare di raggiungere nella costruzione di un argine, sta nell'ottenere la massima coesione delle terre fra di loro e colla base. Segue da ciò, che le stagioni piovigginose sono le migliori, giacchè le terre comuni leggiermente inumidite si uniscono meglio di quelle asciutte o bagnate. È poi della massima importanza che gli argini vengano eseguiti in tali epoche da potersi assodare prima di trovarsi esposti alle azioni dell'acqua. Il fondo sul quale un argine qualunque vuol essere stabilito, deve venire rotto colla zappa ed espurgato da ogni sterpaglia. A rendere salda l'unione d'un argine al fondo naturale, giova molto la pratica di alcuni diligenti costruttori, i quali fanno aprire, lungo la base dell'argine da costruirsi, due, tre o più fossi longitudinali, come in sezione trasversale appare dalla figura 311, i quali fossi, regolarmente riempiti di terra, costituiscono quasi il fondamento dell'opera, e formano altrettante immorsature, per mezzo delle quali il solido costrutto rimane fermamente inerente al terreno sottoposto.

La terra destinata alla formazione di un argine, prima dell'impiego, deve essere rotta, purificata da ogni materia eterogenea, ed inumidita se è troppo arida; in seguito si impiega disponendola per strati orizzontali non più alti di metri 0,15. Dovendosi usare terre di diversa natura, bisogna avere l'avvertenza di porre le terre migliori alla base e sulle facce poste verso corrente, le terre sabbiose negli strati superiori e sulle facce laterali non volte alla corrente, e le terre argillose nel nucleo dove sono difese dall'eccessivo calore e dall'eccessiva umidità.

Per raggiungere il duplice intento di fare un'opera solida ed economica, conviene aver cura di non stabilire un argine sopra terreni che siano incapaci di sostenerne il peso, quali sono gli acquitrinosi ed i paludosi, o sopra terreni permeabili all'acqua, come i depositi naturali di ciottoli, ghiaie e sabbie. Presentandosi il caso di non poter evitare tali terreni, ed essendo piccola la profondità dello strato di terreno non buono, bisogna avere ricorso ad appositi ripieghi, diretti a stabilire l'argine sul terreno resistente od impermeabile. Nel caso di un fondo compressibile, basta togliere lo strato cedevole fino a scoprire il terreno sodo, e sostituire buona terra a quella tolta. Nel caso di un fondo permeabile all'acqua, l'escavazione può essere limitata ad una fossa longitudinale, praticata lungo l'asse dell'argine, spinta a tale profondità da raggiungere il fondo impermeabile e di quella minor larghezza che non rende troppo difficile lo scavo. Questa fossa verrà in seguito riempita con buona terra argillosa ben compressa, onde formare uno strato atto ad impedire le filtrazioni. Quando poi il terreno non conveniente a ricevere il peso di un argine, appartiene ad un banco di grande altezza e di si vasta estensione da non potersi impiantare fuori di esso le opere da farsi, o si ha ricorso a costose opere di fondazioni, atte a dare una solida base all'argine, oppure si tralascia di fare il lavoro, giacchè i procedimenti ordinarii condurrebbero ad ottenere un'opera precaria ed inutile.

Finalmente conviene osservare: che i resultati dedotti dalle formole state proposte per lo stabilimento degli argini, si devono soltanto ritenere siccome grossolanamente approssimati; che in pratica conviene accettarli con quella diffidenza che inspirano le formole idrauliche che non sono confermate da esperienze, e che sono ben lungi dal tener conto di tutti i fenomeni che si manifestano nel movimento dei grandi corsi d'acqua; e che soltanto possono dare alcune indicazioni utili e vantaggiose, quando un ingegnere esperto e pratico sappia convenientemente modificarli a seconda delle varie esigenze locali.

CAPITOLO VIII.

Condotte d'acqua.

298. Condotte libere e condotte forzate. — Due sono i sistemi usati per condurre le acque da un lago, da un fiume, da una sorgente a luoghi abitati ed a centri industriali. L'un sistema è quello delle condotte libere, l'altro è quello delle condotte forzate.

Una condotta libera non è altro che un canale, o tutto scoperto oppure in parte scoperto ed in parte coperto, ma in cui l'acqua, salvo in qualche breve tratto eccezionale, non esercita pressione alcuna sul cielo della condotta stessa, dove questa trovasi coperta. Le condotte libere non ammettono che pendenze piccolissime, e quindi, dovendo attraversare corsi d'acqua, bassure e terreni elevati, esigono la costruzione di costose opere d'arte, come ponticanali, acquedotti, gallerie, tombe e sifoni.

Una condotta forzata consiste in una serie di tubi esattamente congiunti l'uno all'altro, in guisa da formare un unico lungo tubo, attraverso al quale l'acqua viene a passare riempiendo completamente la sua capacità interna. Il tracciato di una condotta forzata è di gran lunga più libero di quello delle condotte libere; basta che i tubi siano posti sotto terra ad una profondità tale da essere riparati dai guasti che loro potrebbero derivare dal passaggio di veicoli, di animali e di corpi pesanti, od anche che in modo conveniente si trovino sostenuti fuori terra. Nelle condotte forzate, l'acqua, che per esse passa, conserva in gran parte l'originaria

pressione, e quindi riesce ovvio è poco costoso il farla salire a considerevoli altezze, come lo esigono le distribuzioni nelle città, ed i getti ascendenti.

In generale si può ritenere che le condotte forzate, salvo i casi in cui devono essere di molto affondate nel terreno e condurre grande quantità d'acqua, riescono più economiche e di gran lunga preferibili alle condotte libere.

Le condotte libere non essendo altro che canali manufatti, esigono lavori del genere di quelli che già vennero descritti, e per cui le norme di costruzione già vennero date in alcuni dei precedenti capitoli; e si raggirerà sulle condotte forzate quanto verrà trattato nel presente capitolo.

299. Nozioni generali sulle condotte forzate. — Un condotta d'acqua può essere semplice o composta. Si dice semplice quando è formata da una lunga serie di tubi costituenti un tubo unico, il quale può seguire un andamento rettilineo o poligonale; si chiama composta quando consta di un sistema di più tubi che, diramandosi in varie direzioni, somministrano in più punti determinati l'acqua che ricevono dal tubo principale.

L'acqua di una condotta talvolta si versa liberamente nell'aria all'estremità della condotta stessa, tal'altra invece è ricevuta entro un serbatoio oppure entro una cassa chiusa, dalla quale partono altri tubi destinati a fare la distribuzione dell'acqua arrivata nel detto serbatoio o nell'indicata cassa.

Il tubo principale di una condotta ha generalmente la sua bocca d'origine in un recipiente mantenuto costantemente pieno, affinchè il livello dell'acqua sia superiore alla detta luce, e l'ampiezza di questo recipiente è assai grande rispetto alla sezione del tubo.

Avviene ben di frequente di dover piegare le condotte in diverse direzioni, tanto nel senso planimetrico, quanto nel senso altimetrico; e queste piegature o gomiti si fanno secondo andamenti circolari.

I tubi per le condotte d'acqua generalmente sono di legno o di terra cotta, di cemento o di pietra, di ghisa o di ferro o di piombo, raramente di rame o di zinco; e suol essere circolare la loro sezione interna.

I tubi di legno, il cui uso è limitato a brevi condotte in paesi di montagna, si formano con fusti di ontano, d'olmo o di quercia, forati secondo l'asse, avvertendo che le pareti abbiano la grossezza di metri 0,03 almeno di legno perfetto, non contando cioè la corteccia e l'alburno. Questi tubi si innestano l'uno nell'altro alle

estremità, insinuando il capo più sottile dell'uno, giustamente affilato, nel capo più grosso d'un altro corrispondentemente incavato a guisa d'imbuto, e saldando l'unione a freddo con apposito mastice, il quale si adopera anche per stuccare le fenditure che, o fin da principio o col progresso del tempo si manifestano qua e là nelle pareti di queste condotte. Questo mastice, come dice il Cavalieri San-Bertolo, può essere fatto con grasso di montone e con polvere laterizia, insieme pestate queste due sostanze in un mortaio, sicchè incorporatesi perfettamente formino una pasta molle ed omogenea.

I tubi di terra cotta, facili a fabbricarsi gettando e comprimendo la terra da laterizii, ben purificata e ben mondata da materie eterogenee, in appositi stampi, e sottoponendo a cottura i pezzi che da essi si ricavano, i tubi di cemento, la cui fabbricazione si fa con un conveniente impasto di cemento e di sabbia, ed i tubi di pietra che si ottengono colla perforazione meccanica di alcune pietre, sulle quali non riesce difficile quest'operazione, si trovano in commercio con svariati diametri, e quindi in alcune circostanze possono riescire vantaggiosi nello stabilimento di condotte d'acqua. Questi tubi s'inseriscono ai loro capi l'uno nell'altro, avendo a bella posta ciascuno di essi una delle estremità per breve tratto assottigliata, affinchè possa entrare nel vano di un altro tubo. Le unioni dei varii tubi si saldano con malta idraulica o meglio con cemento di provata efficacia, oppure si può ricorrere all'impiego del mastice di Fiennes, di cui si parlò nel numero 223 del volume sui materiali da costruzione. Il Cavalieri suggerisce l'impiego di un composto formato con otto parti di calcina finissima, mescolata con una parte di tartaro di botte, e stemprato con olio di noce ovvero di lino.

I tubi di ghisa sono forse quelli il cui uso è più esteso nella formazione delle condotte d'acqua; ed anche i tubi di ferro hanno già ricevuto numerose ed importanti applicazioni. Diversi sono i sistemi di congiunzione dei tubi di ghisa e di ferro, e tutti si possono ridurre a tre tipi principali, ossia alle unioni a briglie, alle unioni ad incastramento e alle unioni a manicotto, di cui si parlerà nel numero che segue.

L'uso dei tubi di piombo nelle condotte d'acqua è generalmente limitato alle piccole diramazioni. Questi tubi hanno generalmente diametro non molto grande, e avvenendo di unire un tubo ad un altro, viene generalmente fatta la congiunzione col metodo delle saldature.

I tubi di legno, quelli di terra cotta, quelli di cemento e quelli

di pietra non si possono ottenere di grande lunghezza a motivo delle difficoltà che s'incontrano nel lavorarli. I tubi di ghisa e di ferro si possono anche avere con lunghezza di metri 2,50; ed i tubi di piombo si possono fabbricare con lunghezze assai considerevoli.

Oltre i tubi rettilinei, è necessario avere dei corti tubi incurvati, da impiegarsi negli svolti. Di più sono indispensabili i pezzi per l'allacciamento di due, tre o quattro tubi secondo altrettante direzioni diverse.

500. Unione dei tubi metallici. — L'unione a briglie sovente si impiega pei tubi di ghisa. Come in sezione longitudinale appare dalla figura 512, le due estremità di ciascun tubo sono munite di risalti; e su ognuno di questi risalti si trova un egual numero di fori uniformemente distribuiti. Dovendosi unire due tubi, si pongono l'uno a capo dell'altro; si fa in modo che i fori delle briglie si corrispondano; si guernisce l'intervallo fra le due briglie d'una ruotella di piombo, alla quale, da una parte e dall'altra, è attaccata una ruotella di cuoio; e finalmente si serra la giuntura mediante chiavarde che attraversano le briglie e le indicate ruotelle. Talvolta fra una briglia e l'altra si pone una sola ruotella di cuoio, o di feltro, o di caoutchouc.

L'unione ad incastramento è forse più usata pei tubi di ghisa. Per operare quest'unione è necessario che ciascun tubo termini con un rigonfiamento nel quale possa penetrare la piccola estremità del tubo seguente. Quest'unione, mediante una sezione longitudinale, è rappresentata nella figura 313. Il vano compreso fra la superficie interna del rigonfiamento e l'estremità che questo riceve è riempito di filacce o di una funicella incatramata per una parte della lunghezza del giunto; la parte rimanente è riempita di piombo. Per operare quest'ultimo riempimento, si chiude con argilla il giro dell'apertura, si apre un foro nella parte superiore di questa chiusura, e quindi si versa del piombo liquefatto il quale va ad occupare tutto lo spazio posto sotto l'argilla. Si toglie l'argilla, e quindi si comprime a colpi di martello l'anello di piombo colato. Talvolta si tralascia di porre il piombo, e tutto il vano compreso fra la superficie interna del rigonfiamento ed il tubo che questa riceve si riempie unicamente con filacce e con funicella incatramata; e tutto all'ingiro si copre esternamente la giuntura con mastice rosso.

Le unioni a briglie e per incastramento, quantunque abbiano ricevuto numerosissime applicazioni, pure presentano alcuni gravi inconvenienti. — Il giunto a briglie è troppo rigido, non permette alla condotta di prendere le differenti posizioni impostele dalla ineguaglianza di cedimento del sottostante terreno, non sono I.beri gli allungamenti e gli accorciamenti causati dalle variazioni di temperatura, ed in breve tempo possono manifestarsi tali guasti da rendere inservibile la condotta. — Il giunto ad incastramento ha minori inconvenienti di quello a briglie: permette le variazioni di lunghezza dei tubi per cangiamento di temperatura, ma facilmente può dar luogo a fughe, giacchè, a motivo dei movimenti longitudinali, provenienti dalle dette variazioni di lunghezza, i materiali destinati a rendere l'unione impermeabile cessano in qualche parte di aderire alle pareti fra i quali si trovano e finiscono per manifestare delle dannose sconnessioni.

Un'unione ad incastramento molto vantaggiosa, e convenientissima pei tubi di ghisa, è quella detta ad incastramento sferico, stata ideata dal signor Doré. Quest'unione, di cui in sezione longitudinale si ha la rappresentazione nella figura 314, permette che le condotte assecondino i piccoli ed ineguali cedimenti del sottostante terreno; rende facili gli allungamenti e gli accorciamenti causati da'le variazioni di temperatura; può essere eseguita senza filacce e senza funicelle incatramate, ma col semplice anello di piombo colato; lascia la possibilità dei piccoli movimenti in tutti i sensi, senza che cessi di aver luogo la primitiva impermeabilità. Per ottenere questi vantaggi basta: che la superficie interna del rigonfiamento sia costituita da due superficie sferiche, separate fra di loro da un piccolo risalto; che quella, di queste due superficie sferiche, la quale interseca la superficie interna del tubo, e che ammette per sezione l'arco ab, abbia diametro minore dell'altra la cui sezione è cd; che l'estremità di ogni tubo, la quale deve entrare nel rigonfiamento del tubo precedente, sia pure terminata da una superlicie sferica, avente per sezione l'arco of e con diametro maggiore del diametro esterno del tubo e di quello della prima superficie sferica. Quando il rigonfiamento di un tubo riceve l'estremità del tubo che ad esso deve andar unito, in grazia della picciolissima differenza dei diametri delle superficie sferiche a cui appartengono i due archi ab ed ef, la prima superficie interseca la seconda, secondo un circolo, lungo il quale esse sono quasi tangenti. Risulta da questa disposizione una chiusura abbastanza ermetica, affinchè il piombo fuso non possa attraversarla; e l'impiego della funicella incatramata diventa inutile, giacchè l'ufficio di questa funicella sta nell'impedire al piombo di colare nell'interno del tubo quando

si versa fra la superficie interna del rigonfiamento e l'estremo del tubo che esso riceve.

L'unione a manicotto, la quale, come venne adottata nei tubi dei fratelli Hermann, in sezione longitudinale secondo l'asse comune di due tubi successivi si vede rappresentata nella figura 315, è fatta mediante un corto tubo, il quale involve le estremità vicine dei due tubi da riunirsi. Per operare questa giuntura, si fa passare nel detto corto tubo o manicotto uno dei due tubi fra i quali vuolsi operare l'unione, e si avvolge alle estremità di questi della funicella incatramata. Poscia, premendoli capo a capo ed in linea retta, si fa in modo che il manicotto copra esattamente il giunto, il quale deve trovarsi in corrispondenza della sezione di mezzo del manicotto stesso. Dopo aver fortemente compressa la cordicella, si cola il piombo che deve chiudere il giunto da due parti opposte; in seguito, con ogni cura si comprime il piombo fra la superficie interna del manicotto.

Il caoutchouc, materia nè fibrosa, nè porosa, impermeabile sotto tutte le pressioni, ed inalterabile in contatto dell'acqua e degli acidi, può certamente riuscire di gran vantaggio nell'unione dei tubi per condotte d'acqua, ed infatti ha già ricevuto numerose ed importanti applicazioni. La figura 316, in sezione longitudinale secondo l'asse comune dei due tubi da riunirsi, rappresenta una giuntura, proposta dal signor Lavril, nella quale trovasi impiegato il caoutchouc come materia destinata ad ottenere l'impermeabilità del giunto. Quest'unione è un misto di quella ad incastramento e di quella a briglie; salvo che è fissa una delle due briglie, e mobile l'altra. Ogni briglia poi è munita di due orecchioni, e ciascuno di questi è attraversato da un foro, onde poter avvicinare una briglia all'altra mediante due chiavarde. Per operare l'unione s'incomincia dal porre la briglia mobile su quell'estremità di uno dei due tubi, la quale deve entrare in apposito rigonfiamento che trovasi all'estremità dell'altro; si mette in seguito la ruotella di caoutchone sopra una gola appositamente lasciata all'estremo che deve entrare nel detto rigonfiamento, e si spinge avanti l'or indicato estremo fincbè la ruotella tocca la superficie interna del rigonfiamento stesso. Ponendo le chiavarde e progressivamente serrandole fino ad ottenere la perfetta compressione della ruotella di caoutchouc, si ottiene una congiunzione la quale, oltre di potersi facilissimamente eseguire, dà tutte le garanzie di stabilità, di flessibilità e d'impermeabilità.

Un grave inconveniente che i pratici attribuiscono all'unione del signor Lavril, consiste nella forma stessa dei tubi, i quali, avendo un'estremità con rigonsiamento e con briglia armata di due orecchioni, vanno soggetti a gravi guasti nei trasporti. Il signor ingegnere Marini è l'autore di un nuovo sistema di giunti il quale, teoricamente e praticamente, riassume tutti i vantaggi che si possono ritrarre dall'impiego del caoutchouc. Questo sistema consiste nell'impiego di tubi colle loro estremità perfettamente identiche e non presentanti particolarità alcuna, di un manicotto di ghisa, di due ruotelle di caoutchouc, e di due briglie mobili. Tale unione, in sezione longitudinale secondo l'asse comune di due tubi successivi, trovasi rappresentata nella figura 317. Si effettua la giuntura facendo passare su ciascun tubo la briglia e la ruotella di caoutchouc che gli appartiene, e introducendo su uno di essi il manicotto di ghisa, il quale ha appena una larghezza di metri 0,02 a metri 0,03, avvicinando capo a capo i due tubi, coprendo la giuntura col manicotto, facendo venir contro questo le ruotelle, serrandole fra le briglie e comprimendole mediante due chiavarde attraversanti appositi orecchioni di cui sono armate le briglie stesse. Questo giunto, avendo il manicotto una larghezza assai piccola, permette facilmente ai tubi di scorrere e d'inflettersi: l'aderenza del caoutchouc contro i bordi del manicotto e contro le superficie esterne dei tubi è tale che, quantunque non siano essi muniti di piccoli risalti alle loro estremità, pure è necessario un considerevole sforzo per operarne la separazione. In questo sistema gli effetti della dilatazione e della contrazione hanno luogo a dolce fregamento sul caoutchouc, senza che avvengano fughe. Di più, la flessibilità della materia adoperata, fra la quale trovansi rinserrate le estremità dei tubi, permette di prendere, alle condotte formate con tubi così uniti, le più grandi inflessioni che in esse possono avvenire per cedimenti ineguali del sottostante terreno e per irregolarità che si possono incontrare nello scavo in cui esse vengono stabilite.

Tutte le unioni di cui si è parlato convengono pei tubi di ghisa, e resta a dirsi qualche cosa sulle unioni adatte ai tubi di ferro. Il signor Chameroy, avendo costrutto dei tubi di lamiera sottile, piegata a guisa di scorza cilindrica, inchiodata e coperta, internamente di vernice, bitume e cera, esternamente d'uno strato d'asfalto della spessezza di metri 0,01 a 0,02 e posto in opera su un involucro di corda di canape fatto sulla lamiera nell'intento di aumentare l'aderenza dell'asfalto, adottò l'unione a vite. Quest'unione, rappresentata nella figura 318 in sezione longitudinale passante per l'asse di due tubi successivi, si può annoverare fra quelle ad incastramento; ogni tubo porta ad una sua estremità un pezzo di metallo fusibile, lavorato a vite, e all'altra estremità un pezzo dello stesso metallo

colla corrispondente madrevite. Per rendere l'unione impermeabile, in a si guarnisce il giunto di canape.

Il signor Chamerov, a motivo delle difficoltà incontrate nel mettere in pratica il sistema d'unione a vite, venne nel divisamento di unire i tubi di ferro ad incastramento, come in sezione longitudinale passante per l'asse comune di due tubi successivi appare dalla figura 319. Per operare l'unione, si puliscono ben bene le estremità dei due tubi sulle superficie lungo le quali deve verificarsi la giuntura; il risalto a dell'estremità del tubo maschio si copre con quattro o cinque giri di piccola corda incatramata o passata al minio; e quindi si riempiono di filo di lino, impregnato di cera e di sego, apposite scanalature circolari che si trovano alla detta estremità del tubo maschio. Si coprono in seguito le due parti che devono venire in contatto con un composto di piombaria e di grasso di maiale, e si fa entrare l'estremo di un tubo in quello dell'altro, avendo l'avvertenza di fare in modo che siano al di sopra le chiodature longitudinali. Per far entrare i due tubi l'uno dentro l'altro, è necessario di ben presentarli in linea retta, dirigendo l'estremo di minor diametro in quello che lo deve ricevere, e di percuotere leggiermente all'estremità opposta il tubo che vuolsi porre in opera, coll'avvertenza di produrre la percussione su un pezzo di tavola o su un cerchio di legno messo contro la detta estremità. Quest'unione è del genere di quella ad incastramento per tubi di ghisa, permette gli allungamenti e gli accorciamenti a cui la condotta può andare soggetta a motivo delle variazioni di temperatura, e si comporta sufficientemente bene sotto le deformazioni causate da ineguali ma non troppo grandi cedimenti del sottostante terreno.

La giuntura stata proposta dal signor ingegnere Marini, detta giuntura universale, serve, non solo pei tubi di ghisa, ma anche per quelli di ferro. Che anzi, si può applicare assai vantaggiosamente ai tubi di piombo. Per questi si rileva un piccolo colletto attorno alle estremità sulle quali deve avere luogo l'unione; a ciascuna di queste estremità si pone una ruotella di caoutchouc, e si opera l'unione mediante due briglie con chiavarde.

Le unioni a briglie, siano esse fisse o mobili, siano esse con caoutchouc o senza, sono quelle che meglio permettono le operazioni che hanno per iscopo di rinnovare quei tubi che per qualche imprevista circostanza si trovano danneggiati ed inservibili. Le unioni ad incastramento e quelle a manicotto largo rendono invece assai difficili queste operazioni. Segue da ciò che, dovendosi fare una lunga condotta, non converrà l'impiego di soli tubi uniti ad

incastramento e con largo manicotto, ma che, a determinati intervalli, converrà intercalare qualche tubo, il quale permetta l'unione a briglie.

501. Principali resistenze dell'acqua scorrente in una condotta forzata. — Quattro sono le principali resistenze provate dall'acqua scorrente in una condotta forzata: quella d'attrito; quella dovuta ai cangiamenti bruschi di direzione; quella dovuta ai gomiti; e quella dovuta all'erogazione.

Assumendo il metro per unità di lunghezza e chiamando

L la lunghezza di una condotta,

D il suo diametro interno,

V la velocità media dell'acqua in essa scorrente, riferita al minuto secondo, ossia il quoziente della sua portata alla superficie della sua sezione retta interna,

 α e β due coefficienti numerici i cui valori si possono rispettivamente assumere, secondo Darcy, di 0,00051 e di 0,0000065,

A l'altezza di una colonna d'acqua misurante la perdita di pressione dovuta all'attrito lungo la condotta stessa, si ha

$$A = 2 \frac{L}{D} \left(\alpha + 2 \frac{\beta}{D} \right) v^2$$
 (1).

Qualora credasi di poter adottare per valore del cofficiente numerico $\alpha+2\,\frac{\beta}{D}$ un valore indipendente da D, coll'assumere per va-

lore di $\frac{\beta}{\tilde{D}}$ un valore medio sufficientemente esatto per la maggior parte dei casi pratici, l'altezza della colonna d'acqua misurante la perdita di pressione dovuta all'attrito, in modo assai semplice, si può intendere rappresentata dal valore di A' dato da

$$A' = 0.00154 \frac{L}{D} v^2$$

che conduce ancora a risultati sufficientemente esatti nei casi più frequenti e più importanti della pratica, quali sono quelli in cui il diametro D della condotta non è molto piccolo e non inferiore a metri 0,05. — Se poi, indicando con Q la portata che la condotta deve smaltire, espressa questa portata in metri cubi e riferita al minuto secondo, osservasi che si ha

$$v = \frac{4Q}{\pi D^2}$$

e se si sostituisce questo valore di v nella formola determinatrice di A', per essere π il noto rapporto 5,1415..... della circonferenza al diametro e per essere il coefficiente numerico $\frac{0,00154\times16}{\pi^2}$ prossimamente eguale ad $\frac{4}{400}$, si ottiene la semplicissima formula

$$A' = \frac{1}{400} \frac{LQ^2}{D^5}$$
 (2),

la quale nella maggior parte dei casi pratici può servire alla determinazione dell'altezza della colonna d'acqua misurante la resistenza d'attrito provata dall'acqua scorrente in una condotta di lunghezza L, di diametro interno D e destinata allo smaltimento di una portata Q.

Allorquando l'acqua di una condotta deve passare da un tronco rettilineo AB (fig. 520) ad un tronco successivo BC, il cui asse fa col prolungamento BB' dell'asse del primo un angolo CBB'= φ , si si può ritenere: che, essendo v la velocità dell'acqua nella direzione AB, essa imbocchi il tronco BC colla velocità $v\cos\varphi$ dovuta all'altezza

$$\frac{v^2\cos^2\varphi}{2g};$$

che, a motivo del brusco cangiamento di direzione in B, si verifichi la resistenza misurata in altezza d'acqua da

$$\frac{v^2}{2g} - \frac{v^2 \cos^2 \varphi}{2g} = \frac{v^2}{2g} \sin^2 \varphi;$$

e che per conseguenza in una condotta o in un tronco di condotta, in eui vi sono più cangiamenti bruschi di direzione, l'altezza B della colonna d'acqua, misurante la perdita di pressione per cangiamenti bruschi di direzione, simbolicamente possa essere rappresentata da

$$B = \frac{v^2}{2g} \Sigma \operatorname{sen}^2 \varphi \tag{5},$$

quando la somma Σ intendasi estesa a tutti i vertici della condotta o del tronco di condotta che si considera, nei quali si verificano i detti cangiamenti bruschi di direzione. Questa perdita di pressione serve per tutti i valori degli angoli φ compresi fra 0° e 90° . Per angoli φ compresi fra 90° e 480° , si ritiene come nulla la velocità dell'acqua quando essa sta per passare dal tronco AB al tronco BC, e si assumono eguali all'unità i relativi valori di sen ${}^{*}\varphi$. Il valore di g, che trovasi nell'ultima formola, rappresenta il noto valore della gravità, eguale, per Torino, a 9,8051.

Quando, come quasi sempre avviene nella pratica, il cangiamento di direzione nel passaggio di un tronco al successivo, si faccia mediante un gomito, impiegando un tubo incurvato, chiamando r il raggio e b lo sviluppo dell'asse del gomito, l'altezza d'acqua misurante la perdita di pressione che per esso ha luogo, secondo Navier, si può intendere rappresentata da

$$\left(\frac{\gamma}{r}+\delta\right)\frac{v^2}{2g}\frac{b}{r}$$
,

dove γ=0,0059 e ∂=0,0186. Se adunque in una condotta o in un tronco di condotta vi sono più gomiti, l'altezza C della colonna d'acqua la quale misura la perdita di pressione, che l'acqua prova passando per essi, si può intendere rappresentata da

$$C = \frac{v^2}{2g} \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \tag{4},$$

e la somma Σ deve essere estesa a tutti i gomiti che si trovano nella condotta o nel tronco di condotta che si considera.

Nel passaggio dell'acqua di una condotta da un tubo principale AB (fig. 321) ad una diramazione CD, ha luogo una specie di contrazione della vena fluente, la qual contrazione determina una perdita di pressione, chiamata perdita dovuta all'erogazione. In seguito ad esperienze degli ingegneri Mallet e Génieys, risulterebbe potersi mediamente valutare una tale perdita il doppio dell'altezza alla quale è dovuta la velocità dell'acqua nella diramazione CD; di maniera che, chiamando u l'or indicata velocità, la perdita in quistione sarebbe misurata dall'altezza E data da

$$E=2\frac{u^2}{2g} \tag{5}.$$

Tutte le volte che vi ha una diramazione, l'acqua è costretta a passare dal tubo principale a questa o con un cangiamento brusco di direzione o con un gomito, cosicchè la perdita di pressione misurata dall'altezza E è sempre accompagnata da un'altra perdita di pressione, che è data: da

$$\frac{v^2}{2g} \operatorname{sen}^2 \varphi$$

quando l'acqua percorre la condotta principale AC colla velocità v e quando la diramazione CD fa, col prolungamento di AC, l'angolo DCB $=\varphi$; da

$$\left(\frac{\gamma}{r} + \delta\right) \frac{v^2}{2g} \frac{b}{r}$$

quando la diramazione CD trovasi raccordata alla condotta principale AC mediante un arco circolare il cui sviluppo è b ed il cui raggio è r.

Oltre le resistenze provenienti dall'attrito, dai cangiamenti bruschi di direzione, dai gomiti e dall'erogazione, vi sarebbero ancora quelle derivanti da strozzature e da varici, cioè da restringimenti e da allargamenti, a monte ed a valle dei quali la condotta conserva la medesima sezione. Siccome però nelle condotte ben fatte non devono esistere restringimenti ed allargamenti di tale natura, non è il caso di accennare al modo di valutare tali resistenze.

Il D'Aubuisson, nel suo corso d'idraulica e nella sua teoria del movimento dell'acqua pei lunghi tubi di condotta, crede poter ammettere che non si debbano temere perdite di pressione causate da altre resistenze differenti da quelle indicate, e che quindi l'effetto delle diramazioni non si faccia sentire sul tubo primario. Egli è condotto ad una tale conseguenza dall'avere osservato che, avendo collocato due misuratori della pressione, l'uno a monte e l'altro a valle di una diramazione stabilita in un tubo primario, le altezze delle acque nei detti due misuratori della pressione si mantennero eguali, sebbene notabilmente avessero variato le quantità dell'acqua e nella diramazione e nel tubo primario. Deriva da ciò, che una presa d'acqua fatta sopra un condotto non diminuisce sensibilmente la pressione, e quindi il carico, nei punti che stanno inferiormente a quello dove ha luogo la medesima; e quindi, a suo avviso, la conseguenza, che in un sistema di tubi non si devono temere altre

resistenze oltre quelle che vennero indicate. Molti però sono i fatti i quali inducono a sospettare che le diramazioni tendono ad aumentare alcun poco la quantità totale della portata, e la ragione per cui conviene acconciarsi all'indicata conseguenza sta in ciò, che nella pratica non si può pretendere di spingere l'esattezza oltre quel ragionevole limite al quale permettono di giungere l'istesse materiali costruzioni e la tolleranza degli utenti. D'altronde poi le chiavette regolatrici, che sempre si appongono alle luci di sbocco e dove esistono le diramazioni, generalmente bastano a convenientemente regolare il sistema generale di una condotta ed a rendere di piccola entità gli inconvenienti causati da qualche trascuranza.

302. Diametro interno di una condotta principale. — Prendendo il metro per unità di lunghezza, il metro cubo per unità di portata ed il minuto secondo per unità di tempo onde riferirvi la velocità e la portata, si dicano

L la lunghezza o sviluppo ABC (fig. 322) della condotta,

a la differenza di livello $\overline{C_4C}$ fra il pelo dell'acqua nel recipiente alimentatore ed il centro C della luce d'efflusso all'estremo della condotta,

Q la portata che la condotta deve smaltire,

D il suo diametro interno,

d il diametro di un circolo eguale in area alla sezione contratta d'efflusso,

v la velocità media dell'acqua nella condotta,

μ il coefficiente di contrazione all'origine A.

Ponendo che l'altezza di carico a deve essere eguale all'altezza dovuta alla velocità d'efflusso $v\left(\frac{\mathrm{D}}{d}\right)^2$ che ha luogo in C, aumentata delle perdite di pressione A, B e C per attrito, per cangiamenti bruschi di direzione e per gomiti, ed accresciuta aucora della perdita di pressione $\frac{v^2}{2\,g}\left(\frac{1}{\mu}-1\right)^2$ causata dalla contrazione in A, risulta l'equazione

$$a = \frac{v^2}{2g} \left(\frac{D}{d}\right)^4 + A + B + C + \frac{v^2}{2g} \left(\frac{1}{\mu} - 1\right)^2$$

nella quale l'ultimo termine ha poca influenza, perchè piccola l'altezza $\frac{v^2}{2g}$ dovuta alla velocità v e frazionario il fattore $\left(\frac{1}{\mu}-1\right)^2$.

Nella pratica adunque, invece dell'ultima equazione, si può adottare quella che risulta trascurando l'indicato ultimo termine, e quindi si può porre l'equazione.

$$a = \frac{v^2}{2g} \left(\frac{D}{d}\right)^4 + A + B + C,$$

la quale si può ritenere siccome corrispondente alla realtà del fatto quando la condotta sia unita al recipiente in modo da rendere nullo o quasi nullo l'effetto della contrazione in A.

Se ora nell'ultima equazione si mettono i valori di A, di B e di C che vennero dati nel precedente numero, e se ponesi l'equazione risultante dal dire che la velocità media v vale la portata Q divisa per l'area $\frac{1}{4}\pi D^2$ della sezione interna della condotta, si ottengono le due equazioni fondamentali

$$a = \begin{bmatrix} \frac{1}{2g} \left(\frac{\mathbf{D}}{d} \right)^4 + 2 \frac{\mathbf{L}}{\mathbf{D}} \left(\alpha + 2 \frac{\beta}{\mathbf{D}} \right) \\ + \frac{1}{2g} \sum \sin^2 \varphi + \frac{1}{2g} \sum \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \end{bmatrix} v^2 \\ v = \frac{4Q}{\pi D^2}$$

$$(1),$$

nelle quali g, α , β , γ , δ e π hanno i valori che già vennero indicati e dove le lettere φ , b ed r hanno i significati che loro vennero dati nel precedente numero. Queste equazioni servono a determinare il diametro D e la velocità media v quando sono note tutte le altre quantità. — Il diametro d della sezione contratta d'efflusso è anche incognito; se però la detta bocca è identica alla sezione interna della condotta, con sufficiente approssimazione per la pratica, si può assumere $\frac{D}{d}$ =1; e se la bocca stessa è munita di una chiavetta che abbia una determinata luce d'esito, che può anche essere fatta in modo da distruggere la contrazione, si assume il diametro di questa luce per valore di d.

Chiamando M il coefficiente di $\frac{v^2}{2g}$ nella somma delle altezze corrispondenti alla velocità d'efflusso dell'acqua dalla condotta, alla

perdita di pressione per cangiamenti bruschi di direzione, alla perdita di pressione per gomiti, ed assumendo eguale all'unità il rapporto $\frac{D}{d}$ si ha,

$$\mathbf{M} = \left[\mathbf{1} + \Sigma \operatorname{sen}^{2} \varphi + \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \right] \tag{2}.$$

La prima delle equazioni (1), quando prendasi per valore dell'altezza d'acqua, misurante la resistenza d'attrito, quella di A' data dalla formola (2) del numero precedente, diventa

$$a-{
m M}\,{v^2\over 2g}={1\over 400}{{
m L}\,{
m Q}^9\over {
m D}^5},$$

ed il diametro D viene dato da

$$D = \sqrt{\frac{L Q^2}{400 \left(a - M \frac{v^2}{2g}\right)}}$$
 (3),

cui conviene aggiungere la nota relazione

$$v = \frac{4Q}{\pi D^2} \tag{4}.$$

Volendosi ora trovare il diametro interno D di una condotta, si incomincia a trovare, colla formola (2), il valore M che dipende da elementi tutti noti. Dopo, convenientemente trattando le equazioni (5) e (4), si deducono da esse il diametro D e la velocità v.

Schivando in una condotta tutti i cangiamenti bruschi di direzione col far uso di tubi ricurvi dove tali cangiamenti esisterebbero, ed osservando che la perdita di pressione per gomiti non è mai tanto grande e che quindi si può trascurare, il valore di M dato dalla formola (2) si riduce all'unità, e, per determinare il diametro D e la velocità v, risultano le formole

$$D = \sqrt{\frac{LQ^{2}}{400(a - \frac{v^{2}}{2g})}}$$

$$v = \frac{4Q}{\pi D^{2}}$$
(5)

le quali riescono di un maneggio abbastanza comodo e spedito nella pratica.

Un limite inferiore del diametro D, il quale, di poco accresciuto, basta generalmente per ottenere la voluta portata Q, si ha dalla prima delle formole (5) quando in essa si trascuri il termine $\frac{v^2}{2g}$; ed un limite superiore della velocità v si ha in quella che ricavasi dalla seconda delle formole (5) quando in essa si ponga per D l'indicato limite inferiore del diametro.

Se la condotta, invece di prendere l'acqua da un recipiente in cui il liquido è stagnante o quasi stagnante, riceve alimento da sorgenti da cui l'acqua si porta ad entrare nella condotta con una certa velocità, s'immagina l'origine della condotta stessa aperta nella parete verticale di un recipiente, nel quale il livello dell'acqua sul centro del foro d'entrata sia tale da ingenerare nell'acqua che entra nella condotta quella velocità della quale realmente trovasi dotata alla sua imboccatura.

303. Condotta portante le acque in un serbatoio o in una cassa chiusa. — Quando l'estremità di una condotta versa le sue acque in un serbatoio di grandi dimensioni DEFG (fig. 323), nel quale sono esse mantenute ad un conveniente livello costante DE, l'altezza premente a è data dalla differenza di livello $\overline{C_iD} = a'$ fra il pelo del liquido nel recipiente d'alimentazione ed il pelo del liquido nel serbatoio. Si può intèndere che la luce d'efflusso si riduca alla sezione fatta nel serbatoio stesso al livello raggiunto dall'acqua, e che per conseguenza sia nulla la velocità di efflusso. In questo caso invece delle (1) del numero precedente si hanno le equazioni

$$a' = \left[2\frac{L}{D} \left(a + 2\frac{\beta}{D} \right) + \frac{1}{2g} \Sigma \sin^2 \varphi + \frac{1}{2g} \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \right] v^2$$

$$v = \frac{4Q}{\pi D^2}$$
(1),

le quali servono alla determinazione del diametro De della velocità v. Qualora si giudichi troppo laboriosa la risoluzione di queste equazioni, si può ricorrere alle tre

$$\mathbf{M}' = \left[\Sigma \operatorname{sen}^{2} \varphi + \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \right]$$

$$\mathbf{D} = \sqrt{\frac{L Q^{2}}{400 \left(a' - \mathbf{M}' \frac{v^{2}}{2 g} \right)}}$$

$$v = \frac{4 Q}{\pi D^{2}}$$
(2),

le quali tengono il posto delle (2), (5) e (4) del numero precedente, e che, nel modo indicato per queste, servono a determinare il diametro D e la velocità v.

Schivando poi i cangiamenti bruschi di direzione, col far uso di gomiti, e trascurando le perdite di pressione da questi causate, si ha M'=0, e quindi i valori di D e di v vengono dati dalle formole

$$D = \sqrt[5]{\frac{LQ^2}{400 a'}}$$

$$v = \frac{4Q}{\pi D^2}$$
(3),

le quali sono d'uso comodo ed assai spedito nella pratica.

Invece di fare in modo che la condotta versi le sue acque in un serbatoio, si fa talvolta in guisa che essa le immetta in una cassa chiusa di distribuzione. In questo caso, fissato il livello D E, a cui si vorrebbe che l'acqua giungesse qualora invece della cassa chiusa vi fosse un serbatoio aperto, le formole (1) o le (2) o le (3) servono a determinare il diametro interno D della condotta e la velocità v. Supponendo poi che sia H I il livello a cui trovasi il coperchio orizzontale e piano della cassa di distribuzione, e che le differenze di livello $\overline{C_iD}$ e $\overline{C_iH}$, per rapporto al livello dell'acqua nel recipiente alimentatore, siano rispettivamente a' ed b, quell'altezza d'ac-

qua h', la quale misura la pressione sul coperchio HI, viene data da

$$h' = h - a'$$

e così il caso di una cassa chiusa trovasi immediatamente ridotto a quello di un serbatoio aperto.

304. Distribuzione dell'acqua di una condotta mediante serbatoi e mediante casse chiuse. - Allorquando una condotta porta le sue acque in un serbatoio, riesce facile il distribuirle fra diverse altre condotte secondarie che partono da questo. Infatti, quando si conoscono le portate parziali delle condotte secondarie (la somma delle quali portate deve essere eguale alla portata della condotta principale), e quando sia fissato il percorso ed il punto d'arrivo di ciascuna di esse, si può determinare il diametro di ognuna delle condotte secondarie, colle formole del numero 302 per quelle che devono liberamente versare nell'aria, e colle formole del numero 505 per quelle che devono alimentare un serbatoio aperto o una cassa chiusa. Il serbatoio, in cui la condotta principale porta le sue acque, è il recipiente alimentatore delle condotte secondarie, ed in questo recipiente è noto il livello raggiunto dall'acqua, per rapporto al quale si devono valutare le altezze di carico relative alle condotte secondarie.

Se una condotta principale porta le sue acque in una cassa chiusa, si suppone sostituito al coperchio HI (fig. 223) una colonna d'acqua di altezza HD, misurante la pressione sul coperchio stesso; e questo valore di HD, che nel numero precedente venne indicato con h', è la differenza fra l'ordinata nota C. H della superficie inferiore del coperchio e l'ordinata prestabilita C, D del piano orizzontale, a cui si vorrebbe che l'acqua giungesse, qualora, invece della cassa chiusa, vi fosse un serbatoio aperto. Se adunque dalla cassa chiusa devono dipartirsi più condotte secondarie destinate a distribuire, in varie direzioni e con un determinato riparto, l'acqua portata dalla condotta principale, e se una di queste condotte secondarie è quella che parte dal punto K della cassa, si supporrà, nell'istituire i calcoli relativi a questa condotta secondaria, che essa abbia la sua origine nella parete verticale di un recipiente in cui l'acqua elevasi sul centro K dell'origine stessa di una quantità h,' data da

dove c è la profondità $\overline{1K}$ del centro K dell'origine della condotta secondaria, che si considera, sotto la superficie inferiore del coperchio della cassa.

505. Diametro di una diramazione staccantesi da una condotta principale. — Essendo

h l'altezza idrostatica per rapporto alla bocca d'ingresso nella diramazione, ossia la differenza di livello fra la superficie libera dell'acqua nel recipiente alimentante la condotta principale ed il centro della detta bocca,

R la somma di tutte le resistenze sofferte dall'acqua per attrito, per cangiamenti bruschi di direzione e per gomiti, dall'origine della condotta principale fino al luogo della diramazione, espresse queste resistenze in altezze d'acqua, come venne indicato nel numero 504,

v la velocità nota dell'acqua nella condotta da cui si deve staccare la diramazione,

u la velocità incognita dell'acqua in quest'ultima,

φ l'angolo DCB (fig. 521) misurante la deviazione della diramazione CD dal prolungamento CB del tronco di condotta principale che la precede,

g il noto valore della gravità,

si ha, che l'acqua entrerà nella diramazione come se questa fosse direttamente alimentata da un recipiente posto alla sua origine in cui l'altezza dell'acqua sul centro dell'origine stessa fosse eguale a

$$h - R - \frac{v^2}{2g} \operatorname{sen}^2 \varphi - 2 \frac{u^2}{2g},$$

i termini $\frac{v^2}{2g} \sec^2 \varphi$ e 2 $\frac{u^2}{2g}$ tengono rispettivamente conto del cangiamento brusco di direzione e dell'erogazione, che hanno luogo nel sito in cui la diramazione si stacca dalla condotta principale. Indicando poi con H il complesso dei primi tre termini dell'ultima espressione, i quali termini sono noti, si ha

$$\mathbf{H} = h - \mathbf{R} - \frac{v^2}{2q} \operatorname{sen}^2 \varphi \tag{1},$$

cosicche l'altezza premente sul centro della luce d'ingresso della diramazione viene data dall'espressione

$$H-2\frac{u^2}{2q}.$$

Quando la diramazione trovasi unita alla condotta principale mediante un gomito, essendo r il raggio del gomito e b il suo sviluppo, al termine $\frac{v^2}{2\,g}\, {\rm sen}^2\, \phi$ verrà sostituito il termine $\left(\frac{\gamma}{r} + \delta\right) \frac{v^2}{2\,g} \frac{b}{r}$, cosicchè sarà

$$H = h - R - \left(\frac{\gamma}{r} + \delta\right) \frac{v^2}{2g} \frac{b}{r}$$
 (2),

dove i valori di γ e di δ sono quelli già stati indicati nel numero 301.

Ora, incominciando dal supporre che la diramazione debba liberamente versare nell'aria, dicendo i la depressione del centro della luce d'efflusso sotto il centro della luce d'origine della diramazione, e attribuendo alle lettere L, Q, D, d, A, B e C i significati che loro vennero dati nel numero 302, nell'ipotesi però che esse si riferiscano alla sola condotta costituita dalla diramazione, si ha l'equazione fondamentale

$$H - 2\frac{u^2}{2g} + i = \frac{u^2}{2g} \left(\frac{D}{d}\right)^4 + A + B + C.$$

Ponendo in quest'equazione i valori di A, di B e di C che vennero dati nel numero 301 coll'osservare di cangiare v in u, giacchè con quest'ultima lettera venne indicata la velocità media dell'acqua nella condotta, instituendo l'equazione esprimente che la velocità u vale la portata Q divisa per l'area $\frac{1}{4}\pi D^2$ della sezione interna della condotta, e trasportando nel secondo membro il termine $2\frac{u^2}{2g}$, si ottengono le equazioni

$$H+i = \begin{bmatrix} \frac{1}{2g} \left[2 + \left(\frac{\mathbf{D}}{d} \right)^4 \right] + 2 \frac{\mathbf{L}}{\mathbf{D}} \left(\alpha + 2 \frac{\beta}{\mathbf{D}} \right) \\ + \frac{1}{2g} \Sigma \sin^2 \varphi + \frac{1}{2g} \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \end{bmatrix} u^2 \\ u = \frac{4Q}{\pi D^2}$$
(3),

nelle quali g, α , β , γ , δ e π hanno i valori che già vennero indicati nel numero 301, e dove le lettere φ , b ed r, riferentisi ben inteso alla diramazione, hanno i significati che loro vennero dati nello stesso numero. Queste equazioni, precisamente come le equazioni analoghe (1) del numero 302, servono a determinare il diametro interno della diramazione e la velocità media dell'acqua in essa scorrente.

Assumendo eguale all'unità il rapporto $\frac{\mathrm{D}}{d}$ ed indicando con M il coefficiente di $\frac{u^2}{2\,g}$, che allora diventa tutto noto, si ha

$$\mathbf{M} = \left[3 + \Sigma \operatorname{sen}^{2} \varphi + \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \right] \tag{4}$$

La prima delle equazioni (3), quando prendasi per valore dell'altezza d'acqua, misurante la resistenza d'attrito, quello di A' dato dalla formola (2) del numero 301, diventa

$$H + i - M \frac{u^2}{2g} = \frac{1}{400} \frac{LQ^2}{D^5},$$

ed il diametro D viene dato da

$$D = \sqrt{\frac{LQ^2}{400 \left(H + i - M \frac{u^2}{2g}\right)}}$$
 (5),

cui conviene aggiungere la nota relazione

$$u = \frac{4Q}{\pi D^2} \tag{6}$$

Volendosi ora trovare il diametro interno D della diramazione, s'incomincia a trovare il valore di H colla formola (1) o colla formola (2), secondo che la diramazione è unita alla condotta principale con cangiamento brusco di direzione o con un gomito, quello di M

colla formola (4), e dopo, convenientemente trattando le formole (5) e (6), si deducono i valori del diametro D e della velocità u.

Avendo l'avvertenza di schivare nella diramazione tutti i cangiamenti bruschi di direzione, col far uso di gomiti e trascurando la perdita di pressione da questi causata, il valore di M si riduce eguale al numero 3, e per determinare il diametro D e la velocità u risultano le formole

$$D = \sqrt{\frac{LQ^{2}}{400 \left(H + i - 3\frac{u^{2}}{2g}\right)}}$$

$$u = \frac{4Q}{\pi D^{2}}$$
(7),

le quali riescono d'uso facile e spedito nelle pratiche applicazioni. La prima delle due ultime equazioni dà un limite inferiore del diametro interno della diramazione col trascurare il termine $3 \, \frac{u^2}{2 \, g}$, e questo limite, aumentato di qualche poco, riesce sufficiente ad ottenere la voluta portata. La seconda equazione somministra un limite superiore della velocità u quando in essa si ponga, invece di \mathbf{D} , l'accennato limite inferiore del diametro.

Se una diramazione, invece di versare liberamente nell'aria le acque che porta, deve immetterle in un recipiente in cui il livello nell'acqua deve trovarsi depresso, sotto il piano orizzontale passante pel centro della bocca d'origine della diramazione stessa, di una quantità i', si hanno le equazioni

$$H+i'=\begin{bmatrix} \frac{2}{2g}+2\frac{L}{\bar{D}}\left(\alpha+2\frac{\beta}{\bar{D}}\right) \\ +\frac{1}{2g}\Sigma \sin^{2}\varphi+\frac{1}{2g}\Sigma\left(\frac{\gamma}{r}+\delta\right)\frac{b}{r} \end{bmatrix}u^{2} \\ u=\frac{4Q}{\pi D^{2}}$$

$$(8)$$

invece delle equazioni (3); le equazioni

$$M' = \left[2 + \Sigma \operatorname{sen}^{2} \varphi + \Sigma \left(\frac{\gamma}{r} + \delta \right) \frac{b}{r} \right]$$

$$D = \sqrt{\frac{LQ^{2}}{400 \left(H + i' - M' \frac{u^{2}}{2g} \right)}}$$

$$u = \frac{4Q}{\pi D^{2}}$$

$$(9)$$

invece delle equazioni (4), (5) e (6); e finalmente le equazioni

$$D = \sqrt{\frac{\frac{LQ^2}{400 \left(H + i' - 2\frac{u^2}{2g}\right)}}{u = \frac{4Q}{\pi D^2}}}$$
 (10)

in luogo delle equazioni (7). L'uno o l'altro dei tre gruppi delle equazioni (8), (9) e (10), quando già siasi calcolato il valore di H colla formola (1) o colla formola (2), secondo che la diramazione è unita alla condotta principale senza o con gomito, può essere adottato in pratica per la determinazione del diametro interno D e della velocità u per una diramazione che immette le sue acque in un recipiente in un punto posto al di sotto del livello dell'acqua nel recipiente stesso.

Le stesse equazioni servono anche pel caso in cui la diramazione deve immettere le sue acque in una cassa chiusa, purchè assumasi per i' la profondità del livello, a cui si vorrebbe che l'acqua giungesse qualora invece della cassa chiusa vi fosse un serbatoio, sotto il piano orizzontale determinato dal centro della bocca d'origine della diramazione.

Il valore di i deve essere contato siccome negativo, quando il centro della bocca d'efflusso della diramazione, il cui sbocco ha luogo nell'aria, si trova sopra il piano orizzontale passante pel centro della bocca d'origine della diramazione stessa; un'analoga osservazione

vale pel valore di i', quando il livello dell'acqua nel serbatoio deve essere al di sopra del piano orizzontale passante pel detto centro.

506. Condotte con una distribuzione uniforme per via. — Ben di frequente accade che l'acqua di una condotta deve essere distribuita in parti prossimamente eguali, a distanze brevissime e quasi identiche. In questo caso, essendo poco meno che continua la derivazione, si può immaginare sostituita alla condotta, da cui essa ha luogo, un'altra condotta ipotetica dalla quale, mediante una fenditura praticata longitudinalmente, si estragga una quantità uniforme d'acqua.

Facendo l'ipotesi che il servizio continuo debba incominciare ad una certa distanza l_4 misurata dall'origine della condotta, che questo servizio debba durare per tutta la lunghezza restante l_2 con distribuzione uniforme della portata P e con erogazione della portata R per l'estremità, tenendo conto della sola resistenza dovuta all'attrito, giacchè si ammette che nella condotta in quistione non esistano cangiamenti bruschi di direzione, chiamando rispettivamente A_4 e A_2 le perdite di altezza premente sulle lunghezze l_4 e l_2 , e D il diametro interno dei tubi, per la parte di condotta lunga l_4 si ha

$$A_4 = \frac{1}{400} \frac{l_4 (P + R)^2}{D^5}$$
.

Se ora si indica con x la lunghezza di una parte della condotta lungo la quale deve verificarsi la distribuzione uniforme della portata P, presa questa lunghezza a partire dall'estremità inferiore, si ha

$$\frac{P}{l_2}x + R$$

che è la quantità d'acqua per essa smaltita in un minuto secondo. Ora, considerando una lunghezza elementare dx di tubo immediatamente a monte della parte lunga x, essa deve dare passaggio all'or indicata portata, e quindi la perdita dy di colonna premente che le corrisponde viene data da

$$dy = \frac{1}{400} \frac{(Px + R l_2)^2}{l_2^2 D^5} dx.$$

Integrando si ha

$$y = \frac{1}{400} \frac{1}{l_2^2 D^5} \left(\frac{1}{3} P^2 x^3 + PR l_2 x^2 + R^2 l_2^2 x \right),$$

e sostituendo A_2 ed l_2 ad y e ad x, onde avere la perdita di colonna premente per l'intiera lunghezza l_2 , risulta

$$A_2 = \frac{1}{400} \frac{l_2}{\bar{D}^5} \left(\frac{1}{3} P^2 + PR + R^2 \right).$$

Sommando poi il valore di A4 con quello di A2, ne viene che la totale perdita A di altezza premente trovasi espressa da

$$A = \frac{1}{400} \frac{l_4 \left(P + R\right)^2 + l_2 \left(\frac{1}{3}P^2 + PR + R^2\right)}{D^5}$$
(1).

Se la distribuzione uniforme della portata P deve incominciare all'origine della condotta lunga l, la quale per la sua estremità deve ancora smaltire la portata R, la perdita totale A di altezza premente immediatamente si deduce dall'equazione (1) ponendo in essa $l_i = 0$ $l_2 = l$; e quindi si ha

$$\Lambda = \frac{1}{400} \frac{l \left(\frac{1}{3} P^2 + P R + R^2\right)}{D^5}$$
 (2).

Se invece deve avere luogo soltanto una distribuzione uniforme della portata P per tutta la lunghezza l della condotta, facendo nell'ultima equazione R = 0, risulta

$$A = \frac{1}{3} \frac{1}{400} \frac{t P^2}{D^5}$$
 (3).

Le equazioni (1), (2) e (3) servono alla determinazione del diametro interno D della condotta, quando siano note tutte le altre quantità che in esse si trovano.

507. Grossezza delle pareti dei tubi delle condotte. — Essendo H l'altezza, espressa in metri, che misura la pressione in un punto qualunque di una condotta, se si moltiplica quest'altezza pel peso del metro cubo d'acqua, ossia per 1000 chilogrammi, si ottiene la pressione p, riferita al metro quadrato, che ha luogo sulla superficie interna della condotta nel detto punto, di maniera che si ha

$$p = 1000 \,\mathrm{H}$$
 (1).

Se poi, ritenendo sempre il metro per unità di lunghezza, il metro quadrato per unità di superficie ed il chilogramma per unità di peso, si chiamano

D il diametro interno della condotta,

s la grossezza dei tubi,

s' una grossezza costante per tubi della stessa materia,

n'R' il prodotto del coefficiente di rottura per trazione pel relativo coefficiente di stabilità,

vil numero di atmosfere corrispondenti alla pressione p,

A il numero di chilogrammi i quali danno la pressione di un'atmosfera su 1 metro quadrato, il qual numero si può assumere di 10330 chilogrammi,

per quanto risulta dal numero 23 del volume che tratta della resistenza dei materiali e della stabilità delle costruzioni, si ha la formola

$$s = \frac{p \, \mathbf{D}}{2 \, n' \, \mathbf{R'}} + s' \tag{2},$$

che serve a calcolare la grossezza s quando si conoscono p, D, n'R' ed s'.

Osservando poi che

$$\nu = \frac{p}{\Lambda} = \frac{H}{10.330}$$
 (3),

l'ultima formola diventa

$$s = \frac{\sqrt{A D}}{2 n' R'} + s' \tag{4},$$

la quale, a seconda dei materiali di cui la condotta vuol essere costrutta, si riduce: pei tubi di ferro a

$$s=0.00086 \text{ pD} + 0^{\text{m}}.0030$$
;

pei tubi di ghisa a

$$s = 0,00238 \nu D + 0^{m},0085;$$

pei tubi di rame laminato a

$$s=0.00147 \text{ pD} + 0^{\text{m}}.0040$$
:

pei tubi di piombo a

$$s = 0.02420 \,\mathrm{pD} + 0^{\mathrm{m}}.0050;$$

pei tubi di zinco a

$$s = 0,00620 \text{ pD} + 0^{\text{m}},0040$$
;

pei tubi di legno a

$$s=0.03250 \nu D + 0^{m}.0270;$$

pei tubi di pietre naturali a

$$s = 0,00363 \,\mathrm{pD} + 0^{\mathrm{m}},0300;$$

e pei tubi di pietre artefatte a

$$s = 0,00538 \times D + 0^{m},0400.$$

Per altezza H da porsi nelle equazioni (1) e (3), onde calcolare i valori di p e di v, conviene generalmente assumere quella che corrisponde alla massima pressione nella condotta, la qual massima pressione ha luogo quando si suppone che tutte le chiavette siano chiuse e che l'acqua sia stagnante. Segue da ciò, che per valore di H in un punto qualunque della condotta si deve assumere la pressione idrostatica che ad esso si riferisce. Se però la condotta è tale da non poter avvenire che l'acqua si trovi in essa stagnante, nell'intento di raggiungere la massima economía, si può assumere per valore di H quello che corrisponde all'acqua in movimento; cosicchè prendendo il metro per unità di lunghezza e chiamando

h l'altezza di pressione idrostatica,

R la somma delle altezze rappresentanti le perdite di pressione per cangiamenti bruschi di direzione, per gomiti e per attrito,

v la velocità media dell'acqua in un punto qualsiasi della condotta, riferita al minuto secondo, per il teorema di Bernoully si ha

$$\mathbf{H} = h - \mathbf{R} - \frac{v^2}{2g},$$

dove g è il noto valore della gravità eguale a 9,8051.

In una condotta, l'altezza H misurante la pressione in un punto

qualunque, varia generalmente da sito a sito; ma non bisogna dipendentemente da questa variazione modificare le grossezze dei tubi, perchè la spesa necessaria per ottenere tubi di grossezze differenti sarebbe assai maggiore del risparmio derivante dal minor impiego di materiale. Conviene nella pratica immaginare la condotta divisa in tanti tronchi piuttosto lunghi, prendere il massimo valore di H per ognuno di questi tronchi, e dare grossezze differenti ai tubi di questi diversi tronchi, allora soltanto che i risultamenti del calcolo di tanto differiscono da assicurare una ben intesa economia.

Per essere sicuri che una condotta trovasi in tali condizioni da poter resistere anche al colpo d'ariete, che succede quando repentinamente si arresta il corso dell'acqua al chiudersi delle chiavette, conviene ricorrere alle formole che vennero date nel numero 228 del volume sulla resistenza dei materiali e sulla stabilità delle costruzioni. Se, essendo il metro l'unità di lunghezza, il metro quadrato l'unità di superficie ed il chilogramma l'unità di peso, si dicono

D il diametro interno della condotta,

U la velocità media dell'acqua in essa scorrente,

λ la metà dell'allungamento proporzionale della circonferenza media dei tubi della condotta,

E il coefficiente d'elasticità per la materia componente i tubi,

e la grossezza del tubo affinchè non si rompa sotto l'azione del colpo d'ariete;

questa grossezza e si può dedurre dalla formola

$$e = \frac{1}{2} \frac{D}{1 + \frac{E}{E_4}} \left[-1 + \sqrt{\left(1 + \frac{v^2}{0,0098 \, \text{E} \, \lambda^2}\right) \left(1 + \frac{E}{E_4}\right)} \right],$$

in cui

$$E_{\star} = 2150000000^{c_g}$$
.

I valori di E e di λ variano colla materia di cui i tubi sono formati, e si può ritenere: che pei tubi di ferro

$$E = 120000000000$$
 $\lambda = 0,0004;$

che pei tubi di ghisa

$$E = 80000000000$$
 $\lambda = 0.0003$;

che pei tubi di piombo

$$\lambda = 0.0020$$
.

Quando la velocità v dell'acqua nella condotta non supera 1 metro, invece dell'ultima formola se ne può impiegare un'altra assai più semplice, ossia la

$$e = \frac{\mathrm{D} v^2}{0.03922.\mathrm{E} \lambda^2}$$

nella quale si porranno i valori di E e di λ sopra indicati.

In una condotta, in cui il corso dell'acqua può essere arrestato, conviene dedurre il valore di s col supporre l'acqua stagnante e calcolare quindi il valore di e. Il maggiore dei due risultati è quello che assegna il vero spessore da darsi ai tubi della condotta.

308. Disposizioni ed avvertenze per lo stabilimento di una condotta d'acqua. — In generale l'acqua che deve alimentare una condotta viene fornita, o da un lago, o da un flume, o da sorgenti naturali.

Nel primo e nel secondo caso è necessario un edifizio derivatore munito di apposite paratoie e di quant'altro si può ravvisare necessario a raggiungere lo scopo di derivare una quantità d'acqua almeno prossimamente costante. Quest'acqua, per mezzo d'un breve canale, avente generalmente sponde e fondo in muratura e sovente coperto, viene portata ad un vasto serbatoio, da cui parte il tronco principale della condotta. Questo serbatoio, nell'intento di ottenere che l'acqua si conservi in esso ad un livello costante, si può munire di uno di quegli scaricatori speciali, che prendono il nome di sfioratori, il quale semplicemente si ridurrà ad uno stramazzo, ottenuto col mantenere al livello che deve raggiungere l'acqua una parte della sponda del serbatoio, affinchè l'acqua soprabbondante la scavalchi per portarsi in apposito canale fugatore.

Quando l'acqua di una condotta viene fornita da sorgenti naturali, bisogna raccogliere le varie vene d'acqua sotterranea e guidarla nel serbatoio. Perciò usasi sovente di praticare sui fianchi delle colline, ove si hanno indizii certi di sorgenti, alcuni tagli in senso pressochè normale alla direzione delle vene sotterranee e si spingono fino a trovare uno strato impermeabile. Al basso poi di questi scavi si costruisce un cunicolo di muratura col fondo leggiermente inclinato verso il sito di scarico. Quella sponda di questi cunicoli,

la quale trovasi contro la collina, si eseguisce con muro a secco, affinchè l'acqua, attraversando gli interstizii di questo muro, possa giungere alla cunetta; l'altra sponda invece si fa con muratura impermeabile. Questi cunicoli poi si coprono con grossolane lastre di pietra disposte a semplice contatto. - Alcune volte nei piani sottostanti o per lento pendio uniti a monti od a colli, trovansi a varia profondità lame o correnti sotterranee, le quali, rinchiuse fra due strati di terra impermeabile e premute dalla colonna d'acqua che fin là si stende quasi dalle cime di quei monti o di quei colli, tendono risalire, per idrostatica pressione, fino alla superficie, e talvolta più alto, dei mentovati piani; ed effettivamente vi risalgono, se venga loro aperto l'adito per un cavo o foro più o meno profondo. Se adunque queste acque si invitano e si raccolgono alla superficie del terreno per mezzo di un cavo che si affondi ai sortumi o polle sotterranee, e se ciascuna di esse si rinchiude, per difenderla da frane od ostruzioni, in uno stretto ed alto tino di legno cerchiato, o in un pozzo, o in un tubo metallico, riesce facile portarle liberamente nel detto cavo, il quale deve essere seguito da un breve canale destinato ad immetterle nel serbatoio. I bordi superiori dei tini, dei pozzi e dei tubi devono trovarsi al livello raggiunto dall'acqua nel cavo, o almeno devono esistere a tale livello appositi fori, affinche facilmente possa defluire nel detto cavo l'acqua che sale. Talvolta si raccolgono più polle in un solo tino o in solo pozzo. Trattandosi di una condotta per acque potabili, conviene che il cavo in cui si raccolgono le acque abbia sponde in muratura, che sia coperto da apposita vôlta, che il canale destinato a portare l'acqua nel serbatoio abbia fondo e sponde di muratura e che sia coperto. Tante volte si presentano delle località, in cui i sortumi si manifestano in più siti, poco distanti l'uno dall'altro: in questi casi si fanno più cavi coi relativi tubi d'allacciamento; e le acque si portano al serbatoio o ad un canale collettore che lo precede, mediante tanti canali quanti sono i cavi.

Alla presa d'acqua per una condotta devesi usare l'avvertenza di munire di reticelle di filo di ferro la bocca d'entrata nel tronco principale, e questo per trattenere i corpi solidi che si possono presentare alla bocca della condotta stessa. Per obbligare poi l'acqua a deporre le materie in sospensione, come pure per rattenere i corpi pesanti ed in gran parte anche le sabbie, serve il serbatoio che sempre si pone all'origine della condotta. — In certi casi speciali, onde rendere l'acqua potabile, si è costretti di farla passare attraverso vasti filtri prima d'immetterla nel tubo della condotta.

Il tracciamento di una condotta è in gran parte subordinato ad esigenze locali, ed è impossibile di dare regole precise su tale argomento. L'ingegnere deve studiare accuratamente la configurazione del paese che dalla condotta deve essere attraversato, e cercare quale sia il tracciato che, mentre soddisfa allo scopo dell'opera, offre i maggiori vantaggi economici.

Nelle condotte forzate, i tubi si dispongono generalmente sotto terra a profondità non minore di un metro, onde non risentano troppo da vicino l'impressione dei carichi che calcano il sovrapposto terreno. Se le circostanze locali lo permettono, conviene stabilire queste condotte in modo che procedano con una giusta pendenza dalla loro origine fino al loro termine. Per quanto si può, bisogna evitare, almeno pei tronchi principali, di farli discendere in modo che sia poi necessario di farli risalire con una contraria inclinazione; e piuttosto conviene di svolgerne l'andamento per una via più lunga e con qualche tortuosità, onde poterli disporre con un continuato declivio, giacchè è provato che le risvolte verticali, più delle orizzontali, valgono a rallentare il moto dell'acqua. Se poi la conformazione del terreno non permette di conseguire quest'intento per via sotterranea, per qualche tratto si può sospendere la condotta sopra terra; al che possono servire nei luoghi abitati gli stessi muri delle fabbriche. L'indicata avvertenza di schivare le risvolte verticali, le quali obbligano a far discendere e quindi a far risalire con opposta pendenza una condotta, non si deve ritenere come assoluta; ed è evidente che si possono conseguire considerevoli risparmi di spese là dove la condotta deve attraversare bassure e vallate, giacchè si evita la costruzione di grandiosi acquedotti, col disporre la condotta sotto terra a guisa di sifone. Quando però il fondo di una vallata è percorso da un corso d'acqua il cui alveo sia di natura tanto instabile da non convenire il farvi passare sotto la condotta, si rende necessaria la costruzione di un acquedotto, per sopra stabilirvi i tubi. Affinchè poi la spesa di costruzione di un simile acquedotto non riesca troppo grave, conviene che abbia in lunghezza ed in altezza le sole dimensioni indispensabili pel buon regime del sottostante corso d'acqua e pei bisogni della navigazione, qualora sia esso navigabile. Quando si deve attraversare un corso d'acqua sul quale già trovasi stabilito qualche ponte, conviene osservare se non è il caso di servirsi del ponte stesso pel posamento della condotta, giacchè una tale pratica presenta generalmente dei considerevoli vantaggi economici. In ogni caso tanto i serpeggiamenti orizzontali quanto quelli verticali, che non si possono

evitare, devono essere fatti in guisa che non presentino al corso dell'acqua nè gomiti troppo serrati, nè seni curvilinei irregolari.

Lungo le condotte forzate non devono essere dimenticate alcune piccole conserve o casse chiuse, distribuite a distanze non tanto grandi e destinate a ricevere l'acqua di un tronco superiore, per versarla nel tronco inferiore. Ciascuna di queste conserve deve avere sul fondo uno sfogatoio, fornito di un tubo metallico a chiave, da potersi aprire e serrare a piacimento, per disperdere il limo e le immondezze deposte dall'acqua sul loro fondo, ed anche per vuotare il tratto inferiore della condotta. È poi lodevole la pratica di collocare queste conserve nei punti più bassi, e principalmente delle risvolte verticali, dalle quali l'acqua è obbligata a risalire, ed ove il rallentamento di velocità più che altrove agevola la deposizione delle materie dalle quali è intorbidata.

La presenza dell'aria nelle condotte contraria il movimento dell'acqua, diminuisce la portata, e talvolta può persino produrre un arresto. L'aria che in esse si trova al momento dell'immissione dell'acqua e quella che questa trascina con sè, portandosi ai vertici più elevati delle sinuosità, può essere talvolta tanto compressa, da offrire serii ostacoli al moto dell'acqua, se in qualche modo non le si dà sfogo. Per raggiungere lo scopo, si fa uso di appositi sfiatatoi, i quali possono essere di svariate forme, e che di preferenza si devono stabilire nelle località più elevate delle condotte, ove l'aria, siccome specificamente più leggiera dell'acqua, si ferma naturalmente e si accumula più che altrove. - Gli sfiatatoi della forma più semplice consistono in piccole aperture circolari fatte sul dorso della condotta, a ciascuna delle quali è saldato un lungo tubo verticale di metallo e di piccolo diametro. Conviene che questo tubo sia portato a tale altezza, che l'acqua non possa per esso sortire, e per conseguenza ad altezza maggiore di quella della colonna d'acqua misurante la pressione che ha luogo nel sito della condotta in cui lo sfiatatoio ad essa trovasi saldato. Affinchè un tale sfiatatoio si regga e venga garantito contro qualsiasi offesa, vuol essere fermato ad un'opera murale o ad un robusto ritto, e per impedire che corpi estranei, cadendo per esso, vadano ad imbarazzare la condotta, si ritorce in basso il suo sbocco. I semplici sfiatatoi, di cui si è parlato, raramente possono convenire, sia per l'altezza eccessiva che generalmente esigono, sia perchè le località per le quali passano le condotte non permettono l'imbarazzante loro stabilimento. - Nelle moderne condotte si usano gli sfiatatoi a chiavetta, oppure quelli a galleggiante. I primi consistono in piccoli e corti tubi annessi alla

condotta e muniti di una chiavetta, che si apre quando si vuol lasciar sortire l'aria e che si chiude appena si vede che per essa defluisce l'acqua. I secondi consistono in camere metalliche, poste sulla condotta e con questa comunicanti. Ciascuna di queste camere ha superiormente un'apertura chiudibile con una valvola; e le cose sono disposte in modo che, trovandosi attaccato al gambo della valvola un galleggiante, la detta apertura rimane chiusa, quando l'acqua giunge nella camera al di sopra di un dato livello; aperta, quando la tensione dell'aria, raccolta nella parte superiore della camera, facendo abbassare il livello dell'acqua, produce anche l'abbassamento del galleggiante e quindi quello dell'annessa valvola.

Nelle condotte d'acqua un po' estese sono necessarie apposite chiavette onde poter regolare il loro andamento generale e quello dei varii loro tronchi. Entro luoghi abitati, ove possono occorrere frequenti derivazioni, importa che si trovino tutte quelle disposizioni dirette ad ottenere la facile e solida congiunzione di piccoli tubi ai tubi primarii ed alle loro diramazioni; di più, non devono essere dimenticati quei particolari congegni che in diversi luoghi valgono ad ottenere derivazioni momentanee, mediante tubi che a piacimento si possono adattare e togliere dal generale sistema della condotta.

proposite tomate with the action of the second subject to the second subject to

INDICE ANALITICO

PARTE PRIMA

Costruzioni civili.

CAPITOLO I.

Nozioni generali sulle costruzioni civili.

	rincipali requisiti di qualsiasi costruzione civile	7
2.	omodità	ivi
	olidità	11
4.	ellezza	13
	CAPITOLO II.	
	Fondazioni e sotterranei.	
	ondazioni	15
6.	otterranei	ivi
7.	uri dei sotterranei	16
8.	uri dei sotterranei	18
9.	inestre e porte pei sotterranei	20
10.	avimenti dei sotterranei	23
11.	cale dei sotterranei	ivi
12.	ezzi per rendere asciutti i sotterranei	24
	CAPITOLO III.	
	Parti componenti l'ossatura di una costruzione civile al di sopra dei sotterranei.	
13.	ssunto del presente capitolo	25
14.	ozioni generali sulle grossezze da assegnarsi ai muri	26
15.	rossezze dei muri isolati e dei muri di cinta	27
16.	rossezza dei muri degli edifizii coperti solamente da tetti	29

100			
17.	Fabbriche semplici, doppie e triple in profondità; muri perimetrali,	-	10000
	muri longitudinali e muri trasversali	Pag.	30
	Grossezza dei muri delle fabbriche numeranti varii piani con solai .		31
	Grossezze dei muri delle fabbriche numeranti diversi piani con vôlte .	,	32
	Colonne		33
	Pilastri		38
	Sostegni e colonne di legno	•	ivi
	Sostegni e colonne di ghisa	,	41
	Sostegni e colonne di ferro	,	45
25.	Osservazione relativa al modo di resistere di più sostegni assieme		320
	riuniti	,	47
	Piattabande	,	ivi
	Archi	,	51
28.	Piedritti		55
29.	Operazioni preliminari alla verificazione della stabilità di un arco		57
30.	Verificazione della stabilità di un arco, nell'ipotesi che la rottura		
	tenda a manifestarsi per aprimento alla chiave verso l'intrados .	,	64
31.	Verificazione della stabilità di un arco, nell'ipotesi che la rottura tenda		
	a manifestarsi per aprimento alla chiave verso l'estrados		81
32.	Verificazione della stabilità di un arco, quando non si hanno indizii per		
	decidere se, ammessa la possibilità di rottura, sarà questa per av-		
	venire con aprimento alla chiave verso l'intrados o con aprimento		
	alla chiave verso l'estrados	,	83
33.	Verificazione della stabilità dei piedritti	,	84
34.	Determinazione delle grossezze dei piedritti	,	88
	Chiavi di ferro pel consolidamento degli archi e delle piattabande	,	90
	Radiciamenti e ligati	,	95
	CAPITOLO IV.		
	dat frodo 11.		
	Coperture per costruzioni civili.		
77	Assunto del presente capitolo	Ship!	96
31.	Assunto del presente capitolo	,	20
	the second secon		
	ARTICOLO I Tetti e tettole.		
78	Nozioni e definizioni generali	1	ivi
	Composizione geometrica dei tetti su base rettangolare, su base paral-	MARTI	101
00.	lelogrammica e su base trapezia	HIP!	97
10	Composizione geometrica dei tetti pel complesso di più corpi di fabbrica	(Mari	98
40.	Composizione geometrica dei tetti per compiesso di più corpi di labbrica	,	
41.	Indiposizione della falda dei tetti sopra basi quaiunque	,	103
42.	Inclinazione delle falde dei tetti		106
40.	Armature dei tetti	na-l	108
	Carichi permanente ed accidentale, gravitanti sulle armature dei tetti.		112
40.	Parti di cui importa calcolare le dimensioni nel dare il progetto di un		110
	tetto		116
46.	Grossezze dei tavolati per tetti	,	ivi
-	Dimensioni dei listelli orizzontali	resort.	123
	Dimensioni dei panconcelli	1	124
49	Dimensioni degli arcarecci	,	126

50	Dimensioni dei puntoni	Pag.	127
51.	Dimensioni delle incavallature		152
52.	Tettoie formate colle ordinarie incavallature di legno		156
53.	Tettoie con incavallature metalliche		157
54.	Dimensioni degli arcarecci per tettoie con incavallature metalliche		142
55.	Dimensioni delle incavallature metalliche	,	150
56.	Influenza delle variazioni di temperatura sui diversi pezzi delle inca-		
	vallature e conseguenze che da essa derivano		156
57.	Tettoie con centine		159
58.	Determinazione approssimativa della sezione retta e del peso di una		
	centina		160
59.	Dimensioni delle centine il cui asse è un arco circolare		163
60.	Tavola numerica per la determinazione della spinta orizzontale di una		
	centina con asse circolare e caricata d'un peso uniformemente di-		
	stribuito sulla sua lunghezza		174
61.	Cenno di altri metodi che si possono seguire nella determinazione delle		
	dimensioni delle centine		176
62.	Piedritti delle tettoie		178
63.	Collocamento in opera delle incavallature e delle centine per tettoie .	100	ivi
	ARTICOLO II Solai.	118	
64	Nozioni generali sui solai	1107	100
65	Carichi permanente ed accidentale gravitanti sui solai	THE STATE OF	ini
66.	Dimensioni delle principali parti di un solaio		191
	The same printed and an an account of the same of the		101
	APTICOLO III		
	ARTICOLO III. — Voite.		
07	Use delle sAte nelle sestenzioni siglii		
07.	Uso delle vôlte nelle costruzioni civili	e iti	
	Dimensioni delle vôlte per costruzioni civili		189
65.	mento		101
70	Carichi permanente ed accidentale, gravitanti sulle vôlte per costruzioni		191
****	civili	night)	192
71	Verificazione della stabilità delle vôlte a padiglione		ivi
	Verificazione della stabilità delle vôlte a botte con teste di padiglione.		194
	Verificazione della stabilità delle vôlte a schifo e delle vôlte a padiglione	2	104
, 0	sopra schifo	1	195
74	Verificazione della stabilità delle vôlte a vela su pianta rettangolare	III S	196
	Verificazione della stabilità delle vôlte a crociera su pianta rettangolare	1760	198
	Verificazione della stabilità delle volte a bacino		201
	. Osservazioni sugli esposti metodi per verificare la stabilità delle vôlte		202
	Verificazione della stabilità dei piedritti		in
	. Chiavi di ferro pel consolidamento delle vôlte		204
	Cerchiature di ferro pel consolidamento delle vôlte a bacino		205

CAPITOLO V.

Portoni.	portoncini	androni,	atrii.	portici	0	scale.

81.	Portoni e portoncini	207
82.	Androni, atrii e portici	208
83,	Scale	209
84.	Distinzione delle scale per rapporto alla loro pianta, e dimensioni di	
	questa	211
	Scale in cui i gradini trovano appoggio su due muri paralleli	214
86	Scale a shalzo	217
87.	Scale a vôlta	218
88.	Cenno sulle scale di legno e sulle scale di ghisa	221
	CAPITOLO VI.	
	CALIFOLO VI.	
	Altezze, interassi, finestre ed altre aperture.	
00	Ripartizione delle altezze	223
00.	Dipartizione delli interessi	224
00.	Ripartizione degli interassi	224
00	Osservazioni	227
Jú.	Osservazioni	22.6
	was a second of the second of	
	CAPITOLO VII.	
	A STATE OF THE PARTY OF THE PAR	
	Riscaldamento, ventilazione e salubrità degli abitati.	
	near Affectionness in the tiller will emberter's Art, bring the Himmelian	
93.	Apparecchi pel riscaldamento degli abitati	227
	Camini	iv
95.	Stufe	239
96.	Caloriferi ad aria calda	233
97.	Caloriferi a vapore	234
	Caloriferi ad aequa calda	233
	Caloriferi ad acqua ed a vapore	236
108.	Conclusioni sui diversi sistemi di riscaldamento	iv
101.	Ventilazione	240
	Cenno di alcune disposizioni per ottenere una conveniente ventilazione	245
103.	Disinfezione degli abitati	241

PARTE SECONDA

Costruzioni stradali.

CAPITOLO I.

Nozioni generali.

104.	Strade e loro distinzione	243
105.	Limiti di pendenza delle strade	250
106.	Norme per la distribuzione delle pendenze	251
	Limiti di lunghezza dei raggi delle risvolte	252
108.	Considerazioni generali sulla determinazione della direzione di una	
	strada	ivi
109.	Considerazioni generali sulla determinazione del punto più basso di una	
	catena di moutagne	253
110.	Profili trasversali	256
111.	Norme per lo studio del progetto di una strada	261
112.	Argomenti da trattarsi nel seguito di questa seconda parte	265
	The state of the s	
	CAPITOLO II.	
	CAPITOLO II.	
	Muri di sostegno.	1100
	Scopo dei muri di sostegno	265
	Principali tipi di muri di sostegno	266
115.	Equazioni per dedurre una delle dimensioni della sezione trasversale di	1
	un muro di sostegno	267
116.	Muri pieni con scarpa esterna	269
117.	Muri pieni con scarpa interna	274
118.	Muri pieni con riseghe	275
119.	Muri pieni con profili curvi	278
120.	Muri con contrafforti interni	282
121.	Muri di sostegno con contrafforti ed archi di scarico	290
122.	Muri di sostegno con contrafforti esterni	294
	Conclusione sulla convenienza relativa dei diversi tipi di muri di so-	
	stegno	298
124.	Avvertenze da aversi nella costruzione dei muri di sostegno	300
	Cenno di alcuni muri di sostegno stati impiegati in alcune eccezionali	
	circostanze	301
		21

CAPITOLO III.

Gallerie.

	Gallerie per strade e condizioni principali alle quali devono soddisfare	Pag.	503
127.	Sezione retta della superficie interna di una galleria e sue principali di		304
	mensioni		304
	Rivestimenti delle gallerie		508
	Condotti per lo scolo delle acque		310
	Porzi delle gallerie		311
	Nicchie		312
			315
133,	Gallerie a cielo scoperto		310
	CAPITOLO IV.		
	and the second reportation of the second and a second		
	Ponti.		
	Allowed Sections of the product of the party		
	ARTICOLO I Nezioni generali.		
134	Ponti e loro distinzione relativamente ai materiali impiegati nel co-		
	struirli		317
	Generale conformazione dei ponti		ivi
136	Condizioni generali pel buono stabilimento di un ponte		318
137.	Operazioni preliminari per lo studio di un progetto di ponte		ivi
158	Determinazione della luce libera di un ponte ,		321
139.	Innalzamento del livello dell'acqua, causato dalla costruzione di un ponte		326
140.	Asse di un ponte, assi delle luci. Distinzione dei ponti in retti ed		
	obliqui	*	327
141.	Fondazioni dei ponti		ivi
	ARTICOLO II. — Ponti di struttura murale.		
	And the second of the second o		
	Costituzione generale dei ponti di struttura murale		336
	Pile, rostri e cappucci		ivi
	Spalle dei ponti, muri di risvolto e muri d'ala	,	337
	Muri andatori, timpani, cornici, parapetti ed occhi di ponte		339
	Cappa, sfogatoi delle acque che cadono sopra un ponte e marciapiedi .	,	ivi
	. Suolo stradale sui ponti di struttura murale		341
148	Larghezza dei ponti di struttura murale, numero delle loro arcate, loro		***
-	corde e loro saette		342
	Grossezza delle arcate dei ponti		344
150	. Carichi permanente ed accidentale, gravitanti sulle arcate dei ponti di		710
	struttura murale	1	346
151	. Verificazione della stabilità delle arcate		348
152	. Formole di Léveillé per trovare la grossezza delle spalle dei ponti di		351
	Struttura murale		359

154.	Grossezza delle spalle dei ponti di struttura murale	Pag.	356
155.	Dimensioni dei muri di risvolto e dei muri d'ala		363
156.	Dimensioni dei muri di risvolto e dei muri d'ala		365
157.	Pile-spalle		369
100.	Superacie e ninee dei giunti nei ponti retti		370
159.	Penti con strombature		371
160.	Generazione delle superficie d'intrados e d'estrados delle strombature		372
161.	Altro metodo per la generazione delle superficie d'intrados e d'estrados		
	delle strombature		576
162.	Superficie dei giunti in un'arcata con strombature		379
163.	Ponti a torri		380
161.	Ponti obliqui, ed inconveniente che si presenta, quando i giunti delle		
700	loro arcate si di pongono come quelli delle arcate dei ponti retti .		383
165.	Condizioni alle quali devono soddisfare le arcate dei ponti obliqui	,	385
166.	Obliquità di un ponte obliquo; apparecchio delle sue arcate		ivi
167.	Arcata obliqua costituita da più archi per passaggio obliquo	*:	386
168.	Arcata obliqua costituita da una serie di archi retti	-	387
169.	Apparecchio elicoidale per la costruzione delle arcate oblique		389
170.	Dati del problema e calcolo di alcuni elementi principali		390
171.	Sviluppo della superficie d'intrados		392
	Tracciamento delle linee dei giunti longitudinali e delle linee dei		
Ker	giunti trasversali sullo sviluppo delta superficie d'intrados	1	394
173	Sviluppo della superficie d'estrados	199	397
	Tracciamento delle linee dei giunti longitudinali e delle linee dei giunti		
MIL	trasversali sullo sviluppo della superficie d'estrados	injii.	399
175	Scomposizione delle superficie d'intrados e d'estrados nelle facce svi-		000
	Iuppabili dei diversi cunei componenti un'arcata obliqua	4	405
176	Intersezioni delle superficie dei giunti longitudinali coi piani di testa .		408
	Corona di testa di un'arcata obtiqua, e curve su essa determinate dalle		
	superficie dei giunti longitudinali		416
170	Angoli che le tangenti alle intersezioni dei giunti longitudinali coi piani	mile in	310
110.			140
.70	di testa fanno colle tangenti alle rispettive eliche direttrici		418
	Cunei componenti un'arcata obliqua e cuscinetti d'imposta Apparecchio elicoidale applicato solamente alle estremita di un'arcata	1112	421
180.			
	obliqua		426
181.	Arcate oblique di struttura laterizia	*	
	Costruzione delle arcate oblique		430
	Brevi cenni su altri apparecchi per la costruzione delle arcate oblique .	nie!	434
184.	Maniere di togliere gli spigoli degli angoli acuti nelle arcate obtique e		
	nei loro piedritti	hist.	437
	the control of the state of the		
	ARTICOLO III Ponti di legname.		
10+	Detected that disposit di bername		***
	Principali tipi di ponti di legname		441
100.	Palate	4	101
2000		Hije	444
188.	Testate di leguame	11.0	445
189.	Vice a part la determination della dispersional del dispe	11	ivi
190.	Norme per la determinazione delle dimensioni dei diversi pezzi dei		100
	ponti con incavallature rette		448

		Pag.	453
192.	Come si considerano i sovraccarichi per rapporto alle travi longitudi-		100000
	nali dei ponti a travate rettilinee	1	457
195.	Come si considerano i sovraccarichi per rapporto alle travi trasversali		
101	dei ponti a travate rettilinee		459
194.	Determinazione della grossezza del tavolato, oppure della distanza alla		
100	quale si devono collocare le travi destinate a sopportarlo		463
170.	Determinazione di una dimensione della sezione retta delle longarine		100
400	o della distauza alla quale si devono collocare le travi trasversali .		ivi
130.	Determinazione di una dimensione della sezione retta delle travi tras-		100
107	versali		468
101.	dinale di legno a parete reticolata		471
198	Determinazione di alcune principali dimensioni delle travi longitudinali	1	***
1	principali dei ponti in legno a travate rettilinee e dei pezzi più im-		*
B	portanti di una palata a cavalletto		476
199.	P		486
200.	Norme per la determinazione di alcune principali dimensioni dei ponti		***
Just.	con archi di legname		487
201.	Tavola numerica per la determinazione della spinta orizzontale di un		an'
	arco con asse circolare e caricato d'un peso uniformemente distri-		
	buito sulla sua corda		492
202.	Impiego degli archi equilibrati nella costruzione dei ponti con archi		
2	di legname		494
203.	Piedritti dei ponti con archi di legname		496
	transfer transfer means an experience of the contract of the c		
	ARTICOLO IV. — Ponti metallici.		
	ARTICOLO IV. — Ponti metallici.	or c	
204.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497
204.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497
204. 205.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499
204. 205. 206.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500
204. 205. 206. 207.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506
204. 205. 206. 207. 208.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506 507
204. 205. 206. 207. 208. 209.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506
204. 205. 206. 207. 208. 209.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506 507 517
204. 205. 206. 207. 208. 209. 210.	Principali sistemi di ponti metallici		497 499 500 506 507
204. 205. 206. 207. 208. 209. 210.	Principali sistemi di ponti metallici		497 499 500 506 507 517
204. 205. 206. 207. 208. 209. 210.	Principali sistemi di ponti metallici		497 499 500 506 507 517 520
204. 205. 206. 207. 208. 209. 210. 211.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506 507 517
204. 205. 206. 207. 208. 209. 210. 211.	ARTICOLO IV. — Ponti metallici. Principali sistemi di ponti metallici		497 499 500 506 507 517 520
204. 205. 206. 207. 208. 209. 210. 211. 212. 213.	Principali sistemi di ponti metallici Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata Principali tipi di ponti a travate rettilinee di piccola portata Ponti a travate rettilinee di piccola portata con coperta pesante Principali tipi di ponti a travate rettilinee di grande portata Paragone fra le travi a traliccio e le travi a parete verticale piena Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee Determinazione di alcune principali dimensioni delle travi longitudinali secondarie Determinazione approssimativa del peso proprio di una trave longitudinale principale		497 499 500 506 507 517 520 523 527
204. 205. 206. 207. 208. 209. 210. 211. 212. 213.	Principali sistemi di ponti metallici. Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata. Principali tipi di ponti a travate rettilinee di piccola portata. Ponti a travate rettilinee di piccola portata con coperta pesante. Principali tipi di ponti a travate rettilinee di grande portata. Paragone fra le travi a traliccio e le travi a parete verticale piena. Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee. Determinazione di alcune principali dimensioni delle travi longitudinali secondarie. Determinazione approssimativa del peso proprio di una trave longitudinale principale. Peterminazione di alcune dimensioni delle travi longitudinale principale.		497 499 500 506 507 517 520 523 527
204. 205. 206. 207. 208. 209. 210. 211. 212. 213.	Principali sistemi di ponti metallici . Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata . Principali tipi di ponti a travate rettilinee di piccola portata . Ponti a travate rettilinee di piccola portata con coperta pesante . Principali tipi di ponti a travate rettilinee di grande portata . Paragone fra le travi a traliccio e le travi a parete verticale piena . Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee . Determinazione di alcune principali dimensioni delle travi longitudinali secondarie . Determinazione di alcune principali dimensioni delle travi trasversali Determinazione approssimativa del peso proprio di una trave longitudinale principale . Peterminazione di alcune dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti solamente da		497 499 500 506 507 517 520 523 527
204. 205. 206. 207. 208. 209. 210. 211. 212. 213.	Principali sistemi di ponti metallici. Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata. Principali tipi di ponti a travate rettilinee di piccola portata. Ponti a travate rettilinee di piccola portata con coperta pesante. Principali tipi di ponti a travate rettilinee di grande portata. Paragone fra le travi a traliccio e le travi a parete verticale piena. Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee. Determinazione di alcune principali dimensioni delle travi longitudinali secondarie. Determinazione approssimativa del peso proprio di una trave longitudinale principale. Peterminazione di alcune dimensioni delle travi longitudinale principale.		497 499 500 506 507 517 520 523 527 530
204. 205. 206. 207. 208. 209. 210. 211. 212. 213.	Principali sistemi di ponti metallici Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata Principali tipi di ponti a travate rettilinee di piccola portata Ponti a travate rettilinee di piccola portata con coperta pesante Principali tipi di ponti a travate rettilinee di grande portata Paragone fra le travi a traliccio e le travi a parete verticale piena Carichi permanente ed accidentale, gravitanti sulle travi dei ponti in ferro a travate rettilinee Determinazione di alcune principali dimensioni delle travi longitudinali secondarie Determinazione approssimativa del peso proprio di una trave longitudinale principale Peterminazione di alcune dimensioni delle travi longitudinale principale Peterminazione di alcune dimensioni delle travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti solamente da due appoggi Stato della quistione relativa al calcolo della resistenza e delle dimen-		497 499 500 506 507 517 520 523 527 530
204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214.	Principali sistemi di ponti metallici . Considerazioni principali sui ponti a travate rettilinee, e loro distinzione in ponti di piccola e di grande portata		497 499 500 506 507 517 520 523 527 530

	delle travi longitudinali principali dei ponti in terro a travate retti-		
	linee, sostenuti da più di due appoggi	Pag.	547
217.	Riassunto di alcune nozioni teoriche relative ai momenti inflettenti nei		
	solidi rettilinei, orizzontalmente collocati su più appoggi e caricati di		
	pesi uniformemente distribuiti sulle diverse travate		ivi
218.	Principio della sovrapposizione degli effetti, applicato alla flessione di		
	una trave longitudinale principale di ponte a travate rettilinee		549
910		The same	550
	Segui di momenti inflettenti su travate cariche e su travate scariche .	11.	500
220.	Punti di concorso pel sovraccarico sulle travate di sinistra e punti di		
-Cita	concorso pel sovracearico sulle travate di destra	(*)	551
221.	Inviluppo dei momenti inflettenti positivi, inviluppo dei momenti in-		
	flettenti negativi ed inviluppo utile		554
222.	Proprietà dei punti in cui la parabola del carico permanente taglia		
	l'asse della trave		555
223.	Determinazione e tracciamento dell'inviluppo utile dei momenti inflet-		
-	tenti		ivi
994	Operazione per la determinazione e pel tracciamento dell'inviluppo		
224.			***
004	utile dei momenti inflettenti in un caso particolare		557
	Semplificazione del problema nella maggior parte dei casi pratici .		574
226.	Determinazione delle lamiere componenti le tavole orizzontali delle		
	travi longitudinali principali		576
227.	Riassunto di alcune nozioni teoriche relative agli sforzi di taglio nelle		
	travi orizzontalmente collocate su più appoggi e caricate di pesi		
	uniformemente distribuiti sulle diverse travate		578
228	Principio della sovrapposizione degli effetti, applicato allo scorrimento		
	trasversale provecato in una trave longitudinale principale di ponte		
		2207	579
200	a travate rettilinee		
	Segni degli sforzi di taglio su travate cariche e su travate scariche		580
230.	Inviluppo degli sforzi di taglio positivi, inviluppo degli sforzi di taglio		
	negativi ed inviluppo utile		581
231.	Proprietà del punto in cui la retta del carico permanente taglia l'asse		
	della trave		582
232.	Determinazione e tracciamento dell'inviluppo utile degli sforzi di taglio		ivi
233.	Operazioni per la determinazione e pel tracciamento dell'inviluppo		
	utile degli sforzi di taglio in un caso particolare		583
934	Determinazione delle pareti verticali delle travi longitudinali principali	,	596
	Determinazione delle sezioni orizzontali della travi longitudinali prin-		
200.	cipali in corrispondenza degli appoggi	1	598
070		100	
	Piedritti dei ponti in ferro a travate rettilinee		600
237.	Osservazioni sulla convenienza relativa delle travi continue e delle		Lateral .
	travi discontinue		602
	Collocamento dei ponti in ferro a travate rettilinee sui loro appoggi .		603
	Ponti con archi metallici		605
240.	Paragone fra i ponti di ferro con archi ed i ponti a travate rettilinee .		609
	Timpani dei ponti con archi metalfici	100	612
	Cenni sulla determinazione di alcune principali dimensioni dei ponti		
and the	con archi metallici	IL.	tvi
9/2	Paragone fra i ponti con archi di ferro ed i ponti con archi di ghisa .	0,	614
			616
244.	Piedritti dei ponti con archi metallici		100
245.	Collocamento degli archi dei ponti metallici sui loro appoggi		ivi

CAPITOLO V.

Viadotti.

246.	Viadotti, loro scopo e loro struttura	Pag.	617
247.	Viadotti di struttura murale con un sol ordine di arcate		618
	Viadotti di struttura murale con più ordini di arcate		620
	Viadotti metallici		622
250.	Cenno sulla determinazione delle dimensioni delle principali parti		
	delle pile metalliche		626
251.	Cenno sul collocamento in opera dei grandi viadotti con pile metal-		
	liche		629
	Property to the second of the		
	PARTE TERZA		
	Costruzioni idrauliche.		
	Costi uzioni Turaunene.		
	Arrange Control of the Control of th		
			7.
	CAPITOLO 1.		
	Nozioni generali sui canali manufatti.		
252.	Canali manufatti e loro distinzione	ne.	633
	Limiti di pendenza dei canali	101	634
	Norme per la distribuzione delle pendenze	,	ivi
255.	Considerazioni generali sulla determinazione della direzione di un		
	canale		635
256.	Profili trasversali dei canali e dati relativi a questi profili	inti_	636
257.	Relazioni fra la portata di un canale, la sua pendenza e gli elementi		
	determinanti la sua sezione retta		638
258.	Norme per le studio del progetto di un canale		642
259.	Principali opere d'arte necessarie al compimento di un canale		643
	CAPITOLO II.		
	Dighe.		
260.	Dighe e loro uffizio	ed.	644
	Dighe per l'alimentazione di canali	10	ivi
	Dighe di struttura murale	19.	646
	Dighe di legname	4	647
	Altama dalla diaba		649

CAPITOLO III.

Derivatori e scaricatori.

265. Deriva	atori	650
266. Deriva	atori per grandi canali	652
267. Luce !	libera dei derivatori	655
	ratori	657
269. Scario	catori con porte marinières	658
270. Posizi	one rispettiva di uno scaricatore e di un derivatore; fondazioni	2
di d	questi edifizii	660
271. Cenno	sulla determinazione della luce libera degli scaricatori	661
	CAPITOLO IV.	
TOTAL STATE	Ponti-canali ed acquedotti.	
	AND THE PERSON OF THE PERSON O	
272. Ponti-	canali	662
	edotti	665
	e per convenientemente regolare le dimensioni delle diverse parti	
	ponti-canali e degli acquedotti	ili
11 1	CAPITOLO V.	
	The state of the s	
	Sifoni e tombe.	
275, Sifoni,	, tombe e loro uffizii	666
276. Sifoni	e tombe di struttura murale	667
277. Deterr	minazione della sezione retta della tromba e della minima sezione	
ori	zzontale dei pezzi dei stfoni	669
	minazione pratica della colonna premente, cui corrisponde la mas-	
	na pressione sulle pareti delle trombe	671
279. Deterr	minazione delle pressioni che tendono a produrre la rottura delle	
	mbe dei sifoni e delle tombe	673
280. Norm	e per la determinazione delle dimensioni delle varie parti di un	
1,500	one e di una tomba	677
281. Sifoni	e tombe con tubi metallici	681
	CAPITOLO VI.	
	Sostegni e conche.	
282. Sostes	gni e loro ufficio	683
	principali dei sostegni	684
	e per determinare le principali dimensioni dei sostegni	688
	a della caduta delle conche e sostegni accollati	692

CAPITOLO VII.

Argini.

286.	Argini e loro distinzione in argini longitudinali ed in argini tras-	0	207
	versali		093
	Opportunità degli arginamenti		ivi
	Scelta del sistema di arginamento		694
	Argini longitudinali		695
	Distanza ed altezza degli argini longitudinali		699
291.	Grossezza da assegnarsi agli argini longitudinali		702
292.	Argini traversali		705
293.	Relazioni fra gli elementi principali di un sistema di argini trasversal		711
294	Argini contenitori		713
295.	Argini trasversali a difesa di un ponte		ivi
296.	Argini longitudinali a difesa di un ponte		715
297.	Materiale struttura degli argini		716
7			
1.5	CAPITOLO VIII.		
	min hiteriori et especial de l'altrigue par maneri et appres		
4)	Condotte d'acqua.		
298.	Condotte libere e condotte forzate		718
299.	Nozioni generali sulle condotte forzate		719
300.	Unione dei tubi metallici		721
	Principali resistenze dell'acqua scorrente in una condotta forzata .		726
	Diametro interno di una condotta principale		730
303.	Condotta portante le acque in un serbatoio o in una cassa chiusa.		733
304.	Distribuzione dell'acqua di una condotta mediante serbatoi e me-		
	diante casse chiuse		735
305.	Diametro di una diramazione staccantesi da una condotta principale		736
	Condotta con una distribuzione uniforme per via		741
	Grossezza delle pareti dei tubi delle condotte		742
	Disposizioni ed avvertenze per lo stabilimento di una condotta d'acqua		746

ERRATA-CORRIGE

Pagina	linea	invece di	leggasi
18	25	fra 4 e 7	fra 4 e 6
18	28	fra 7 ed 8	fra 6 ed 8
35	10	$dei \frac{2}{3}$	di poco più di $\frac{1}{3}$
90	27	e la (6)	o la (6)
91	1	fianchi,	fianchi.
93	20	si determina	si fa
120	24	comprimente	comprimenti
129	29	$\overline{hi} = \overline{ab}$	$\overline{hi} = \overline{ad}$
138	23	inchiodate.	inchiodati.
164	26	b sen φ cos φ	6 sen φ cos φ
165	25	positiva,	positiva
232	1	dali'altra.	dall'altro.
233	11	ossia	ed è di
260	9	0,45	0,50
261	5	regole;	regole:
	24	l'esterno	l'interno
264	31	questa linea	questo piano
287	16	dell'asse	dall'asse
292	14	V= a	V _m a
319	41	$(\overline{a'}-a)$	(a-a')
323	9	problem adi	problema di
325		l'equazione (4)	l'equazione (2)
342	6	В	V
367	18	dal dedurre	nel dedurre
555	5	ponti	punti
557	16	operazione	operazioni
634	34	al canali	ai canali
640	25	$vu = u + 6 \sqrt{\frac{\Omega}{\chi} 1}$	$v = u + 6 \sqrt{\frac{\Omega}{\chi} 1}$
661	24	la larghezza	la lunghezza

MARKET THE PARTY

Accept

the state of the s		
	- Inclinitation	
The paster opening		
		210

INDICE ALFABETICO

Costruzioni civili, stradali ed idrauliche.

A

Acquedotti e ponti-ranali, da pag. 662 a 666 e da n. 272 a 274.

Altezza e distanza degli argini longitudinali, pag. 699 n. 290.

Altezza delle dighe, pag. 648 n. 264. Altezze dei piani degli edifizi, pag. 223 n. 89.

Alzata, pag. 23 n. 11 e pag. 209 n. 83. Androni, pag. 208 n. 82.

Angoli che le tangenti alle intersezioni dei giunti longitudinali coi piani di testa fanno colle tangenti alle rispettive eliche direttrici nelle arcate oblique costrutte col sistema elicoidale, pag. 418 n. 178.

Apparecchio di un'arcata obliqua, pag. 385 n. 166.

Apparecchio elicoidale per la costruzione delle arcate oblique, pag. 389 n. 169.

Apparecchio elicoidale applicato solamente alle estremità di un'arcata obliqua, pag. 426 n. 180.

Apparecchio ortogonale parallelo per la costruzione delle arcate oblique, pag. 454 n. 185.

Apparecchio ortogonale convergente per la costruzione delle arcate oblique, pag. 434 n. 183.

Apparecchio cicloidale per la costruzione delle arcate oblique, pag. 435 n. 183.

Apparecchio per la costruzione di arcate oblique, nel quale, sulla superficie d'intrados, sono eliche le linee dei giunti longitudinali ed archi paralleli ai piani di testa le linee dei giunti trasversali, pag. 437 n. 183.

Arcarecci dei tetti, pag. 126 n. 49.

Arcarecci per tettoie con incavallature metalliche, pag. 142 n. 54.

Arcata obliqua costituita da più archi per passaggio obliquo, pag. 386 n. 167.

Arcata obliqua costituita da una serie di archi retti, pag. 387 n. 168.

Arcate oblique in pietra da taglio, da pag. 389 a 427 e da n. 169 a 180. Arcate oblique di struttura laterizia, pag. 427 n. 181.

Argini, da pag. 693 a 718 e da n. 286

Argini longitudinali, pag. 695 n. 289. Argini trasversali, pag. 705 n. 292.

Argini contenitori, pag. 713 n. 294. Argini trasversali a difesa di un ponte, pag. 713 n. 295.

Argini longitudinali a difesa di un ponte, pag. 715 n. 296.

Armature dei tetti, pag. 108 n. 43. Asse di un ponte, pag. 327 n. 140. Assi delle luci di un ponte, pag. 327 n. 140.

Atrii, pag. 208 n. 82.

Avvertenze e disposizioni per lo stabilimento di una condotta d'acqua, pag. 746 n. 308.

В

Bellezza, pag. 13 n. 4.

C

Caduta delle conche, pag. 692 n. 285. Caloriferi ad aria calda, pag. 235 n. 96. Caloriferi a vapore, pag. 234 n. 97. Caloriferi ad acqua calda, pag. 235 n. 98. Caloriferi ad acqua ed a vapore, pag. 236 n. 99.

Camini, pag. 227 n. 94. Cauali manufatti, da pag. 633 a 644 e da n. 252 a 259. Cappa di un ponte di struttura murale, pag. 339 n. 146.

Cappucci, pag. 336 n. 143.

Carichi gravitanti sulle armature dei tetti, pag. 112 n. 44

Carichi gravitanti sui solai, pag. 180 n.

Carichi gravitanti sulle vôlte per costruzioni civili, pag. 192 n. 70.

Carichi gravitanti sulle arcate dei ponti di struttura murale, pag. 346 n. 150.

Cerchiature di ferro pel consolidamento delle vòlte a bacino, pag 205 n. 80.

Chiavi di ferro pel consolidamento degli archi e delle piattabande, pag. 90 n. 35

Chiavi di ferro pel consolidamento delle volte, pag. 204 n. 79.

Collocamento in opera delle incavallature e delle centine per tettoie, pag. 178 n. 63.

Collocamento dei ponti in ferro a travate rettilinee sui loro appoggi, pag. 603 n. 238.

Collocamento degli archi dei ponti metallici sui loro appoggi, pag. 616 n. 245.

Collocamento in opera dei grandi viadotti con pile metalliche, pag. 626 n. 250.

Colonna premente, cui corrisponde la massima pressione sulle pareti delle trombe dei sifoni e delle tombe, pag. 671 n. 278.

Colonne, pag. 33 n. 20.

Colonne e sostegni di legno, pag. 38 n. 22.

Colonne e sostegni di ghisa, pag. 41 n. 23.

Colonne e sostegni di ferro, pag. 45 n.

Comodità, pag. 7 n. 2.

Conche o sostegni, da pag. 683 a 693 e da n. 282 a 285.

Condizioni generali pel buon stabilimento di un ponte, pag. 318 n. 136.

Condizioni alle quali devono soddisfare le arcate dei ponti obliqui, pag 585 n. 165.

Condotta con una distribuzione uniforme per via, pag. 741 n. 506.

Condotta portante le acque in un serbatoio o in una cassa chiusa, pag. 733 n. 303.

Condotta principale, pag. 750 n. 302. Condotta secondaria diramantesi da una

condotta principale, pag. 756 n. 305. Condotte d'acqua, da pag. 718 a 750 e da n. 298 a 308.

Condotti per lo scolo delle acque, pag. 308 n. 129.

Convenienza relativa dei diversi tipi di muri di sostegno, pag. 298 n. 125. Coperture per costruzioni civili, da pag. 96 a 207 e da n. 37 a 80.

Corde delle arcate dei ponti di struttura murale, pag. 542 n. 148.

Corona di testa di un'arcata obliqua, pag. 416 n. 177.

Costruzione delle arcate oblique, pag. 430 n. 182.

Costruzioni civili, da pag. 7 a 248 e da n. 1 a 103.

Costruzioni stradali, da pag. 249 a 632 e da n. 104 a 251.

Costruzioni idrauliche, da pag. 653 a 750 e da n. 252 a 308.

Cunei componenti un'arcata obliqua, pag. 421 n. 179.

Cuscinetti d'imposta di un'arcata obliqua, pag. 421 n. 179.

D

Derivatori e scaricatori, da pag. 650 a 662 e da n. 265 a 272.

Derivatori ordinari, pag. 650 n. 265.

Derivatori per grandi canali, pag. 652 n. 266.

Dighe, da pag. 644 a 650 e da n. 260 a 264.

Dighe per l'alimentazione di canali, pag. 644 n. 261.

Dighe di struttura murale, pag. 646 n. 262. Dighe di legname, pag. 647 n. 263.

Direzione di una strada, pag. 252 n. 108, pag. 253 n. 109.

Direzione di un canale, pag. 635 n. 255. Disinfezione degli abitati, pag. 246 n. 103. Disposizione, pag. 9 n. 2.

Disposizioni ed avvertenze per lo stabilimento di una condotta d'acqua, pag. 746 n. 308.

Distanza ed altezza degli argini longitudinali, pag. 699 n. 290.

Distribuzione dell'acqua di una condotta mediante serbatoi e mediante casse chiuse, pag. 755 n 304.

Distribuzione delle lamiere componenti le tavole delle travi longitudinali principali dei ponti in ferro a travate rettilinee, pag. 536 n. 214 e pag. 576 n. 226.

Distribuzione dei pezzi componenti le pareti verticali delle travi longitudinali principali dei ponti in ferro a travate rettilinee, pag. 539 n. 214, e pag. 596 n. 234.

100

Facce sviluppabili dei diversi cunei componenti un'arcata obliqua, pag. 405 n. 475.

Finestre e porte pei sotterranei, pag. 20 n. 9. Finestre ed altre aperture, pag. 225 n. 91. Fondazioni per costruzioni civili, pag. 15

Fondazioni dei ponti, pag. 327 a 141.

Gallerie, da pag. 303 a 516 e da n. 126 a 133.

Gallerie a cielo scoperto, pag. 315 n. 133. Ginoti nei punti retti di struttura murale. pag. 370 n. 158.

Giunti in un'arcata di ponte con strombature, pag. 379 n. 162.

Giunti sui piani di testa di un'arcata obliqua, pag. 408 n. 176.

Grossezza da assegnarsi agli argini longitudinali, pag. 702 n. 291. Grossezza dei tubi delle condotte, pag.

742 n. 307.

Grossezza degli archi, pag. 51 n. 27. Grossezza dei piedritti, pag. 8 n. 34.

Grossezza delle arcate dei ponti, pag. 344 n. 149.

Grossezza delle spalle dei ponti di struttura murale, pag. 351 n. 152, pag. 356 n. 154.

Grossezza delle pile dei ponti di struttura murale, pag. 365 n. 156.

Grossezze da assegnarsi ai muri per costruzioni civili, da pag. 26 a 33 e da n. 14 a 19.

Incavallature dei tetti, pag. 132 n. 51. Incavallature metalliche, pag. 150 n. 55. Inclinazione delle falde dei tetti, pag. 106

Innalgamento del livello dell'acqua, causato dalla costruzione di un ponte, pag. 326 n. 139.

Interassi, pag. 224 n. 90.

Inviluppo utile dei momenti inflettenti per le travi longitudinali principali dei ponti a travate rettilinee, da pag. 547 a 578 e da n. 216 a 226.

Inviluppo utile degli sforzi di taglio per le travi longitudinali principali dei ponti a travate rettilinee, da pag. 578 a 598 e da n. 227 a 234.

· Larghezza dei ponti, pag. 342 n. 148. Ligati, pag. 95 n. 36.

Linee dei giunti longitudinali e linee dei giunti trasversali sullo sviluppo della superficie d'intrados di un'arcata obliqua, pag. 394 n. 172.

Linee dei giunti longitudinali e linee dei

giunti trasversali sullo sviluppo della superficie d'estrados di un'arcata obliqua, pag. 399 n. 174.

Listelli orizzontali per tetti, pag. 123 n. 47.

Longarine o travi longitudinali secondarie dei ponti di legname, pag. 463 n.

Luce libera di un ponte, pag. 321 n. 138. Luce libera dei derivatori, pag. 655 n. 267.

Luce libera degli scaricatori, pag. 661 n. 271.

IVI

Muri andatori, pag. 339 n. 145.

Muri dei sotterranei, pag. 16 n. 7. Muri d'ala, pag. 337 n. 144, pag. 363 n. 155.

Muri di risvolto, pag. 337 n. 144, pag. 563 n. 155.

Muri di sostegno, da pag. 265 a 305 e da n. 113 a 125.

Muri di sostegno con scarpa esterna, pag. 269 n. 116.

Muri di sostegno con scarpa interna, pag. 274 n. 117.

Muri di sostegno con riseghe, pag. 275

Muri di sostegno con profili curvi, pag. 278 n. 119.

Muri di sostegno con contrafforti interni, pag. 282 n. 120.

Muri di sostegno con contrafforti ed archi di scarico, pag. 290 n. 121.

Muri di sostegno con contrafforti esterni, pag. 294 n. 122.

Muri di sostegno stati impiegati in alcune eccezionali circostanze, pag. 301 n.

N

Nicchie delle gallerie, pag. 311 n. 131. Norme per lo studio di un progetto di strada, pag. 261 n. 111.

Norme per lo studio di un progetto di canale, pag. 642 n. 258.

Norme per convenientemente regolare le dimensioni delle diverse parti dei ponti-canali e degli acquedotti, pag. 665 n. 274.

Norme per la determinazione delle dimensioni delle varie parti di un sifone o di una tomba, pag. 677 n. 280.

Norme per determinare le principali dimensioni dei sostegni, pag. 688

Nozioni generali sulle condotte forzate, pag. 719 n. 299.

Nozioni generali sulle costruzioni civili, da pag. 7 a 15 e da n. 1 a 4. Nozioni generali sulle strade, da pag. 249 a 265 e da n. 104 a 112. Nozioni generali sui ponti, da pag. 317 a 336 e da n. 134 a 141.

0

Obliquità di un ponte obliquo, pag. 385 n. 166.

Occhi di ponte, pag. 339 n. 145.

Operazioni preliminari per lo studio di un progetto di ponte, pag. 318 n. 137. Opere d'arte necessarie al compimento di un canale, pag. 643 n. 259.

Opportunità degli arginamenti, pag. 693 n. 287.

Ossatura di una costruzione civile, da pag. 25 a 96 e da n. 13 a 36.

P

Palate, pag. 441 n. 186, pag. 444 n. 187 e pag. 481 n. 198.

Panconcelli per tetti, pag. 124 n. 48.
Pareti verticali delle travi longitudinali
principali dei ponti in ferro a travate rettilinee in corrispondenza
degli appoggi, pag. 598 u. 255.

Parti principali dei sostegui, pag. 684 n. 283.

Pavimenti dei sotterrauei, pag. 23 n. 10. Pedata, pag. 23 n. 11 e pag. 209 n. 83. Pendenze dei canali, pag. 634 n. 253 e 254. Pendenze delle strade, pag. 250 n. 105, pag. 251 n. 106.

Peso approssimato di una centina per tettoia, pag. 160 n. 58.

Peso approssimato di una trave longitudinale principale di ponte in legno, pag. 471 n. 197.

Peso approssimato di una trave longitudinale principale di ponte in ferro, pag. 530 n. 213.

Pianta delle scale, pag. 211 n. 84. Piattabande, pag. 47 n. 26.

Piedritti, pag. 28 n. 55, pag. 84 n. 35, pag. 88 n. 34, pag. 178 n. 62, pag. 496 n. 203, pag. 600 n. 236, pag. 616 n. 244.

Pilastri, pag. 38 n. 21.

Pile dei ponti, pag. 317 n. 135.

Pile dei ponti di struttura murale, pag. 336 n. 143.

Pile-spalle, pag. 369 n. 157.

Pile dei ponti obliqui, pag. 440, n. 184. Ponti-canali ed acquedotti, da pag. 662 a 666 e da n. 272 a 274.

Ponti, da pag. 317 a 617 e da n. 134 a 245. Ponti retti e ponti obliqui, pag. 327 n. 140. Ponti di struttura murale, da pag. 336 a 441 e da n. 142 a 184

Ponti con strombature, da pag. 371 a 379 e da n. 159 a 162.

Ponti a torri, pag. 580 n. 163.

Ponti obliqui, da pag. 383 a 441 e da n. 164 a 184.

Ponti di legname, da pag. 441 a 497 e e da n. 185 n. 203.

Ponti di legname con incavallature rette, pag. 445 n. 189, pag. 448 n. 190.

Ponti di legname a travate rettilinee, da pag. 453 a 486 e da n. 191 a 198. Ponti con archi di legname, da pag. 486

a 497 e da n. 199 a 203 Ponti metallici, da pag. 497 a 617 e da

204 a 245. Ponti in ferro a travate rettilinee, da

pag. 499 a 605 e da n. 205 a 238. Ponti in ferro a travate rettilinee di piccola portata, pag. 499 n. 205, pag. 500 n. 206, pag. 506 n. 207.

Ponti in ferro a travate rettilinee di grande portata, pag. 507 n. 208.

Ponti in ferro a travate rettilinee con travi a traliccio e con travi a parete verticale piena, pag. 517 n. 209.

Ponti con archi metallici, da pag. 605 a 617 e da n. 239 a 245

Porte e finestre pei sotterranei, pag. 20 n. 9.

Portoni, portoncini e porte interne, pag. 207 n. 81 e pag. 225 n. 91.

Pozzi delle gallerie, pag. 310 n. 130. Pressioni che tendono a produrre la rottura delle trombe dei sifoni e delle tombe, pag. 673 n. 279.

Profili trasversali dei canali, pag. 636 n. 256.

Profili trasversali delle strade, pag. 256 n. 110.

Puntoni dei tetti, pag. 127 n. 50. Punto più basso di una catena di montagne, pag. 253 n. 109.

R

Radiciamenti, pag. 95 n. 36.

Reazioni massime degli appoggi dei ponti a travate rettilinee, pag. 598 n. 235.

Relazioni fra la portata di un canale, la sua peudenza e gli elementi determinanti la sua sezione retta, pag. 638 n. 257.

Relazioni fra gli elementi principali di un sistema di argini trasversali, pag. 711 n. 293.

Relazioni fra gli elementi di una condotta principale, pag. 730 n. 302.

Relazioni fra gli elementi di una diramazione staccantesi da una condotta principale, pag. 736 n. 303. Resistenze dell'acqua scorrente in una condotta forzata, pag. 726 n. 501.

Requisiti di qualsiasi costruzione civile, da pag. 7 a 15 e da n. 1 a 4.

Riempimenti da porsi fra l'estrados delle vôlte ed il sovrastante pavimento, pag. 191 n. 69.

Riscaldamento degli abitati, da pag. 227 a 240 e da n. 93 a 100.

Risvolte delle strade e limiti dei loro raggi, pag. 252 n. 107.

Rivestimenti delle gallerie, pag. 307 n. 128.

Rostri, pag. 336 n. 143.

S

Saette delle arcate dei ponti di struttura murale, pag. 342 n. 148.

Salubrità, pag. 7 n. 2.

Scale dei sotterranei, pag. 23 n. 11. Scale, da pag. 209 a 222 e da n. 83 a 88. Scale i cui gradini hanno appoggio su

due muri paralleli, pag. 214 n. 85. Scale a sbalzo, pag. 217 n. 86. Scale a vôlta, pag. 218 n. 87.

Scale di legno, pag. 221 n. 88. Scale di ghisa, pag. 221 n. 88.

Scaricatori e derivatori, da pag. 650 a 662 e da n. 265 a 272.

Scaricatori ordinari, pag. 657 n. 268. Scaricatori con porte marinières, pag. 658 n. 269.

Scelta del sistema di arginamento, pag. 694 n. 288.

Sezione retta della superficie interna di una galleria, pag. 304 n. 127.

Sezioni rette della tromba e dei pozzi dei sifoni, pag. 669 p. 277.

sifoni, pag. 669 n. 277. Sfogatoi delle acque che cadono sopra

un ponte, pag. 339 n. 146. Sifoni e tombe, da pag. 666 a 683 e da n. 275 a 282.

Sifoni e tombe di struttura murale, pag. 667 n. 276.

Sifoni e tombe con tubi metallici, pag. 681 n. 281.

Smussature per togliere gli spigoli degli angoli acuti nelle arcate oblique e nei loro piedritti, pag. 437 n. 184. Solai, da pag. 180 a 187 e da n. 64 a 66.

Solidità, pag. 11 n. 3.

Sostegni e colonne di ferro, pag. 45 n. 24. Sostegni e colonne di ghisa, pag. 41 n. 23. Sostegni e colonne di legno, pag. 38 n. 22. Sostegni uniti, pag. 47 n. 25.

Sostegni o conche, da pag. 683 a 693, da n. 282 a 285.

Sotterranei, da pag. 15 a 25 e da n. 6 a 14.

Sovraccarichi per rapporto alle travi longitudinali dei ponti a travate rettilinee, pag. 457 n. 192, pag. 520 n. 210.

Sovraccarichi per rapporto alle travi trasversali dei ponti a travate rettilinee, pag. 459 n. 493, pag. 520 n. 210. Spalle dei ponti, pag. 317 n. 135.

Spalle dei ponti di struttura murale, pag. 337 n. 144.

Strade, pag. 249 n. 104.

Strombature per arcate rette, da pag. 372 a 380 e da 160 a 162.

Strombature onde togliere gli angoli acuti nelle arcate oblique, pag. 437 n. 184. Struttura degli argini, pag. 716 n. 297. Stufe, pag. 232 n. 95.

Suolo stradale sui ponti, pag. 341 n. 147. Sviluppo della superficie d'intrados di

un'arcata obliqua, pag. 392 n. 171. Sviluppo della superficie d'estrados di un'arcata obliqua, pag. 397 n. 175.

T

Tavolati per tetti, pag. 116 n. 46. Tavolati dei ponti di leguame, pag. 463 n. 194.

Testate di struttura murale, pag. 337 n. 144.

Testate di legname, pag. 445 n. 188. Teste delle gallerie, pag. 512 n. 132. Tetti, da pag, 96 a 136 e da n. 38 a 51.

Tetti su base rettaugolare, su base parallelogrammica e su base trapezia, pag. 97 n. 39.

Tetti pel complesso di più corpi di fabbrica, pag. 98 n. 40.

Tetti sopra basi qualunque, pag. 103 n. 41. Tettoie, da pag. 136 a 179 e da 52 a 63. Tettoie con ordinarie incavallature di legno, pag. 136 n. 52.

Tettoie con incavallature metalliche, pag. 137 n. 53.

Tettoie con centine, da pag. 159 a 178 e da n. 57 a 61.

Timpani, pag. 339 n. 145.

Tombe e sifoni, da pag. 666 a 683 e da n. 275 a 282.

Tombe e sifoni di struttura murale, pag. 667 n. 276.

Tombe e sifoni con tubi metallici, pag. 681 n. 281.

Travi longitudinali principali dei ponti di legname a travate rettilinee, pag. 476 n. 198.

Travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti solamente da due appoggi, pag. 536 n. 214.

Travi longitudinali principali dei ponti in ferro a travate rettilinee, sostenuti da più di due appoggi, da pag. 542 a 600 e da n. 215 a 235. Travi longitudinali secondarie dei ponti di legname, pag. 163 n. 195.

Travi longitudinali secondarie dei ponti in ferro, a travate rettilinee, pag. 525 n. 211.

Travi trasversali dei ponti di legname, pag. 168 n. 196.

Travi trasversali dei ponti in ferro a travate rettilinee, pag. 527 n. 212.

U

Unioni dei tubi metallici pei condotti, pag. 721 n. 300.

V

Variazioni di temperatura e loro influenza sui diversi pezzi delle incavallature, pag 156 n. 56.

Ventilazione, pag. 240 n. 101, pag. 242

n. 102.

Verificazione della stabilità di un arco, da pag. 57 a 84 e da n. 29 a 52. Verificazione della stabilità dei piedritti

degli archi, pag. 84 n. 33.

Verificazione della stabilità delle vôlte a padiglione, pag. 192 n. 71. Verificazione della stabilità delle vôlte a

verificazione della stabilità delle volte a botte con teste di padiglione, pag. 194 n. 72. Verificazione della stabilità delle vôlte a schifo e delle vôlte a padiglione sopra schifo, pag. 195 n. 73.

Verificazione della stabilità delle vôlte a vela su pianta rettangolare, pag. 196 n. 74.

Verificazione della stabilità delle vôlte a crociera su piauta rettangolare, pag. 198 n. 75.

Verificazione della stabilità delle vôlte a bacino, pag. 201 n. 76.

Verificazione della stabilità dei piedritti delle vôlte per costruzioni civili, pag. 202 u. 78.

Verificazione della stabilità delle arcate dei ponti, pag. 348 n. 151.

Verificazione della stabilità delle spalle dei ponti di struttura murale, pag. 352 n. 153.

Viadotti, da pag. 617 a 632 e da n. 246 a 251.

Viadotti di struttura murale con un sol ordine di arcate, pag. 618 n. 247.

Viadotti di struttura murale con più ordini di arcate, pag. 620 n. 248.

Viadotti metallici, da pag. 622 a 632 e da n. 240 a 251.

Vôlte dei sotterranei, pag. 18 n. 8. Vôlte per costruzioni civili, da pag. 187 a 207 e da n. 67 a 80.

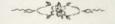
I wolt g

COSTRUZIONI

CIVILI, STRADALI ED IDRAULICHE

LAVORO AD USO

degl'Ingegneri, degli Architetti, dei Periti in costruzione e di quanti si trovano applicati alla direzione ed alla sorveglianza di costruzioni civili, stradali ed idrauliche


UTILE

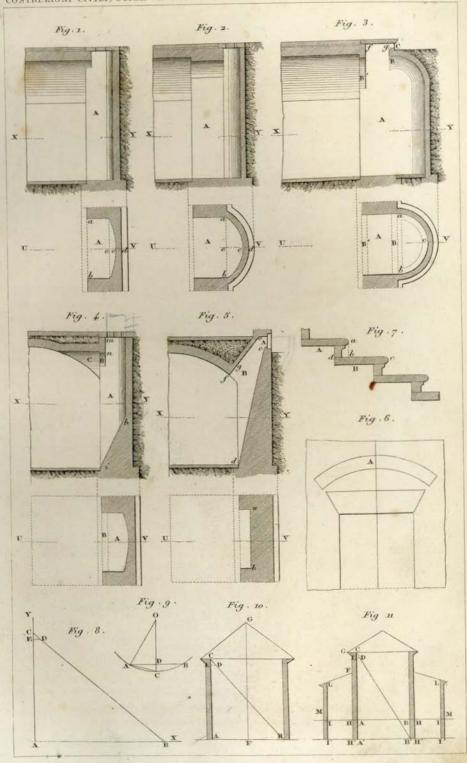
agli studenti delle scuole d'applicazione per gl'Ingegneri e dei corsi tecnici pei Periti in costruzione

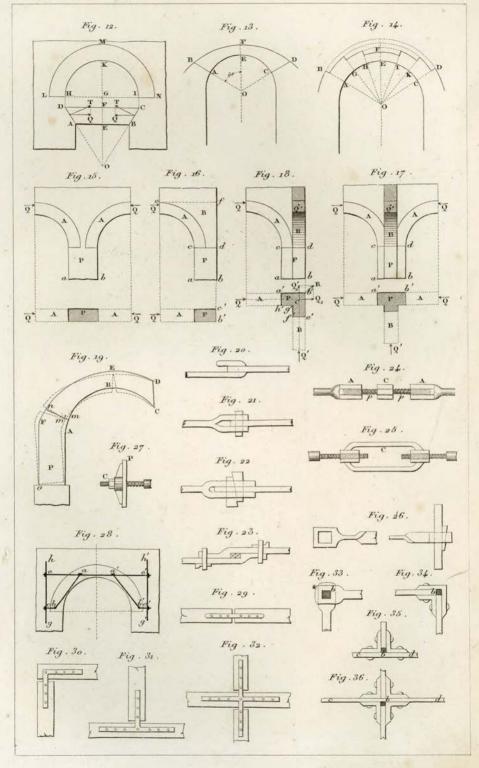
PER

CURIONI GIOVANNI

Ingegnere, Architetto e Dottore aggregato al Collegio della Facoltà di scienze fisiche e matematiche della R. Università di Torino, Professore di costruzioni civili, stradali ed idrauliche nella R. Scuola d'applicazione per gli Ingegneri di Torino, Membro ordinario residente della Società Reale d'agricolturo, industria e commercio, Membro effettivo residente della Società degli Ingegneri e degli Industriali di Torino, e Socio onorario dell'Associazione di Conferenze di Matematiche pure ed applicate di Napoli.

TORINO

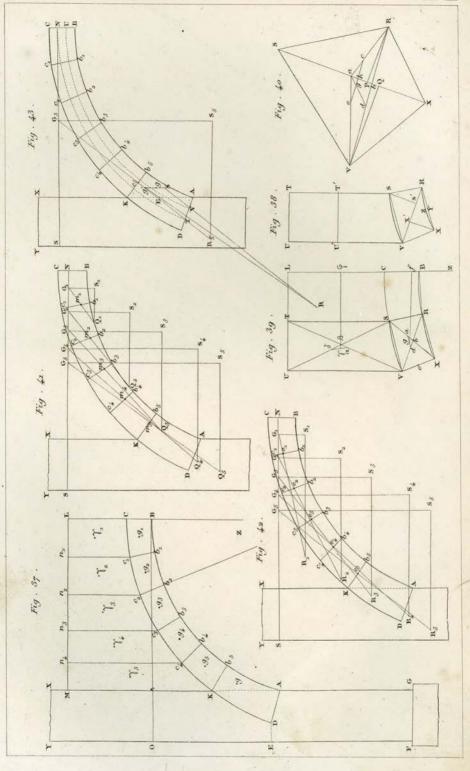
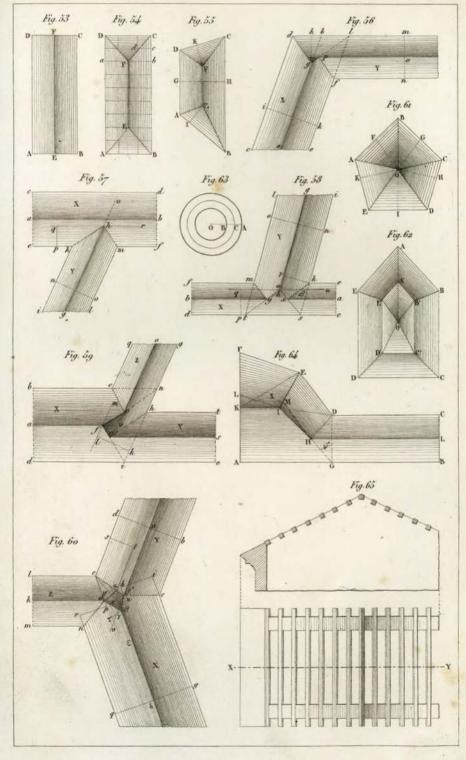
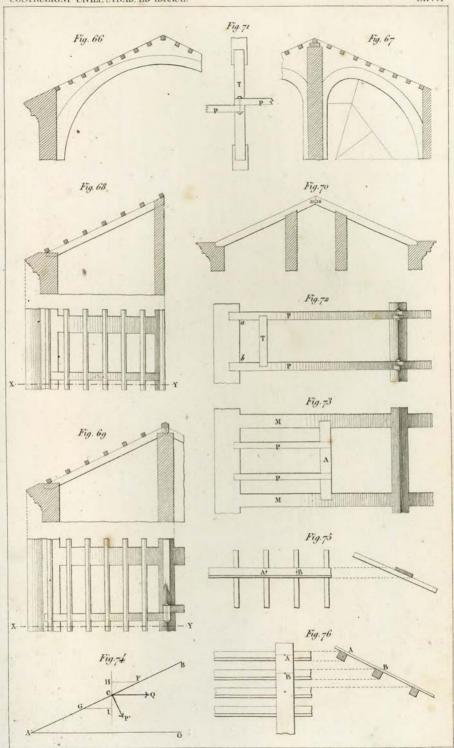
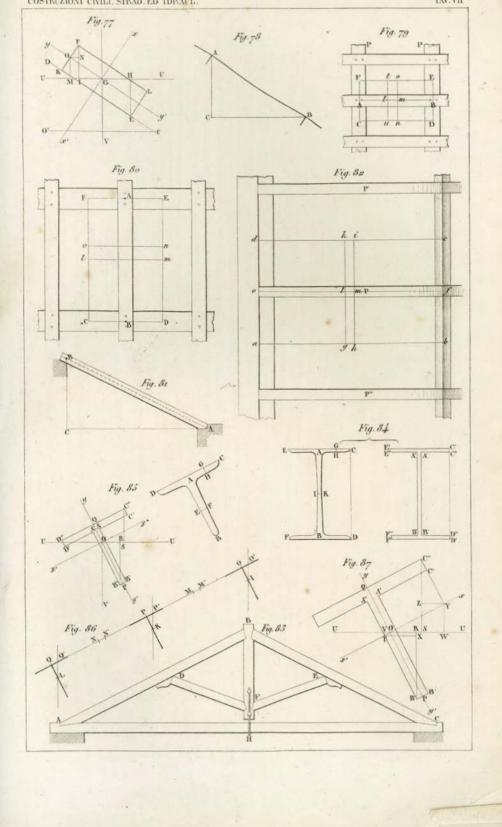
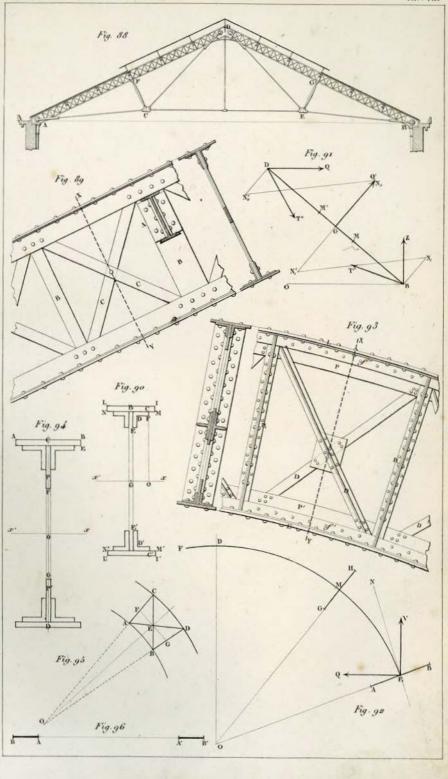

Presso AUGUSTO FEDERICO NEGRO, Editore

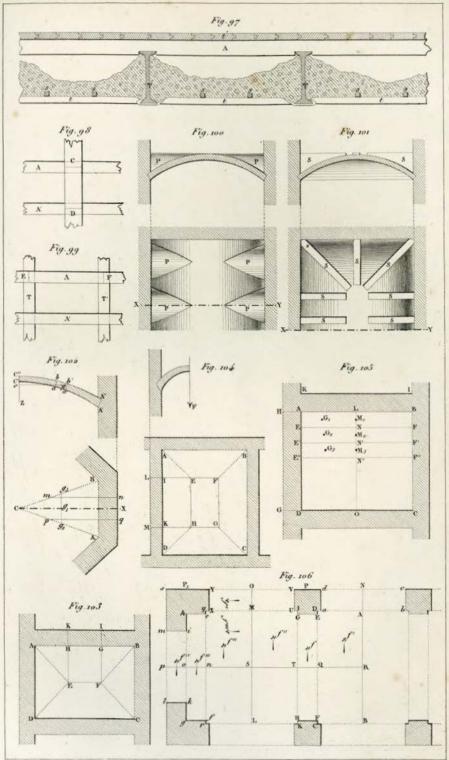

1871

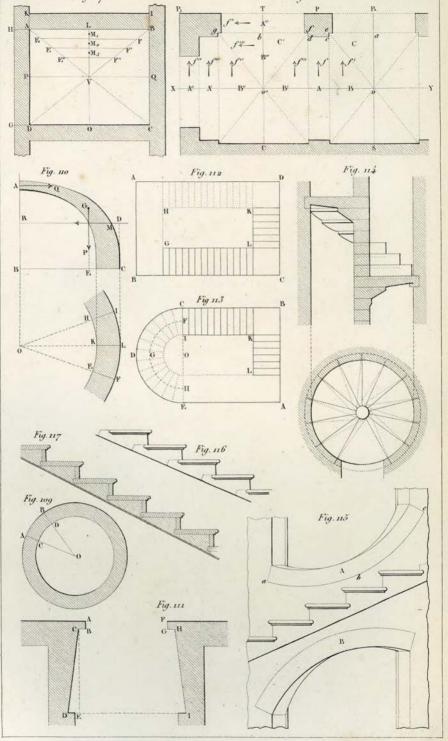
COSTRUZION

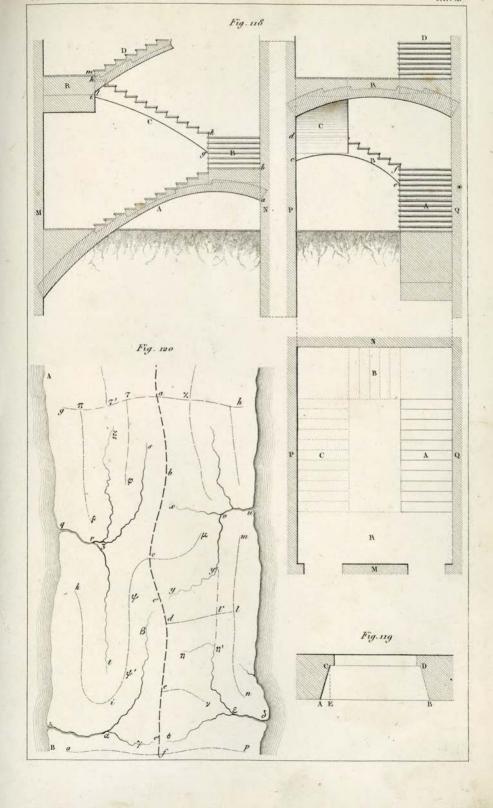
Proprietà letteraria e artistica, con riserva della traduzione.

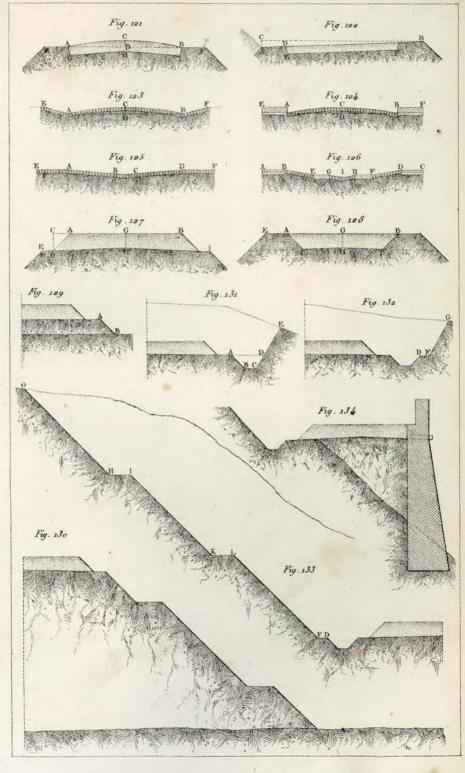
Torino, 1871 — Stamperia dei Compositori-Tipografi, A. Oddenino e Comp. via Riberi, 2, dietro il Tempio Israelitico.

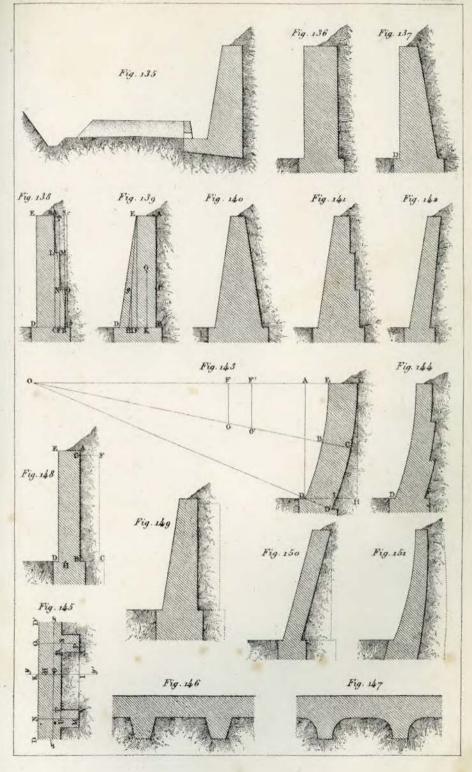






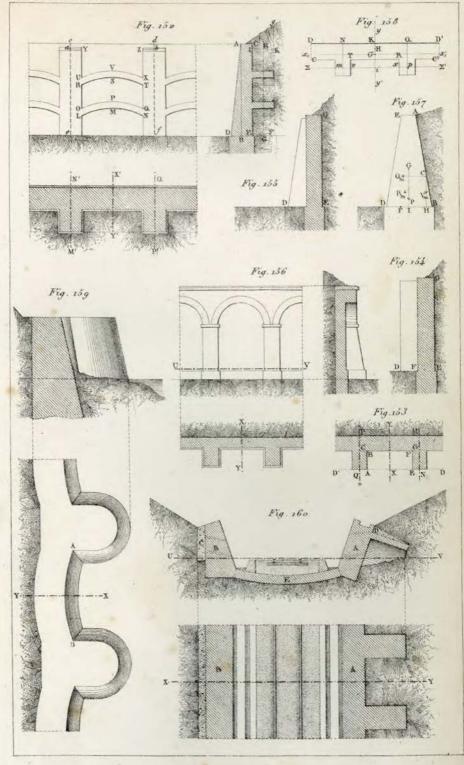

Fig. 50

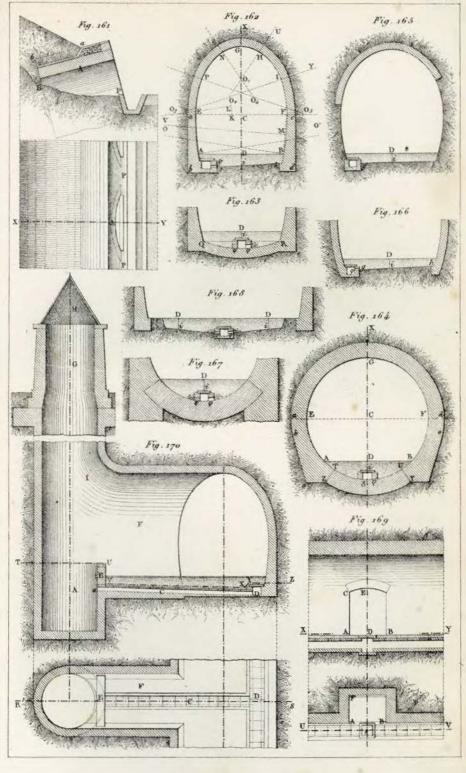


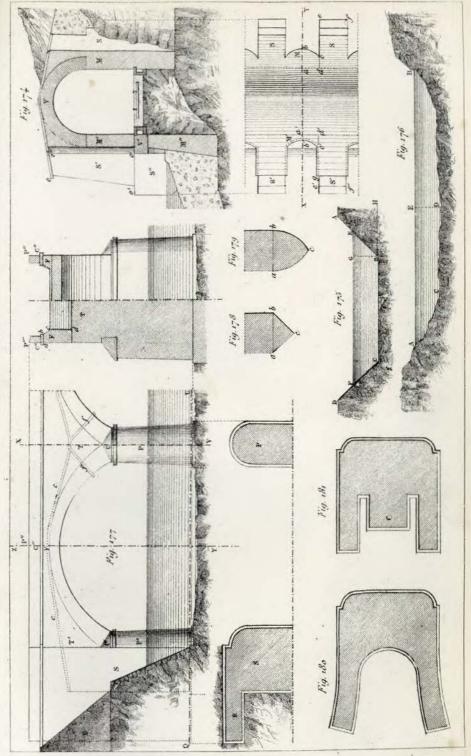


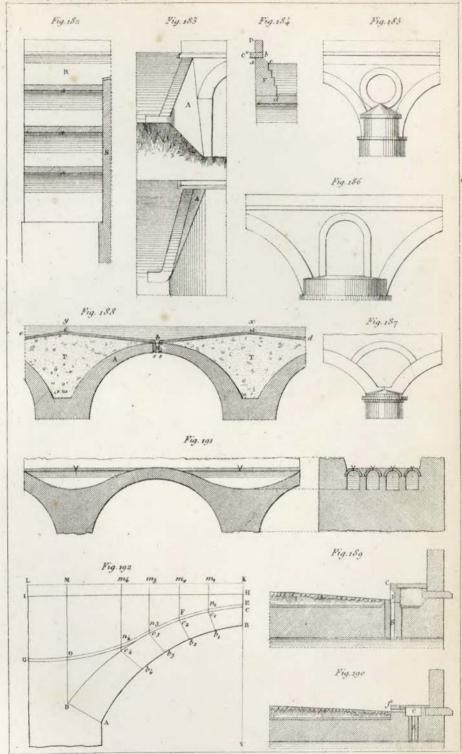


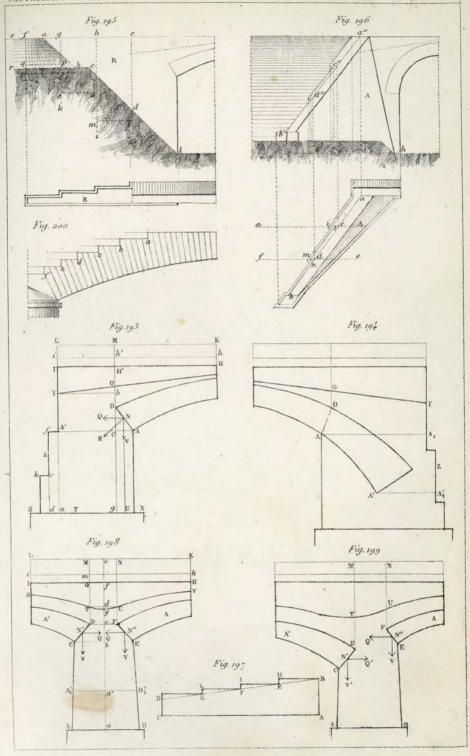


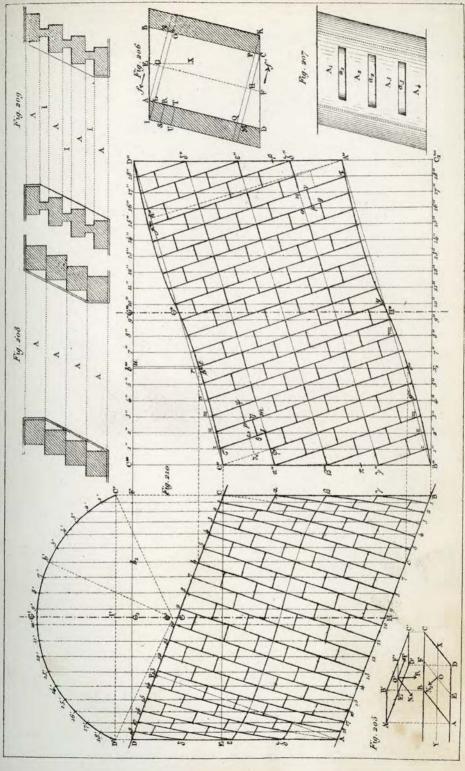


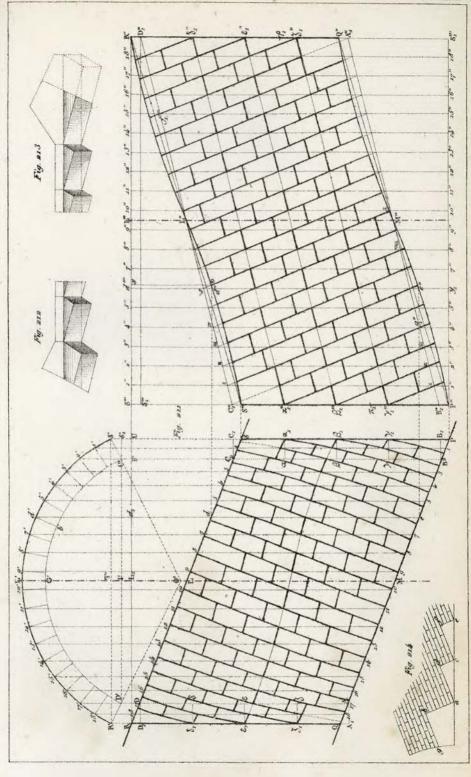


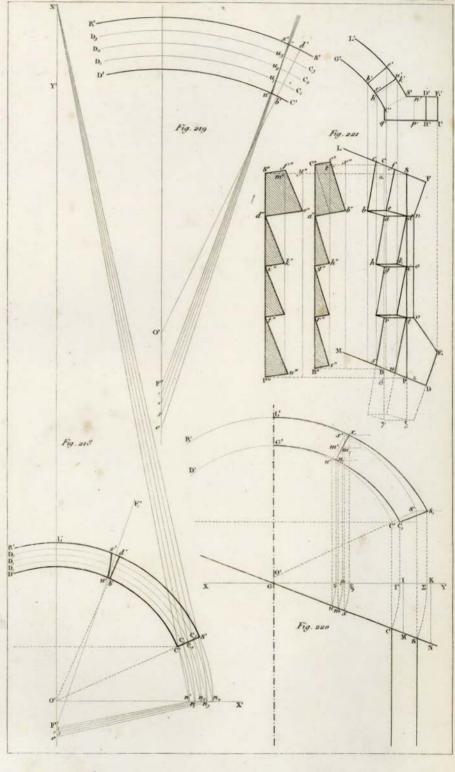


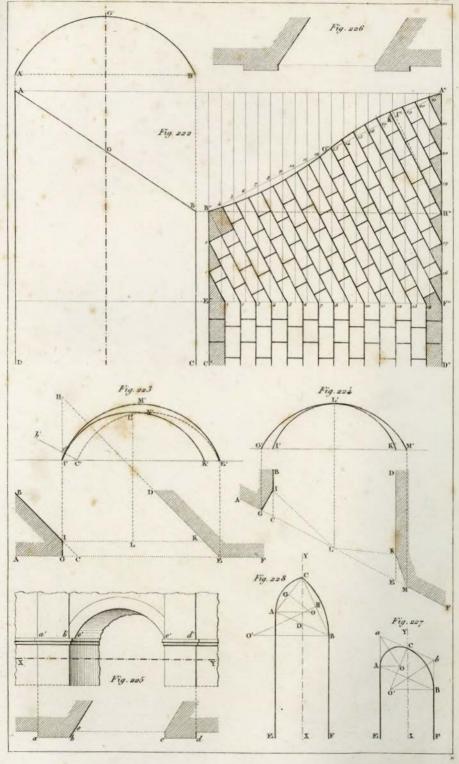


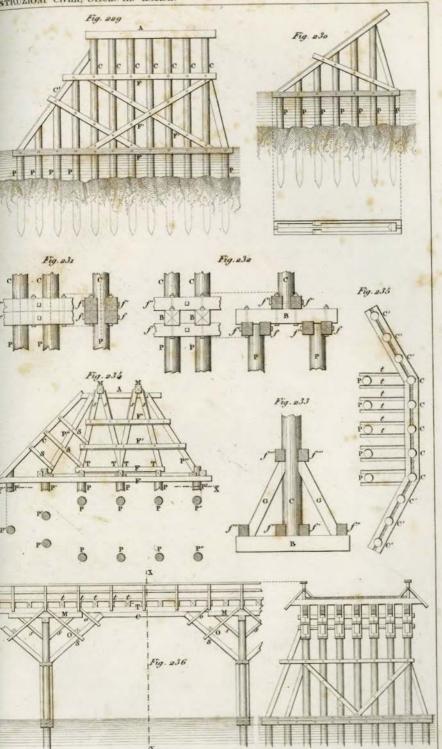


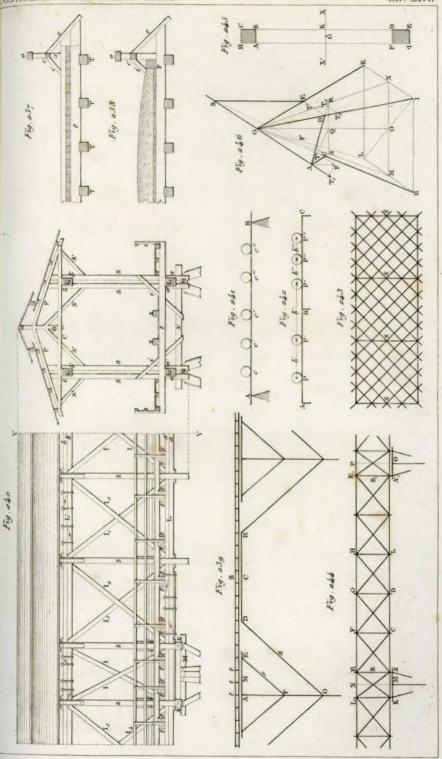


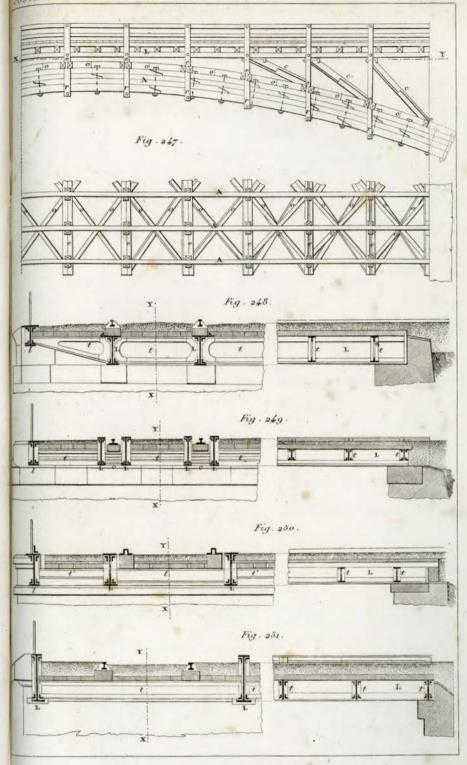


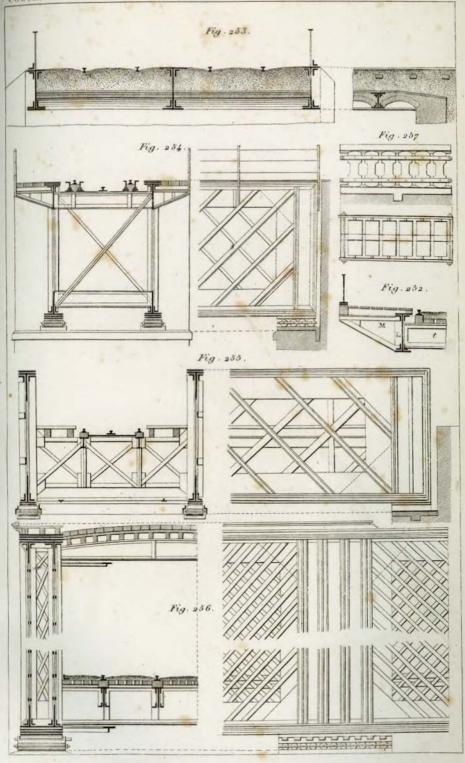


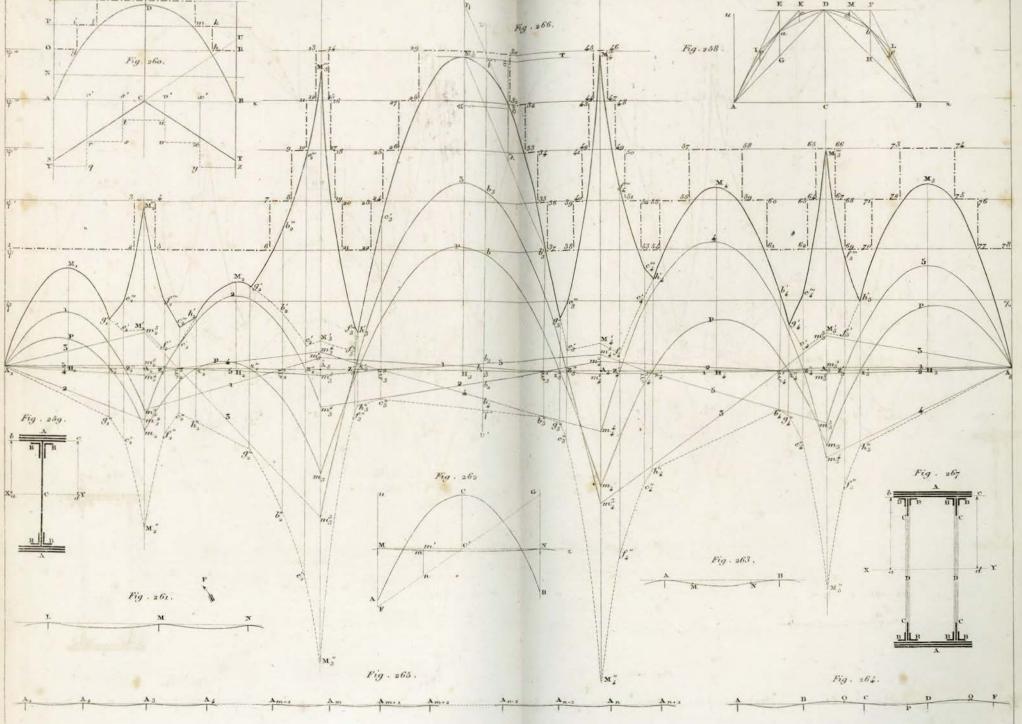


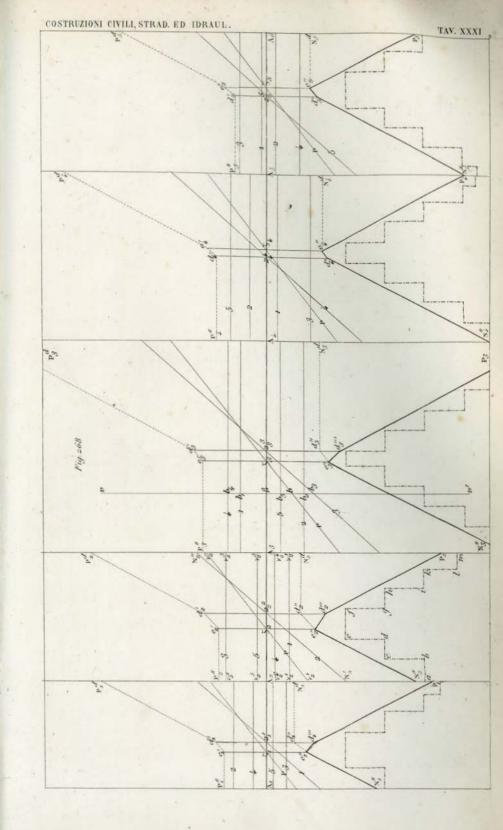


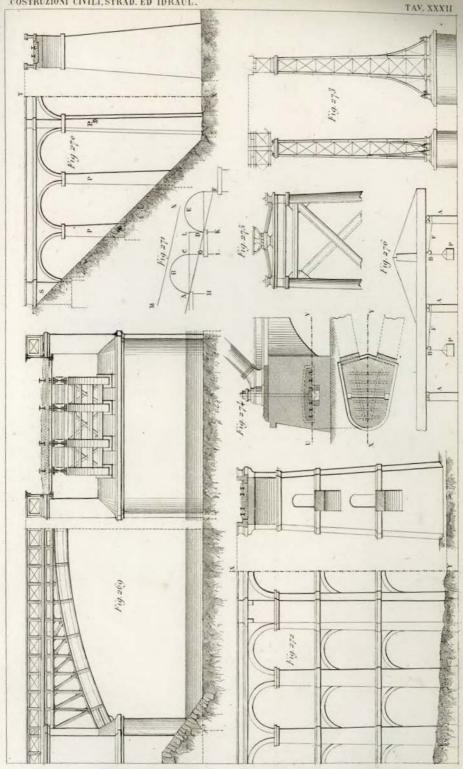




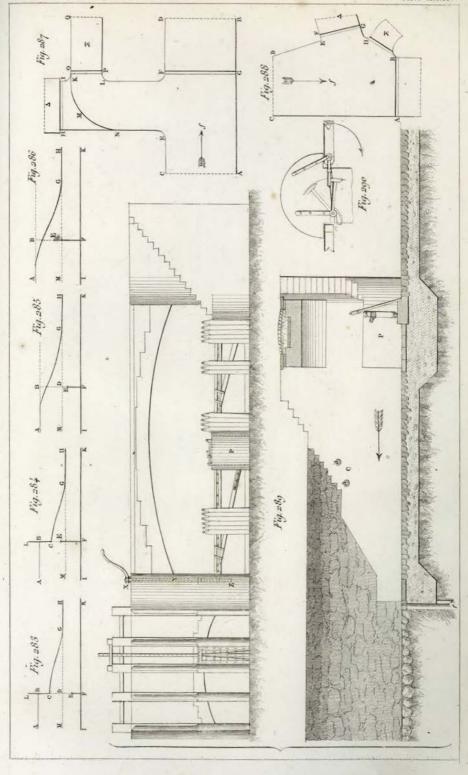


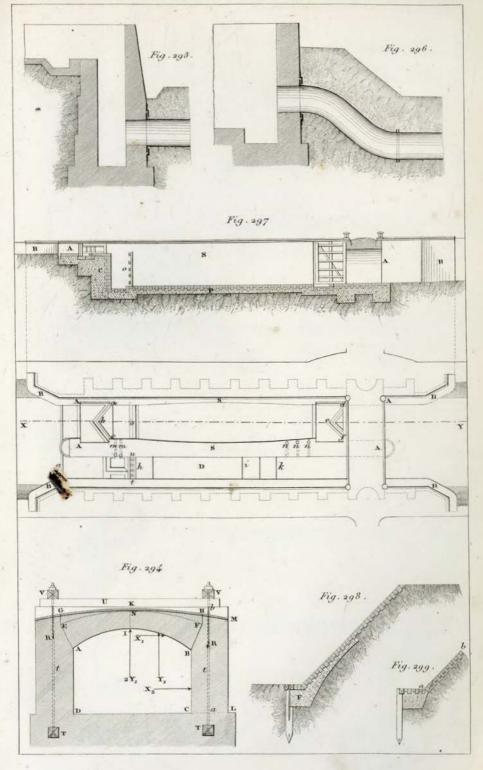


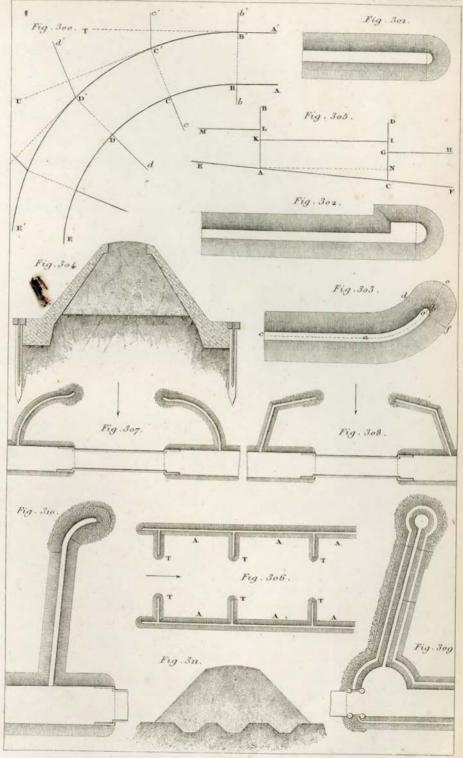


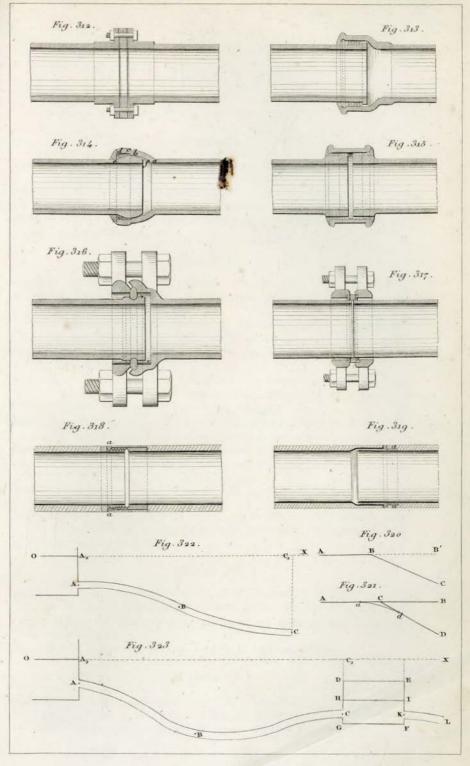












INDICE DELLE FIGURE

Tavola I.

- Figure 1, 2, 3, 4 e 5. Disposizioni diverse per dare luce ai sotterranei delle costruzioni civili.
- Figura 6. Sordino sopra una piattabanda,
 - 7. Sezione trasversale di una porzione di scala per sotterranei.
- Figure 8, 9, 10 ed 11, per la deduzione di alcune formole empiriche relative alle grossezze dei muri.

Tavola II.

- Figura 12, per la deduzione della grossezza delle piattabande.
- Figure 13 e 14, per la spiegazione di alcune regole sulla determinazione della superficie d'estrados degli archi.
 - 15, 16, 17 e 18, per far conoscere le diverse principali condizioni in cui
 possono trovarsi i piedritti sui quali hanno appoggio uno, due e tre archi.
- Figura 19, per spiegare qual è negli archi il sito più conveniente pel collocamento delle chiavi in ferro.
- Figure 20, 21, 22, 23, 24, 25. Diversi sistemi per l'unione delle varie parti delle chiavi in ferro, per archi, composte di più pezzi.
 - 26 e 27. Estremità di chiavi in ferro per archi.
- Figura 28. Disposizione che si può adottare per stabilire, in modo che uon si veda, la chiave in ferro di un arco di apertura un po' grande.
- Figure 29, 30, 31 e 32. Unioni di radiciamenti di legno.
 - 33, 34, 35 e 36. Unioni di radiciamenti di ferro.

Tavola III.

Figure 37, 38, 39, 40, 41, 42 e 43, relative alla verificazione della stabilità di un arco, nell'ipotesi che la rottura tenda manifestarsi per aprimento alla chiave verso l'intrados.

Tavola IV.

- Figure 44, 45 e 46, relative alla verificazione della stabilità di un arco.
 - 47, 48, 49 e £0, riferentisi alla verificazione della stabilità di un arco, nell'ipotesi che la rottura tenda manifestarsi per aprimento alla chiave verso l'estrados.
 - 51 e 52, relative alla verificazione della stabilità dei piedritti.

Tavola V.

- Figura 53. Proiezione orizzontale di un tetto a due falde.
 - 54. Proiezione orizzontale di un tetto a padiglione su pianta rettangolare.
 - , 55. Proiezione orizzontale di un tetto a padiglione su pianta trapezia.

Figure 56, 57 e 58. - Proiezioni orizzontali di tetti coprenti due corpi di fabbrica.

- 59 e 60. Proiezioni orizzontali di tetti coprenti tre corpi di fabbrica.
- 61 e 62. Proiezioni orizzontali di tetti coprenti aree poligonali qualunque.

Figura 63, per spiegare la composizione geometrica di un tetto coprente una corona circolare.

- 64, per far conoscere l'impiego delle superficie rigate nello studio della composizione geometrica dei tetti.
- . 65. Tetto cogli arcarecci sopportati da muri.

Tavola VI.

Figure 66 e 67. - Tetti cogli arcarecci sopportati da muri.

68 e 69. - Tetti cogli arcarecci sopportati da muri e da puntoni.

Figura 70. — Tetto per una fabbrica tripla in profondità.

 71. — Disposizione per sostenere i puntoni dove esiste un'interruzione del muro sul quale essi dovrebbero trovare appoggio.

Figure 72 e 73. — Disposizioni che si possono adottare per lo stabilimento delle finestre delle soffitte.

Figura 74, per dedurre la pressione esercitata dal vento sulla falda di un tetto.

Figure 75 e 76, per la determinazione delle grossezze dei tavolati dei tetti.

Tavola VII.

Figure 77 e 78, per la determinazione delle grossezze dei tavolati dei tetti.

Figura 79, per la determinazione delle dimensioni dei listelli orizzontali, e degli arcarecci.

80, per la determinazione delle dimensioni dei panconcelli.

Figure 81 ed 82, per la determinazione delle dimensioni dei puntoni.

Figura 83, relativa alla determinazione delle dimensioni di un'incavallatura.

Figure 84, 85, 86 ed 87, relative alla determinazione delle dimensioni degli arearecci metallici per tettoie con incavallature metalliche.

Tavola VIII.

Figure 88 ed 89, riferentisi ad un'incavallatura metallica, sistema Polonceau.

- 90 e 91, relative alla determinazione delle dimensioni dei puntoni di un'incavallatura metallica, sistema Polonceau.
- Figura 92, per la determinazione approssimativa della sezione retta e del peso di una centina per tettoia, e per la determinazione delle dimensioni della centina stessa.
 - , 93. Porzione di centina in ferro per tettoia.

Figure 94 e 95, riferentisi alla determinazione delle dimensioni delle centine per tettoie.

Figura 96, relativa alla determinazione della lunghezza degli scorritoi.

Tavola IX.

Figure 97, 98 e 99, per la determinazione delle dimensioni delle diverse parti di un solaio con travi in ferro.

 100 e 101. — Disposizioni usate per passare dalla superficie d'estrados di una vôlta al sovrastante pavimento.

- Figura 102, riferentesi alla verificazione della stabilità di una vôlta a padiglione.
- 103, riferentesi alla verificazione della stabilità di una vôlta a botte con teste di padiglione.
- 104, riferentesi alla verificazione della stabilità della vôlta a schifo e della vôlta a padiglione sopra schifo.
- Figure 105 e 106, riferentisi alla verificazione della stabilità delle vôlte a vela su pianta rettangolare.

Tavola X.

- Figure 107 e 108, riferentisi alla verificazione della stabilità delle vòlte a crociera su pianta rettangolare.
- Figura 109, riferentesi alla verificazione della stabilità di una vôlta a bacino.
 - 110, riferentesi alla determinazione delle cerchiature in ferro pel consolidamento delle vôlte a bacino.
 - 111, per far conoscere cosa intendesi per mazzette, per battute e per squarci delle porte.
- Figure 112 e 113, relative alla determinazione delle dimensioni della pianta delle scale.
- Figura 114. Scala a chiocciola, in cui trovasi annessa a ciascun gradino la parte di maschio ad esso corrispondente.
 - 115. Disposizione che si può adottare quando una scala a sbalzo viene a
 passare contro un'apertura.
 - · 116. Porzione di scala a sbalzo coi gradini a tutta alzata.
 - 117. Porzione di scala a sbalzo coi gradini costituiti da lastre di pietra.

Tavola XI.

- Figura 118. Porzione di scala a vôlta.
 - 119, per far conoscere cosa intendesi per mazzette, per battute e per squarci delle finestre.
 - 120, per fare alcune considerazioni sulla determinazione del punto più basso di una catena di montagna.

Tavola XII.

- Figure 121 e 122. Profili trasversali di strade con inghiaiata.
 - · 123, 124, 125 e 126. Profili trasversali di strade selciate e lastricate.
 - · 127 e 128. Profili trasversali per vie ferrate.
 - · 129 e 130. Profili trasversali per vie ferrate in rialzo.
 - 131, 132 e 133. Profili trasversali per vie ferrate in trincea.

Figura 134. — Profilo trasversale per via ferrata sostenuta da un muro.

Tavola XIII.

- Figura 135. Profilo trasversale per via ferrata, con muro pel sostegno del terreno sovrastante alla strada.
- Figure 136, 137, 138, 139, 140, 141, 142, 143, 144. Profili trasversali di muri di sostegno senza contrafforti.
 - 145, 146 e 147. Sezioni orizzontali di muri di sostegno con contrafforti verso terra.
 - 148, 149, 150 e 151. Profili trasversali di muri di sostegno con contrafforti verso terra.

Tavola XXIV.

- Figure 218 e 219, per determinare, nello studio delle arcate oblique, le intersezioni delle superficie dei giunti longitudinali coi piani di testa mediante punti posti su superficie cilindriche parallele a quella d'intrados e mediante le tangenti in questi punti.
- Figura 220, per far vedere come, avendosi la proiezione orizzontale e la proiezione verticale di una corona di testa di un'arcata obliqua e delle curve su essa determinate dalle superficie dei giunti longitudinali, si ottengono quella e queste nella vera loro forma.
 - 221, riferentesi allo studio dei cuscinetti d'imposta di un'arcata obliqua.

Tavola XXV.

- Figura 222, per far vedere come l'apparecchio elicoidale si può anche applicare alle sole estremità delle lunghe arcate oblique.
- Figure 223 e 224. Disposizioni per togliere gli angoli diedri acuti nelle spalle e nelle arcate dei ponti obliqui.
 - 225 e 226. Disposizioni per togliere gli angoli diedri acuti nelle spalle dei ponti obliqui.
 - · 227 e 228. Sezioni orizzontali dei rostri dei ponti obliqui,

Tavola XXVI.

- Figura 229. Palata per ponte di legname.
 - . 230. Sperone isolato a difesa di una palata.
- Figure 231, 232 e 233. Disposizioni per fondazioni di palate molto alte.
- Figura 234. Palata a cavalletto.
 - · 235. Proiezione orizzontale di una spalla di ponte in legname.
 - · 256. Porzione di ponte in legname con incavallature rette.

Tavola XXVII

- Figure 237 e 238. Disposizioni per lo stabilimento del suolo stradale su un ponte di legname destinato al servizio di una via ferrata.
- Figura 239, per indicare quali sono le norme che si possono seguire nel determinare le dimensioni dei diversi pezzi dei ponti con incavallature rette.
 - 240. Porzione di ponte in legname a travate rettilinee.
- Figure 241 e 242, per spiegare come si devono considerare i sovraccarichi per rapporto alle travi longitudinali e per rapporto alle travi trasversali dei pouti in legno a travate rettilinee.
 - 243 e 244, riferentisi alla composizione dei tralicci dei ponti in legno a travate rettilinee.
- Figura 245, relativa alla determinazione di una dimensione delle catene delle travi longitudinali pei ponti in legno a travate rettilinee.
 - 246, riferentesi alla determinazione delle dimensioni dei principali pezzi di una palata a cavalletto.

Tavola XXVIII.

- Figura 247. Porzione di un'arcata di ponte con archi di legname.
- Figure 248, 249, 250 e 251. Quattro diversi tipi di ponti in ferro a travate rettilinee di piccola portata.

Tavola XXIX.

- Figura 252. Saggio di ponte in ferro a travate rettilinee di piccola portata coi marciapiedi sostenuti da mensole.
 - 253. Ponte a travate rettilinee di piccola portata con coperta pesante.
- Figure 254, 255 e 256. Tre diversi tipi di ponti in ferro a travate rettilinee di grande portata.
- Figura 257. Apparecchio di dilatazione formato da rulli riuniti in un carretto con quattro guide.

Tavola XXX.

- Figura 258. Curva dei momenti inflettenti per le travi longitudinali dei ponti in ferro con una sola travata.
 - 259. Sezione a doppio T simetrico di una trave longitudinale a parete verticale piena.
 - 260. Curva dei momenti inflettenti e linea degli sforzi di taglio per le travi longitudinali dei ponti in ferro con una sola travata, uso della prima linea per la determinazione delle lamiere componenti le tavole orizzontali, ed uso della seconda linea per la determinazione della parete verticale.
- Figure 261, 262, 265, 264 e 265, riferentisi alla spiegazione di alcuni teoremi sulle deformazioni e sull'equilibrio delle travi rettilinee orizzontalmente collocate su più appoggi.
- Figura 266. Curva inviluppo utile dei momenti inflettenti per una trave longitudinale principale di ponte in ferro orizzontalmente collocata su sei appoggi, ed uso di questa curva nella determinazione delle lamiere che devono comporre le tavole orizzontali della trave stessa.
 - 267. Sezione trasversale di una trave longitudinale a doppia parete verticale.

Tavola XXXI.

Figura 268. — Linea inviluppo utile degli sforzi di taglio per una trave longitudinale principale di ponte in ferro orizzontalmente collocata su sei appoggi, ed uso di questa linea nella determinazione della parete verticale della trave stessa.

Tavola XXXII.

- Figura 269. Saggio di ponte con archi in ferro.
 - 270. Saggio di viadotto di struttura murale con un sol ordine di arcate.
 - Disposizione da usarsi nelle imposte dei viadotti per strade in pendenza.
 - 272. Saggio di viadotto di struttura murale con più ordini di arcate.
 - 273. Saggio di viadotto in ferro a travate rettilinee con pile metalliche.
- Figure 274 e 275. Particolari riferentisi al piede ed alla sommità di una pila metallica.
- Figura 276, per spiegare il modo con cui si può collocare in opera un viadotto in ferro a travate rettilinee.

Tavola XXXIII.

Figura 277. - Diga di struttura murale.

- 278. Diga di legname.
- · 279, relativa al calcolo dell'altezza di una diga.
- 280. Saggio di un grande edifizio derivatore.

Figure 281 e 282, riferentisi alle paratoie ed alle manovre delle paratoie dei derivatori.

Tavola XXXIV.

Figure 283, 284, 285 e 286, relative al calcolo delle luci libere dei derivatori.

287 e 288. - Disposizioni per derivazioni da fiumi.

Figura 289. - Scaricatore con porte marinières.

 290. — Particolare relativo all'aprimento di uno scaricatore con porte marinières.

Tavola XXXV.

Figure 291 e 292. - Sifoni di struttura murale.

Figura 293, relativa ai calcoli da instituirsi per determinare le dimensioni dei sifoni.

Tavola XXXVI.

Figura 294, riferentesi ai calcoli da instituirsi per determinare le dimensioni dei sifoni.

Figure 295 e 296. - Saggi di sifoni con tubi metallici.

Figura 297. - Sostegno per canale di navigazione.

Figure 298 e 299. - Incamiciate per argini.

Tavola XXXVII

Figura 300, per far vedere come si possono disporre le diverse coppie di argini trasversali nei tronchi di fiumi o di torrenti con andamento curvilineo.

Figure 301, 302, 303. - Estremità di argini trasversali.

Figura 304. — Sezione trasversale di un argine con incamiciate sulle due facce laterali.

- 305, per stabilire alcune relazioni fra le principali dimensioni di un sistema di argini trasversali.
- . 306. Argini trasversali collegati da argini contenitori.

Figure 307 e 308. — Argini trasversali a difesa delle spalle di ponti.

309 e 310. — Altri argini a difesa delle spalle dei ponti.

Figura 311. - Sezione trasversale di un argine in terra.

Tavola XXXVIII.

Figure 312, 313, 314, 315, 316, 317, 318 e 319. — Principali unioni dei tubi per condotte d'acqua.

320, 321, 322 e 323, riferentisi a calcoli da instituirsi sulle condotte d'acqua.

L Veal 9